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Error generation and propagation in Majorana-based topological qubits

A. Conlon,1, ∗ D. Pellegrino,1 J. K. Slingerland,1, 2 S. Dooley,2 and G. Kells2

1Department of Theoretical Physics, Maynooth University, Ireland.
2Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland.

(Dated: May 17, 2019)

We investigate dynamical evolution of a topological memory that consists of two p-wave superconducting
wires separated by a non-topological junction, focusing on the primary errors (i.e., qubit-loss) and secondary
errors (bit and phase-flip) that arise due to non-adiabaticity. On the question of qubit-loss we examine the
system’s response to both periodic boundary driving and deliberate shuttling of the Majorana bound states. In
the former scenario we show how the frequency dependent rate of qubit-loss is strongly correlated with the
local density of states at the edge of wire, a fact that can make systems with a larger gap more susceptible to
high frequency noise. In the second scenario we confirm previous predictions concerning super-adiabaticity and
critical velocity, but see no evidence that the coordinated movement of edge boundaries reduces qubit-loss. Our
analysis on secondary bit flip errors shows that it is necessary that non-adiabaticity occurs in both wires and that
inter-wire tunnelling be present for this error channel to be open. We also demonstrate how such processes can
be minimised by disordering central regions of both wires. Finally we identify an error channel for phase flip
errors, which can occur due to mismatches in the energies of states with bulk excitations. In the non-interacting
system considered here this error systematically opposes the expected phase rotation due to finite size splitting
in the qubit subspace.

PACS numbers: 74.78.Na 74.20.Rp 03.67.Lx 73.63.Nm

I. INTRODUCTION

Quantum devices based on topological order are ex-
pected to be robust against many common forms of de-
coherence, making them an exciting prospect for quantum
computation1–5. Although originally envisaged as a 2D
platform, the realisation that quasi-1D proximity-coupled
systems8–10 could be employed in network architecture6,7 has
led to a great deal of theoretical11–17 and experimental18–29

work. However, despite significant advances, the current re-
ality is that devices based on proximity-coupled superconduc-
tors still suffer from errors. There is a range of problematic
processes that potentially limit the effectiveness of topologi-
cal quantum memories. The majority of these30–40 concern the
inevitable interaction with an external environment. However
research in this area has also focused on errors due to changes
of the internal system parameters over a finite time, e.g., due
to fluctuations in the underlying gate potentials41, thermal
noise42, or the deliberate shuttling of Majorana-Bound-States
(MBS) around a network43–51.

In this work we set out to examine error generation in this
latter scenario and analyse how initial qubit-loss error can give
rise to additional bit and phase-flip errors. For idealised topo-
logical qubits, any excitations away from the ground state
manifold represent a source of qubit-loss error. We exam-
ine this issue from the perspective of a simple topological
memory constructed from two spinless p-wave superconduct-
ing wires, connected via a single tunnel junction, specifically
studying how qubit-loss depends on (1) time-dependent fluc-
tuations in the confining potentials and (2) the non-adiabatic
transport of Majorana bound states.

Our analysis in the case of oscillating boundary walls in-
dicates that the frequency dependence of the error rate is
strongly correlated with the local density of states at the edge
of the wire. We also find that the maximum coupling to bulk

states is inversely proportional to the bulk gap, but that the
frequency at which this maximum coupling occurs increases
as we increase the superconducting gap. For the very low
frequency oscillations this naturally coincides with the ex-
pected behaviour in the adiabatic limit. However on the high-
frequency side we see that this can mean a reduction in qubit
stability as the bulk gap is increased.

On the question of Majorana bound state transport, signif-
icant progress has been made previously by Refs. 46 and 47
where it was shown that MBS can be transported without in-
curring any significant qubit loss, provided that the accelera-
tion is sufficiently slow and the maximum velocity is less than
a critical value. Our findings here are mostly in agreement
with these previous works. However, we observe no advan-
tage in keeping the wire’s length fixed during a movement pro-
tocol, a departure from previous predictions in relation to cor-
related movement of distant boundary walls outlined in Ref.
47. Our results also show that it is possible to think of the in-
stantaneous energy increase as a kinetic energy of the bound-
ary wall, with an effective-mass M∗ ∝ kF /2∆ = k2

F /2Egap,
that incurs relativistic-like corrections when it approaches the
critical velocity. We also show that there is only a modest
additional qubit-loss penalty for approaching the infinite ac-
celeration limit in the vmax < vcrit regime? .

In addition we study how initial qubit-loss leads to sec-
ondary error processes such as bit and phase-flip error. This
is important because although qubit-loss the is the primary
source of error in this setup, it is in principle detectable (e.g.
via a projective energy measurement), and therefore its exis-
tence alone does not pose a fundamental problem for the sta-
bility of the quantum memory and/or any ongoing quantum
computation. In contrast a more damaging situation occurs
when the original error is followed by some secondary pro-
cesses that, after some time, returns the system to the qubit-
space with an error. These error processes cannot be detected
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FIG. 1. (Colour online) Top: A schematic illustration of the Kitaev
chain used to encode a single topological qubit. Majorana bound
states (MBS) are localised at the boundaries between topological
and non-topological regions. Bottom: The chain is in a topological
phase in regions where |µ̃| < 2|w| (the shaded area) and in a non-
topological phase in regions where |µ̃| > 2|w|. The MBS at x(i)wall
is manipulated by moving the boundary wall with a velocity profile
v
(i)
wall(t) = dx

(i)
wall(t)/dt.

without some additional error detection/correction protocols,
a scenario which topological schemes are supposed to avoid.

For bit-flip error our central results are that boundary wall
movement will generate localized quasi-particles that can
propagate across the wire and cause errors if they tunnel
through boundary walls separating topological regions. The
times at which the errors begin to appear can be estimated
from the velocity of the wave-front, which is approximately
equal to the Fermi velocity vf . We also investigate a possible
way to reduce such errors: by inducing disorder in the bulk of
the wire, the bulk excitations can be made subject to disorder
induced localization, which prevents propagation of the wave
without lowering the critical velocity of the system.

We also discuss undetectable phase errors. These could po-
tentially occur in the same manner as the bit flip error, but
we actually identify another process through which the qubit
may be vulnerable to uncontrolled rotations and which can
already occur in a single wire. The error process does not
require any non-local effects and/or tunneling between topo-
logical domains, but it is dependent on the existence of an en-
ergy mismatch between certain bulk eigenstates. In our study,
since we restrict ourselves only to non-interacting systems,
this error channel is only open when there is some overlap be-
tween the edge modes, meaning that they are not strictly zero
modes – a typical finite size effect. This means in particular
that we will already have some Rabi oscillations between the
qubit states as they are not perfectly degenerate. These ex-
pected oscillations can be modified when the splitting of pairs
of excited states differs from the qubit states’ splitting. A sim-
ilar error channel may be relevant also when one wishes to
deliberately rotate non-topologically within the ground state
manifold. In interacting systems, we might expect this type
of phase error even if the system size is large enough to make
the ground state splitting negligible, since the spectrum is no
longer described by single particle modes and energy mis-
matches between excited states can occur even if the ground
state degeneracy is robust.

An outline of the paper is as follows. In section II, we re-
view the Kitaev model for a p-wave superconducting wire and
describe how we calculate and analyze the dynamics gener-

ated by the movement of boundary walls. In section III, we
discuss the qubit-loss error due to the moving walls. We di-
vide this section into two parts. First, in section III A, we
focus on oscillating boundary walls. Next, in section III B
we investigate qubit-loss error due to non-adiabaticity during
transport of Majorana bound states (MBS) along a wire. In
section IV we present our results on the secondary processes
that can cause bit and phase-flip errors in the computational
subspace. We also divide this in two: in section IV A we dis-
cuss bit-flip errors in the two-wire scenarios and in section
IV B we discuss phase errors due to non-adiabaticity. Finally,
in section V we summarize and discuss possible avenues of
future work.

II. MODEL

A. The Kitaev model

The Hamiltonian for the Kitaev model of a p-wave super-
conductor is

H = −
N∑
j=1

µ̃j(c
†
jcj − 1/2)− w

N−1∑
j=1

(c†jcj+1 + h.c.)

+ ∆̃

N−1∑
j=1

(c†jc
†
j+1 + h.c.)−

N∑
j=1

λjc
†
jcj , (1)

where cj is the fermionic annihilation operator at the j’th lat-
tice site, µ̃j is the lattice chemical potential, w represents the
hopping strength between neighboring lattice sites, and ∆̃ 6= 0
is the lattice pairing parameter, which induces a superconduct-
ing gap.

The chemical potential µ̃j can vary across the wire and will
be used to control the boundaries between topological regions
(where |µ̃j | < 2|w|) and non-topological regions (where
|µ̃j | > 2|w|). Majorana bound states are localised at the
boundaries between topological and non-topological regions
in the wire. We model a boundary wall separating a topologi-
cal and a non-topological region – at a position xwall along the
wire – by a sigmoid function for the chemical potential (see
Fig. 1 for an illustration showing several boundary walls and
see Appendix B for further details on the boundary wall func-
tion). To move a boundary wall we allow the wall position
xwall(t) to be time-dependent. Equivalently, we can specify a
time-dependent wall velocity vwall(t) = dxwall(t)/dt. This re-
sults in a time-dependent chemical potential µ̃j(t), and hence
a time-dependent Hamiltonian (1). Disorder in the chemical
potential is introduced using the Gaussian random variable λj ,
which has zero mean 〈λj〉 = 0 and variance 〈λiλj〉 = αδij/a,
where a is the lattice spacing.

In order to solve the system, the Hamiltonian (1) can be
rewritten as H(t) =

∑N
n=1 εn(t)[β†

n(t)βn(t) − 1/2] via the
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Bogoliubov transformations:

βn(t) =
∑
j

Uj,n(t)cj + V ∗j,n(t)c†j ,

β†
n(t) =

∑
j

U∗j,n(t)c†j + Vj,n(t)cj ,
(2)

where Uj,n(t), Vj,n(t) are the coefficients of the unitary
matrix that diagonalizes the Bogoliubov-De Gennes (BdG)
Hamiltonian associated with H(t). We assume that the spec-
trum is labeled in increasing order ε0 ≤ ... ≤ εN−1. Pairs
of Majorana bound states, if well separated, are associated
with zero energy modes (ε0 ≈ 0, ε1 ≈ 0,... etc.). If there
are m such zero modes {βj}mj=0, then there are 2m degener-
ate ground states (β†

0)l0 ...(β†
m)lm |GS〉, where lj ∈ {0, 1} and

|GS〉 is the BCS ground state.
We also note that the continuum limit of the chain can

be obtained by taking the total number of lattice sites
N → ∞ and the lattice spacing a → 0, with the length of
the wire L = Na kept constant. In this limit, the lattice
Hamiltonian (1) becomes a low energy effective Hamiltonian
H =

∫ L
0
dxΦ†(x)[(−∂2

x/2m−µ(x)−λ(x))σz+∆∂xσx]Φ(x),
where Φ†(x) = (c†(x) c(x)). It will be useful to express
some of our results in terms of the continuum parameters
m, µ and ∆, which are related to the lattice parameters by
m = 1/(2wa2), µ = µ̃j + 2w, and ∆ = 2a∆̃. In this
limit, the chain is in a topological phase when µ > 0 and
in a non-topological phase for µ < 0. Using the continuum
parameters, it is also useful to define the Fermi momentum
kF =

√
2mµ, the Fermi velocity vF = kF /m, the gap

energy Egap = ∆kF , and the finite localization length due to
disorder l = v2

F /α.

B. The Topological qubit

Throughout this paper we consider a topological system
that encodes the smallest unit of quantum information, a
qubit. If we are restricted to a subspace of fixed fermion
number parity, a topological qubit needs at least four Majo-
rana zero modes, and hence two topological regions in the
wire, separated by a non-topological region. This is imple-
mented in our model with four boundary walls at the posi-
tions {x(1)

wall, x
(2)
wall, x

(3)
wall, x

(4)
wall} (see Fig. 1). The qubit space

is then encoded in either the global even or odd parity sub-
space of the associated 4-fold degenerate ground state space
{|GS〉, β†

0|GS〉, β†
1|GS〉, β†

0β
†
1|GS〉}. We will choose our log-

ical qubit to be spanned by the ground states of the even-
parity sector | 0̄〉 ≡ |GS〉 and | 1̄〉 ≡ β†

0β
†
1|GS〉. We empha-

size that, since the Hamiltonian H(t) can be time-dependent,
the spectrum εn(t), the normal mode operators βn(t), and the
degenerate ground states {| 0̄(t)〉, | 1̄(t)〉} can also be time-
dependent? . In appendix A we outline how excitations and
superpositions thereof are handled within the BdG formalism.

In what follows we will need to sometimes specify bulk

eigenstates. In this case we will adopt the following notation

| 00{nB}〉 = | 0〉L ⊗ | 0〉R ⊗ |nB〉
| 11{nB}〉 = | 1〉L ⊗ | 1〉R ⊗ |nB〉 (3)

where nB is binary number encoding the bulk mode βn occu-
pations and the L/R subscript refers to the zero mode of the
left/right wire. In this notion our two ground states would be
written as | 0̄〉 ≡ | 00{0...0}〉 and | 1̄〉 ≡ | 11{0...0}〉

C. Dynamics

At some initial time t = tinit, we suppose that the sys-
tem is in the state |ψ(tinit)〉 = α0| 0̄(tinit)〉 + α1| 1̄(tinit)〉,
where | 0̄(tinit)〉 and | 1̄(tinit)〉 are ground states of the Hamil-
tonian H(tinit) at that time. At a later time t, the system
has evolved to the state |ψ(t)〉 = U(t, tinit)|ψ(tinit)〉, where

U(t, tinit) = T e−i
∫ t
tinit

H(t′)dt′ . If the boundary walls, and
hence the Hamiltonian H(t), are changed very slowly then,
by the adiabatic theorem, in the ideal case, the system at a
later time t will remain in a superposition of the instantaneous
ground states, |ψideal(t)〉 = α0| 0̄(t)〉 + α1| 1̄(t)〉 with the
same amplitudes as the initial state. This is the key feature of
topological computation: if we assume adiabaticity, the only
way to rotate within the ground state space is to “braid” MBS
around each other. We regard |ψideal(t)〉 as the ideal, error-
free evolution. Deviations from adiabaticity will lead to ex-
citation of the bulk modes, corresponding to qubit loss. We
quantify the qubit-loss by the probability Ploss that the system
is not in one of our instantaneous qubit states:

Ploss(t) = 1− |〈ψ(t)|0̄(t)〉|2 − |〈ψ(t)|1̄(t)〉|2 . (4)

This gives Ploss = 0 if there is no qubit-loss and Ploss = 1
if the qubit is completely lost. Since qubit loss corresponds
to energy excitations, qubit-loss errors can, in principle, be
detected by projective measurements of energy. More dam-
aging are the undetectable errors resulting from bulk excita-
tion returning to the wrong ground state. We consider two
types of qubit error: bit flips and phase flips. A bit-flip er-
ror occurs if the system returns to the qubit space in the state
|ψbit(t)〉 = α0| 1̄(t)〉 + α1| 0̄(t)〉 (i.e., with the qubit basis
states exchanged | 1̄(t)〉 ↔ | 0̄(t)〉). We quantify the bit-flip
error with the probability:

Pbit(t) = |〈ψ(t)|ψbit(t)〉|2. (5)

In the following study of bit-flip error we will generally
choose |ψ(0)〉 = | 0̄〉 and thus the bit flip error is simply given
as Pbit = |〈ψ(t)|1̄(t)〉|2.

Phase-flip error occurs if the system returns to the qubit
state |ψphase(t)〉 = α0| 0̄(t)〉 −α1| 1̄(t)〉, with the probability:

Pphase(t) = |〈ψ(t)|ψphase(t)〉|2. (6)

In the following discussions of phase-flip error we will choose
|ψ(0)〉 = |ψ+(0)〉 ≡ 1√

2
(| 0̄〉 + | 1̄〉) and |ψphase(t)〉 =

|ψ−(t)〉 ≡ 1√
2
(| 0̄(t)〉 − | 1̄(t)〉).

All the above amplitudes are numerically evaluated using
the Onishi formula52,53. See Appendix A for more details.
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FIG. 2. (Colour online) (a) The time-averaged qubit-loss, as a function of the wall velocity parameters vmax and ω. The horizontal black line
shows the critical velocity vcrit = |∆| = 0.3. To generate this figure we used L = 200, a = 1,m = 0.5, v(t) = vmax sin(ωt), and µ = 0.5.
The boundary potentials in this case were set to be essentially infinite (µboundary = −2000) and the wall gradient with σ = 1 (see Appendix
B for details on wall parameterisation). (b) A cross section of (a) at vmax = 0.02. We see that the maximum qubit-loss rate occurs when the
frequency is close to Egap, but where the maximum value decays as 1/Egap. The low frequency regime corresponds to the super-adiabatic limit
and so we typically see very low rates of qubit loss error. For higher frequencies we see that error rate drops off as 1/ω4. Crucially, because the
maximum resonant frequency scales with Egap, in the high frequency regime, increasing the topological order parameter can make the system
more susceptible to errors.

III. QUBIT LOSS

In this section we discuss how the principal source of qubit
error (i.e. qubit loss) arises in a simple Majorana wire set-up
with moving walls. First, in section III A, we consider a wall
that is oscillating sinusoidally in position. Such a motion may
result, for example, from noise in the gates used to control
the confining potential, or as a Fourier component of some
deliberate wall motion. Then, in section III B we consider a
wall that is accelerated to some constant velocity and then,
after some time, decelerated back to rest. This corresponds to
a scenario where one needs to shuttle Majorana bound states
between two different points in space.

A. Qubit-loss due to an oscillating wall

We first consider the qubit loss Ploss due to the motion of a
single boundary wall, the wall at position x(1)

wall, with an oscil-
lating velocity profile of the form:

v
(1)
wall(t) = vmax sin(ωt). (7)

Since the wall is continuously moving, it is appro-
priate to calculate the time-averaged rate of qubit-loss
〈dPloss/dt〉 = 1

t′′−t′
∫ t′′
t′
dt(dPloss(t)/dt), over a time interval

t
′′ − t′ = 2nπ/ω spanning some periods of the oscillation.

The colour map in Fig. 2(a) shows 〈dPloss/dt〉 as a function of
the wall motion parameters ω and vmax. We can identify sev-
eral features. First, when vmax = 0 or when ω = 0 the qubit-
loss rate is zero, as expected, since the wall is static in this

case. For small values of vmax the qubit-loss rate is small irre-
spective of the value of ω. This is the adiabatic regime where
the wavefunction of the system closely follows the ground
state of the instantaneous Hamiltonian. However, for veloc-
ities larger than a critical velocity vcrit = |∆| the qubit-loss
rate is large, even for small frequencies ω. This is consistent
with the results of Ref. 46 and 47. In Fig. 2(a) we see that
the rate of qubit-loss is highest when the wall oscillation fre-
quency ω is close to the gap energy Egap = ∆kF . This is
verified in Fig. 2(b), where we plot a cross-section of Fig. 2(a)
at a fixed sub-critical value of vmax for different values of the
superconducting gap ∆, and hence different values of the gap
Egap = ∆kF . Fig. 2(b) also shows that for ω � Egap, the
qubit-loss rate decreases quickly. We find numerically that
this drop off is proportional to 1/ω4.

B. Qubit-loss in MBS transport

While the frequency ωmax, at which we have maximum
qubit-loss rate, grows with ∆, the actual qubit-loss rate
〈dPloss/dt〉max decreases [see insets of Fig. 2(b)]. This de-
crease can be partially put down to the fact that the over-
all rate of qubit loss depends on the oscillation amplitude.
For the choice of parameterisation given in Eq. (7) we have
x

(1)
wall(t) = x

(1)
wall(0) + vmax[1− cos(ωt)]/ω and thus for fixed

maximum velocity we have a smaller oscillation amplitude
at higher frequencies. In similar calculations (not shown)
where the wall movement is parameterised as x(t) = x0 +
xmax cos(ωt), i.e., with a fixed amplitude xmax, we see the
drop-off in qubit-loss rate for ω � Egap scale as 1/ω2.
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FIG. 3. (Colour online) (a) Qubit-loss for vmax > vcrit (left panel) and vmax < vcrit (right panel). The corresponding wall velocity profiles are
plotted above. We see that the final qubit loss is larger for two moving walls than for a single moving wall (blue lines vs. red lines) (Plotted
for ∆ = 0.4). (b) The final qubit-loss at some time tfin after the walls have come to rest, plotted as a function of τ = 1/ω (for vmax = 0.1 and
T = 30). (c) The final qubit-loss in the limit of sudden wall acceleration (τ → 0). As T gets large we see a sharp distinction emerge between
the vmax > vcrit and vmax < vcrit regimes (here, vcrit = |∆| = 0.2). [Other parameters: in all figures, a = 0.5, m = 0.5, L = 200, µ = 1.0 (in
the topological region).]

For fixed frequencies larger than the gap [see e.g., ω ≈ 0.6
in Fig. 2(b)] we see that the rate of qubit-loss increases as ∆
is increased. This is in contrast to the situation in the low
frequency adiabatic regime, where increasing ∆ (hence in-
creasing the gap Egap) decreases the rate of qubit-loss. Thus
while it makes sense to try to maximise the topological gap to
counteract low-frequency noise and/or errors associated with
deliberate motion of the topological boundary, the situation is
more complicated if the range of perturbing frequencies ex-
tends above the frequency corresponding to the bulk gap.

1. A single moving wall

The oscillating velocity profile of Eq. 7 is unsuitable if the
goal is to transport a MBS between two different positions on
the wire. To model transport, we consider a velocity profile of
the form:

v
(1)
wall(t) =


vmax

1−cos(ωt)
2 0 ≤ t ≤ π

ω

vmax
π
ω ≤ t ≤

π
ω + T

vmax
1−cos(ωt−ωT )

2
π
ω + T ≤ t ≤ 2π

ω + T

0 otherwise.

(8)

This results in an acceleration from zero velocity to a max-
imum velocity vmax, followed by a period T at constant ve-
locity, and finally a deceleration back to zero velocity [see
Fig. 3(a), top panels]. A small frequency ω corresponds to a
slow acceleration of the wall, while a large value corresponds
to sudden acceleration.

The qubit-loss due to a single moving wall for MBS trans-
port has been studied in several previous works45–47, where it
was found that there is a critical velocity vcrit = |∆|, below
which qubit-loss can be avoided for sufficiently slow acceler-
ation of the wall. Above the critical velocity, qubit-loss will
occur even if the acceleration is small47. The difference be-
tween the v < vcrit regime and the v > vcrit regime is revealed
by comparing the left and right panels in Fig. 3(a). We see
that at some time tfin after the wall movement has ended, the
final qubit-loss Ploss(tfin) is small if vmax < vcrit, but can be
very large if vmax > vcrit.

We note that in the v < vcrit regime, the motion is by no
means adiabatic (except at very low velocity) and there is con-
siderable qubit loss during the wall’s motion in the accelera-
tion phase. However the system returns to the ground state
manifold as the wall is slowed down again. This means the
wall can be moved far faster than what would be naively con-
sidered adiabatic, without permanent qubit loss. This has also
been noted in earlier works on this subject46,47 and it is linked
to the notion of super-adiabaticity, where the motion can be
considered adiabatic in a moving frame (see e.g Ref. 57). We
explore this further in Appendices C and D where we note that
it is possible to think of the instantaneous energy increase as
a kinetic energy of the boundary wall. The final excess en-
ergy after the wall has stopped is a small correction to this
behaviour, vanishing exponentially with increasing ∆ and τ .

To see the dependence of the qubit-loss on the wall accel-
eration, in Fig. 3(b) we plot the final qubit-loss Ploss(tfin) as
a function of τ = 1/ω in the subcritical v < vcrit regime.
For large τ , corresponding to slow wall acceleration, we see
that the qubit-loss follows an exponential decay (in agreement
with the results of Ref. 47). However, the behaviour is dif-
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FIG. 4. (Colour online) (a) The density wave packet generated by a single moving wall at x(1)wall travels at a velocity approximately equal to vF .
We can see the wave tunnelling through the non-topological barrier separating the topological phases (barrier height µbarrier = −2.5). Here,
vmax = 0.3, and ω = 3. (b) The bit-flip error Pbit increases suddenly as the excitation produced by the movement of one wall hits another
moving wall (legend shows which walls are in motion). The time at which the error begins to increase can be estimated as approximately
t ≈ |x(i)wall − x

(j)
wall|/vF where |x(i)wall − x

(j)
wall| is the distance between the two moving walls. [Other parameters for both figures: m = 0.5,

a = 0.5, ∆ = 0.4, L = 200, and µ = 1.0 (in the topological region).]

ferent in the region where τ → 0, corresponding to sudden
movement of the wall. In this limit, the qubit-loss reaches its
maximum value (for a given vmax < vcrit). Nevertheless this
maximum qubit-loss is usually small and decays with increas-
ing ∆ and we conclude that there is no critical acceleration
analogous to the critical velocity in this set-up.

In Fig. 3(c) we plot the qubit-loss as a function of vmax when
τ → 0 (i.e., in the limit of sudden acceleration). As the time
T spent at at the maximum velocity increases we see a sharp
distinction emerge between the vmax > vcrit and vmax < vcrit
regimes: for vmax > vcrit the qubit-loss approaches unity and
all theinformation is lost into bulk states, while for vmax < vcrit
we have Ploss(tfin) < 1. This provides further evidence for the
interpretation of vcrit = |∆| as a critical velocity.

2. Correlated movements and effective wall mass

We also consider the motion of two boundary walls (the two
leftmost walls at x(1)

wall and x(2)
wall), both by identical velocity

profiles v(1)
wall(t) = v

(2)
wall(t) given by Eq. 8, so that the two

walls are moving in sync and the length of the wire remains
constant, see e.g. Ref. 47.

The numerical results shown in Fig. 3(a) show that there
is no advantage to coordinated wall movement, compared to
a single moving wall. Indeed in the right-panel of Fig. 3(a)
we see that for vmax < vcrit the qubit-loss is approximately
a factor of two higher in this case than for a single moving
boundary wall, and that this factor of two persists throughout
the movement protocol. In appendix D we provide a further
discussion of the same phenomena where, instead of qubit-

loss, we examine the energy above the instantaneous ground
state. We find that, up to small exponential corrections due
to changes in velocity, the energy increase scales as 1

2Mv2

where the effective mass scales as M ∝ p2
F /Egap.

IV. UNDETECTABLE QUBIT ERRORS

A. Bit-flip error

In section III we saw that the movement of the boundary
wall can lead to qubit-loss that can be recovered, to some ex-
tent, when v < vcrit. This raises the question: can the system
return to the qubit space with an error? In this section we will
show that bit-flip errors can indeed occur, and we will explore
how they are related to excitations produced during the wall
movement.

First, we note that, in general, wall movement generates lo-
cal excitations because of the local nature of the perturbation.
These local excitations can then propagate through the wire
over time. To investigate this, we consider a single wall (at the
position x(1)

wall) oscillating sinusoidally as in Eq. (7) [although
similar results can be obtained with the shuttling movement
protocol given by Eq. (8)]. In Fig. 4(a) we plot the deviations
from the ideal particle density:

Ωj(t) = 〈ψ(t) |c†jcj |ψ(t)〉 − 〈ψideal(t) |c†jcj |ψideal(t)〉, (9)

as a function of time t and the position x = ja along the
wire, due to the motion of the boundary wall. The plot clearly
shows a particle density wave that propagates across the wire.
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FIG. 5. (Colour online) (a) Schematic showing how excitations orig-
inating at the outer walls can dynamically evolve through the system
and cause a bit-flip error ( | 0̄〉 ↔ | 1̄〉 (b) For the anomalous phase
rotation the moving boundary wall generates population transfer be-
tween ground states |ψ±〉 and excited states. Energy mismatches be-
tween states in the bulk can then drive a rotation that either reinforces
or opposes the natural rotation due to the ground state splitting. (c)
Schematic of how the zero-mode splitting affects ground and bulk-
states (see Eq. 3 for explanation of the notation). Deviations from the
natural phase rotation (blue) can occur because some excited states
(red) have a phase rotation that acts in the opposite direction. The
lowest lying pairs of excited states will have a single fermion trans-
ferred from a Majorana mode (here the left edge mode) to an excited
bulk mode, which means the splitting in these pairs is the same as
the splitting between the Majorana modes in the odd fermionic par-
ity sector, which is opposite to the splitting in the even parity sector
which contains the qubit states. Higher energy states (black) can have
the same occupation of the Majorana modes as the ground state and
then do not contribute to the phase error as they are split in precisely
the same way as the ground states.

The velocity of the propagating wave can be read off from the
plot and is found to be approximately equal to the Fermi ve-
locity vF . This value for the velocity is essentially due to the
fact that if we consider the system in the moving frame, exci-
tations, made out of quasiparticle and quasiholes with relative
momentum 2kF , are favoured energetically (see Appendix C
for more details).

We can now understand a mechanism for the occurrence
of bit-flip errors. The excitations generated at a moving wall
can travel across the wire, and tunnel through non-topological
regions in the wire, carrying information between MBS. The
resulting interaction between MBS can, in principle, induce
bit-flip errors in the topological qubit. This mechanism is il-
lustrated schematically in Fig. 5(a). It is important to note
that, in order for the MBS to interact with the incoming den-
sity wave packet, one of the walls on the other side of the

20 30 40 50 60 70 80 90

10 -15
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10 -5

10 0

FIG. 6. (Colour online) Bit-flip error is suppressed by adding disor-
der in the middle of the left-hand wire. Here, the disordered region is
of length ∼ 40, and a shorter localisation length l corresponds to in-
creased disorder. We use vmax/vcrit = 0.75, the middle barrier height
is µbarrier = −2.5, σ = 2 and the data is averaged over 20 disorder re-
alizations. [Other parameters used for the figure: m = 0.5, a = 0.5,
∆ = 0.4, L = 200, and µ = 1.0 (in the topological region).]

system must also be in motion. If this is not the case, the den-
sity wave packet will not be able to dissipate at the wall: it
will simply be reflected or transmitted without any chance for
the excitation to decay back into the degenerate ground state.

This is verified numerically in Fig. 4(b), where we show
the bit-flip error Pbit due to the oscillation of boundary walls
(the walls that are moving are indicated in curly brackets in
the legend). We see that there is no bit-flip error if a single
wall is moved and all other walls remain static. However, if
two walls are moved, bit-flip errors Pbit appear abruptly after
some delay. The times at which the bit-flip errors begin to
appear can be estimated as the time taken for the propagating
wave to reach the other moving wall, i.e., as t ≈ |x(i)

wall −
x

(j)
wall|/vF where |x(i)

wall−x
(j)
wall| is the distance between the two

moving walls. This provides strong evidence that it is the stray
excitations propagating along the wire that are responsible for
the measured bit-flip error.

1. Effects of disorder

The central result of the previous section is that bit-flip er-
ror can occur in a two wire setup if there is a process whereby
a quasi-particle is excited in one wire, tunnels through the bar-
rier to the other wire, and then decays back to the ground state
manifold. In order to avoid such a process, one straightfor-
ward approach would be to increase the barrier between the
wires to prevent inter-wire tunneling. However, within the
schemes to manipulate quantum information using wire net-
works, see for example Ref. 7, one often needs to bring neigh-
boring Majorana modes together, a process which would ren-



8

der the barrier more transparent and which would potentially
also excite more propagating quasi-particles. In this section
we show that another solution to prevent quasi-particle propa-
gation is to introduce some disorder into the wires themselves.

Naively, we might introduce disorder throughout the wire.
However there are downsides to doing this. Firstly, in static
scenarios, disorder decreases the gap between the ground state
and the bulk excitation spectrum, increasing the bound-state
decay length54–56 and results in a topological space that is
less resilient to qubit-loss. Moreover it has been shown46 that
moving the confining potential over a disordered region re-
sults in a dramatically lower critical velocity, thus severely
hampering the rate at which gates can be mechanically per-
formed.

An effective compromise is to deliberately disorder only
the central wire regions. This allows for an effective criti-
cal velocity of the wire ends that is equal to the p-wave order
parameter ∆ while also providing a region where bulk excita-
tions are prevented from propagating, reducing the probabil-
ity that the excitations originating at one wall can tunnel to
another wire. This approach still allows for low barrier trans-
parency and so the original schemes7 for braiding and rotating
Majorana pairs can be performed as usual.

In Fig. 6 we present the results of our numerical simula-
tions, where disorder has been introduced in the central re-
gions of both wires. As earlier, we simulate a scenario where
there is an oscillation of two walls x(1)

wall and x(4)
wall in different

wires. The figure shows the decrease in probability of bit-
flip error as we decrease the localization length l in the disor-
dered region. This indicates that as the disorder is increased,
the wave associated with excitations accrued at the boundaries
cannot propagate through the wire, and hence the junction, to
induce a bit-flip error.

B. Phase corrections in a single wire

In a two wire setup, phase-flip error can occur in precisely
the same way as bit-flip error: excitations originating in one
wire tunnel into the other wire and relax to the ground state.
However there is another process through which phase error
can occur, which importantly does not involve tunneling be-
tween wires. This process is shown schematically in Figs.
5(b) and 5(c). The mechanism relies on the fact that splittings
between states in the bulk do not necessarily correspond with
the splitting that occurs in the ground-state. In systems that
experience continual qubit-loss this can lead to a small but
systematic phase error being returned to the qubit space.

A necessary feature here is that pairs of bulk excitations
that differ in the occupation of the edge modes have slightly
different energies. In non-interacting systems this can only
happen if there is also some small splitting in the ground state
leading to a natural dynamical oscillation between the |ψ±〉 =
1√
2
(| 0̄〉 ± | 1̄〉) states. This rate of oscillation depends on the

splittings due to the near zero-modes in both wires such that:

|〈ψ−|ψ+(t)〉| = sin

(
δ(t)

2

)
(10)

FIG. 7. (Colour online) Main figure and upper inset: Qubit-loss
induced deviation from the natural phase oscillation tends to act in
the opposite direction to the natural oscillation. The red dots indicate
µ = .03 and the green µ = 1.68. Lower inset: The deviation r(t) =
φ(t) − δ(t) (black) and the slopes of the fitted red lines give 〈ṙ(t)〉.
To generate this figure two wires of lengths 45 and 40 were used
with an essentially infinite barrier between them. The continuum
order parameter was set to ∆ = 0.4 in the left wire and ∆ = 0.8
in the right. The effective electron mass was set to m = 0.5 and a
lattice constant of a = 0.5 was used. The velocity of of the left hand
boundary of the left wire was moved according to v(t) = 0.1 sin(2t)

with δ(t) =
∫ t

0
[E1̄(t′)−E0̄(t′)]dt′ depends on the difference

in energy between the ground states, and hence is related to
the decay length of the Majorana edge states. In Ref. 47 it
was noted that because the decay length of the bound states
take on a relativistic like correction in moving frames, this
rate of rotation within the ground state space can in addition
depend on velocity of the system.

The correction to the phase oscillation that we study here
depends on there being a continual qubit-loss/gain channel be-
tween the ground state and excited states. If this is the case
then energy mismatches between bulk eigenstate pairs will
lead to a systematic deviation from this “natural” Rabi oscilla-
tion. The mechanism is discussed in more detail in Figs. 5(b)
and (c).

To analyze the deviation from the natural rotation in
Eq. (10) we first recall that throughout this manuscript we
take the view that parts of a state that leave the ground state
space are detectable, and therefore we are interested only in
the phase rotation within the ground-state manifold. We there-
fore need to calculate the conditional probability that the state
|ψ(t)〉 (where |ψ(0)〉 = |ψ+(0)〉) is measured in the instan-
taneous ground-state |ψphase〉 = |ψ−(t)〉, given that time-
evolved state is projected to the ground state manifold. This
probability is given as

R(t) =
Pphase(t)

1− Ploss
=

|〈ψ(t)|ψ−(t)〉|2

|〈ψ(t)|ψ−(t)〉|2 + |〈ψ(t)|ψ+(t)〉|2
.

(11)
From here, we can calculate the phase rotation angle within
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the ground-state manifold, giving

sin

(
φ(t)

2

)
=
√
R(t), (12)

and then the difference from the natural rotation angle δ(t) as

r(t) = φ(t)− δ(t) (13)

In Figure 7 we plot the behaviour of dr/dt as a function of
the chemical potential µ and the natural phase oscillation due
to the small even splitting in both wires. We see that the rate
of this phase deviation opposes the mean splitting between
the even-odd pairs 〈δ(t)〉 that drives the natural phase oscilla-
tion. The mechanism that we describe here relies on there be-
ing differences in energies between bulk even-odd eigen-pairs.
In a non-interacting system this is necessarily due to a split-
ting of the edge modes (making them no longer perfect zero
modes). This then also implies that there is a splitting between
ground states and, as a result, a natural non-topological rota-
tion within the qubit space. This process can be counteracted
by making the wire longer, as this will reduce the overlap be-
tween the edge modes. The situation is different in interacting
systems because in the presence of interaction, the many par-
ticle energy spectrum can no longer be described in terms of
single particle modes. One thus expects that there may not be
an even-odd degeneracy for bulk states when interactions are
strong, even though the ground state degeneracy is robust due
to its topological nature. Indeed there is significant evidence
that the even-odd symmetry within higher energy eigen-pairs
breaks down in regions where bands with different fermion
numbers are energetically similar60–65. It may therefore be
possible that phase errors similar to the one described here are
possible in the presence of non-adiabaticity and interactions,
even though the ground state is essentially degenerate.

V. CONCLUDING REMARKS

In this paper we have investigated possible sources of er-
rors in a toy model of a topological qubit. Our motivation
was to understand how error process can arise due to non-
adiabatic variation of system parameters. As such, our anal-
ysis excludes errors due to interaction with an external envi-
ronment, and therefore the results only incorporate a subset
of possible error processes. Likewise, our analysis does not
attempt to incorporate details of specific physical realisations

of Majorana based qubits. However, the simplicity of the p-
wave model should make it relevant to some degree to more
realistic device designs (e.g. tetron and hexon proposals66,67)
and scalable architectures built from them68.

As we have stated throughout the paper, we take the view-
point that the topological qubit consists of two ground states
of the Hamiltonian. This is subtly different to the alternative
view where one understands the qubit as the reduced state of
the zero-modes obtained by tracing over all excited modes.
Our perspective aligns with the original schemes for 2D topo-
logical computers in which measurement of the fusion chan-
nels occur as a projections to the many-body ground-states of
the system. As we have seen this perspective implies that the
system is, at least initially, protected from local errors.

In this context then then our results specifically show how
errors can arise in an isolated topological memory, assuming
we have a perfect readout protocol. While this approach may
not fully reflect the state of current devices, it is what allows us
to resolve how errors propagate in time and to see how initial
qubit-loss error can eventually lead to more damaging errors.
These errors, even with perfect resolution of the fusion chan-
nels, cannot be detected without some conventional error cor-
rection protocols and the associated computational overhead.
For bit-flip error we have shown that this must necessarily in-
volve some tunneling from one wire to another, but for phase
error we demonstrated how this could in principle happen via
some local process within one wire. For non-interacting mod-
els we argue that this results in a correction to qubit rotation
due to finite size splitting, in addition to that due to mov-
ing reference frames47. In follow up work we aim to assess
whether this effect can also be triggered by electron-electron
interactions69.
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Appendix A: Bogoliubov de Gennes formalism and ground state
overlaps

In this section we provide a brief review of the BdG formal-
ism applied to a p-wave superconductor. For a more detailed
treatment of this material see Ref. 53.

The Hamiltonian in Eq. (1) can be conveniently written as
H(t) = Ψ†HBdG(t)Ψ, where Ψ† = (c†1, . . . , c

†
N , c1, . . . , cN )

is a row vector of fermionic creation and annihilation op-
erators. The instantaneous Bogoliubov-de Gennes (BdG)
Hamiltonian HBdG(t) can be diagonalised: W †HBdGW =
diag(ε0, ..., εN−1,−ε0, ...,−εN−1), by a unitary transforma-
tion of the form:

W (t) =

(
U(t) V ∗(t)
V (t) U∗(t)

)
, (A1)

where U and V are N × N complex matrices. This unitary
also leads to the transformation of the fermionic modes given
in Eq. 2 so that the Hamiltonian is written as

H =
∑
n

εn

(
β†
nβn −

1

2

)
. (A2)

For the translationally invariant system with periodic bound-
ary conditions, the bulk single-particle spectrum can be given
in terms of momentum as

εn =

√
(−µ̃− 2w cos(kna))2 + 4∆̃2 sin2(kna),

with kn = 2πn/Na in the first Brillouin zone. With our setup
we identify the Dirac fermion zero modes of the left wire and
of the right wire as:

βL =
1

2
(β0 + iβ1), and βR =

1

2
(β2 + iβ3). (A3)

with βn defined as in Eq. (2) in the main text.
All the probabilities in our simulations are obtained using

the Onishi formula52,53:

|〈ψ(t)|ψ′(t)〉|2 = det(U(t)∗U ′(t) + V (t)∗V ′(t)), (A4)

where U ′ and V ′ are defined as:(
U ′(t)
V ′(t)

)
= UBdG(t)

(
U(0)
V (0)

)
, (A5)

where UBdG(t) = T exp
(∫ t

0
dt′HBdG(t′)

)
.

On a practical level, to consider an excitation of the system,
one can think of swapping our definition of βn with that of
β†
n. This corresponds to a swap of the nth column of W with

the N + nth. The time evolved state overlap with different
ground states can then be obtained by swapping the columns
Ujn(Vjn) with V ∗jn(U∗jn)53. For example in order to make
the | 1̄〉 state we would swap columns as 1 ↔ N + 1 and
2 ↔ N + 2. The same trick also works to make ground state
superpositions∝ | 0̄〉± | 1̄〉. In this case one rotates within the
relevant βnsubspace:

β†
0 →

1

2
(β†

0 ± β1) (A6)

β†
1 →

1

2
(β†

1 ∓ β0)
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FIG. 8. Bulk single particle energies of the instantaneous Hamilto-
nian in the “moving frame” for v < vcrit and v = vcrit, where the
gap is closed.

Appendix B: Boundary wall

We model a boundary wall separating a topological and
non-topological region by a sigmoid function for the chem-
ical potential:

µ(x) = µ− +
µ+ − µ−

1 + e−(x−xwall)/σ
, (B1)

where xwall is the position of the wall, σ characterises the
steepness of the wall, and µ± is the chemical potential in the
limit x − xwall → ±∞ (see Fig. 1 for an illustration). For
convenience, in Eq. B1 we use the continuous label x instead
of the discrete label j [i.e., µ̃j → µ(x)], although the lattice
sites always appear at the discrete positions x = ja, where a
is the lattice spacing and j = 1, ..., N is an integer.

Multiple walls along the wire are modelled by adding sig-
moid functions at various positions (x(2)

wall, x
(3)
wall, etc.) along

the wire, with an appropriate normalisation, to give the de-
sired chemical potential between any two walls. In the two-
wire scenario described in section II B and in Fig. 1, we
choose the normalisation such that the chemical potential at
the outer boundary walls is µ = 20w, and at the middle wall
is µ = 2.5w (unless otherwise stated).

Appendix C: The critical velocity and propagating excitations

In this model the existence of a critical velocity vcrit was
first pointed out in Ref. 47. It it best understood in the con-
tinuum limit after transforming to a frame of reference that
moves at the velocity v(t) of the boundary wall. The trans-
formation is implemented by the unitary operator W(t) =

exp{−iP
∫ t

0
v(t′)dt′}, where P is the momentum operator.

The Hamiltonian in the moving frame is:

H ′ =W(t)H(t)W(t)† + i
dW(t)

dt
W†(t)

= H(0) + Pv(t). (C1)

For a translationally invariant system with periodic boundary
conditions, the excitation spectrum (plotted in Fig. 8) can be
given as:

ε′(k)± = ±
√

(k2/2m− µ)2 + ∆2k2 + v(t)k. (C2)

FIG. 9. The effective mass scales as (a) M ∝ 1/∆ and (b) M ∝√
µ ∝ kF . This is allows us to relate the topological gap and the

effective wall mass as Egap ∝ k2F /2M .

From this equation, it can be seen that for v < |∆| the spec-
trum is gapped (so long as µ 6= 0 and ∆ 6= 0). However,
when v ≥ |∆| the spectrum is gapless at approximately either
the positive or negative Fermi momentum ±kF = ±

√
2mµ.

This argument suggests that there is a critical velocity at
vcrit = |∆|.

Considering the system in the moving frame allows to un-
derstand intuitively why the excitations produced by the wall
movement should move with momentum which is peaked ap-
proximately around kF . The ground state consists of all the
one particle state with E < 0 occupied. From Fig. 8 we see
that for a sub-critical velocity v < vcrit, the occupied one
particle state with the highest energy is at k = −kF . The
lowest energy unoccupied one particle state is at k = kF .
The smallest energy excitation between states therefore has
a momentum 2kF . The excitations are composed by quasi-
particle and quasi-hole that travel with opposite velocities
(quasi-holes will eventually be reflected at the wall), which
accounts for the excitations travelling with group velocity ap-
proximately peaked around vF . For example, at the critical
velocity v = vcrit this excitation costs zero energy, and over

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 10. (Colour online) The solid line represents the curve
M
2
γ(t)v(t)2. The empty circles represent the value of E(t) ob-

tained through (D2). The value of M ≈ 1.69 was obtained by fit-
ting the two curves. The simulations were obtained using L = 100,
∆ = 0.4, µ = 1, a = 0.5 and m = 0.5. The velocity profile was
chosen as in (8), with τ = 50, T = 100 and vmax = 0.2.
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FIG. 11. The final qubit loss decreases exponentially in
√
µ, which

corresponds to moving up the electron band. This graph is produced
with the lattice constant a = 0.5, the total length of the wire to be L =
100, effective electron mass m = 0.5, ∆=0.2.

time the topological qubit is completely lost to excitations in
the wire travelling with momentum kF .

Appendix D: Correction to the energy in the moving frame

In the main text we noted that, at the end of a movement
protocol, the accumulated deviations from super-adiabaticity
results in a final resting energy above that of the ground state.
However, this result is only evident once the system has come
to a complete stop. During a super-adiabatic protocol the in-
stantaneous energy loss can be related to a kinetic energy with
an effective mass M ∝ k2

F /Egap = kF /∆. To confirm this in
the hard-wall limit we work in a position space moving frame
picture and estimate the energy increase with respect to the
static ground-state energy as:

E(t) =
1

2
Tr+(W †

v(t)H0Wv(t) −W †
0H0W0) (D1)

where the subscript + on the trace means we only use positive
energy modes [UT , V T ]T and W is defined in A1. In general
we find that if the motion is super-adiabatic then

E(t) ≈ M

2
γ(t)v(t)2. (D2)

where γ(t) = 1/
√

1− v(t)2/∆2. The effective rest mass
is plotted as a function of ∆ and µ in Figure 9. The scal-
ing allows us to relate the topological gap Egap ∝ k2

F /2M .
In Figure 10 we show a comparative plot between E(t) and
M
2 γ(t)v(t)2. The value of the effective mass is obtained by

fitting methods.

Appendix E: Qubit loss and bit flip error: additional results

For completeness we show in Fig. 12,11 the results of nu-
merical analysis of the dependence of Ploss(tfin) on ∆ and µ

FIG. 12. Analyzing final Ploss as we vary ∆ keeping τ = 8 we can
see past ∆ ∼ 0.2, Ploss behaves nearly exponentially. Where τ is the
length of time the system is accelerating. This data is produced with
µ = 1, m = 0.5, a = 0.5 a system of length L = 100 and the lattice
constant a = 0.5.

for a wall movement with velocity profile as in (8). These re-
sults are consistent with the exponential decay of the overlap
found in [47].

In Fig. 13 we show Ploss(t) at the end of the protocol for
a velocity profile (T = 0) as in (8) and increasing accelera-
tion times τ = 1

ω . It can be seen that, in the limit τ → ∞,
Ploss(tfin) tends toward a step function in terms of v/vcrit. This
means that for v > vcrit we lose all the information stored into
the ground state and it is not possible to reach the adiabatic
limit. Things go differently for v < vcrit, where it is generally
possible to reach the adiabatic limit. In this case the instanta-

FIG. 13. (Colour online) Final Ploss for different τ and the length
of the time the system continues moving at vmax;T = 0. As we
can see there is two different behaviours of the system depending on
vmax/vcrit this graph is produced with ∆ = 0.4, µ = 1, with a system
of length L = 100, the lattice parameter is set to a = 0.5 and the
effective electron mass m = 0.5. By examining figure (11) we can
see that the different curves for τ display the same overall behaviour,
in contrast to vmax/vcrit, where either side of vmax = vcrit, we can see
a different effect on Ploss(tfin).

neous and time evolved ground state coincide at the end of the
protocol, in accordance with the adiabatic theorem.
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