
 
 

  

 

Abstract—This paper proposes a rigorous stability criterion 
for an arbitrary order digital phase locked loop (DPLL), with 
a charge pump phase frequency detector (CP-PFD) 
component. Stability boundaries for such systems are 
determined using piecewise linear methods to model the non-
linear nature of the CP-PFD component block. The model 
calculates the control voltage, after a predetermined number of 
input reference signal sampling periods, to a small initial 
voltage offset. This paper, in particular, takes an in-depth look 
at the second order system. The second order stability 
boundaries, as defined by the proposed technique, are 
compared to that of existing linear theory stability boundaries, 
and display a significant improvement. The applicability of the 
proposed technique to higher order systems, using a 
numerically iterative solution, is presented. Finally the 
proposed methodology is used to determine the stability 
boundary of a third order system and thus the component 
values for a stable system. Using these component values the 
response of the DPLL to an initial control voltage offset is 
simulated using a circuit level simulation.  
 

Index Terms—High Order, Phase Locked Loop, Piecewise 
Linear, Stability. 

I. INTRODUCTION 

The Digital Phase Locked Loop (DPLL) is a versatile 
component block widely used in electronics for operations 
such as frequency synthesis and clock data recovery. The 
DPLL system considered in this paper consists of a bang 
bang phase frequency detector (PFD), a charge pump (CP), 
a voltage controlled oscillator (VCO), and a low pass loop 
filter (LF), with a structure as shown in fig. 1.  
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Fig. 1.  DPLL Loop Block Diagram 

The DPLL loop uses a local oscillator reference signal to 
generate a robust signal at the output of the VCO. The 
phase of the reference and feedback signals are compared 
by the PFD and any difference is represented as a current on 
the charge pump output, IP. This error drives the VCO 
output signal towards that of the reference, and thus drives 
the loop towards lock.  

The most basic type of PLL, a first order PLL, has no 
loop filter and thus it is globally stable. But it produces 
large frequency jitter or phase noise on the output signal 
that is intolerable for most applications.  It is normal 
practice to include a loop filter to reduce this jitter. Ideally 
the higher the order of filter the lower the phase noise on the 
output signal. However the inclusion of a loop filter 
introduces stability concerns that now need to be considered 
during the design process [1]. Because of these stability 
issues it is considered risky to design DPLL systems of 
order greater than third. Thus the second and third order 
DPLLs are the most common PLLs designed today. The 
DPLL loop filter structure for the third order loop is shown 
in fig. 2. In the case of a second order DPLL the capacitor 
C3 is removed. This paper aims to provide an alternative 
methodology that enables the design of high order systems 
by accurately determining their stability boundaries. To 
achieve this, a number of issues need to be considered; first 
the nonlinearity of the DPLL loop; and second the 
complexity of the higher order DPLL linear equations. 
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Fig. 2.  Third Order DPLL filter Structure 

The nonlinearities of the DPLL system exist in the CP-
PFD and the VCO component blocks. The VCO can be 
assumed linear if the DPLL system operates away from the 
saturation regions of the VCO. The non-linearity in the PFD 
is due to quantization-like effects at the output of the PFD. 
This non-linearity is inherent to the operation of the loop 
and cannot be ignored if an accurate model is required. Due 
to this inherent non-linearity, linearization, which ignores 
this quantization, is not entirely accurate. Thus it is 
generally the case that empirical design and simulation are 
used concurrently to ensure the correct behaviour. This 
design methodology is outlined graphically in the flow chart 
of fig. 3. Traditionally the designer starts with a linear 
model and then applies rule of thumb or empirical 
simulation design techniques to redefine the system 
parameters.  
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Fig. 3.  Traditional Design Method 

The alternative to the above, are nonlinear stability 
methods, however these are found to be unwieldy and 
further complicate the design of an already complex system. 
For this reason non-linear methods have only rarely been 
applied to the design of PLL systems [2-5]. There are other 
means of stabilising the DPLL by using advanced 
architecture techniques, for example gear-shifting [6,7], or 
aided acquisition dual-loops [8,9]. Gear-shifting varies the 

loop bandwidth, from a fast locking wide bandwidth loop 
when the PLL is out of lock, to a low noise narrow 
bandwidth loop when loop lock is detected. Similarly dual-
loops achieve fast lock and low noise using two feedback 
loops simultaneously, one loop has a wide bandwidth to 
allow fast lock and the second loop has narrow bandwidth 
for a low noise signal output. 

This paper proposes a novel arbitrary-order stability 
criterion using piecewise linear methods to accurately 
model the inherent non-linear nature of the CP-PFD. The 
stability criterion is applicable to all orders of the DPLL 
system described earlier, with model equations given for 
each order of system from second through to fifth. In the 
case of the second order system a closed form solution of 
the stability criterion is determined, whereas numerical 
iteration is used to solve the equations for higher orders. 
The stability boundary is found for the second and third 
order DPLLs, and compared to the results from existing 
published linear models. In the next section traditional 
DPLL design techniques are considered. In section III the 
proposed piecewise linear model is introduced. Section IV 
takes, as an example, a more detailed look at the second 
order system and determines the stability boundary for this 
system. This boundary is compared to that of the linear 
model defined boundary of Gardner [1]. In section V the 
piecewise linear model’s applicability to high orders is 
considered. Finally in section VI conclusions are presented. 

II. TRADITIONAL DESIGN TECHNIQUES 

Traditionally the DPLL is linearised by replacing the 
PFD component with a subtractor component block in the 
analysis. This can be justified if the time-varying nature of 
the PFD is overlooked. This is a reasonable approximation 
when considering the PLL to be close to lock. In this 
situation it’s key state variable, the VCO control voltage, 
changes by only a small amount on each cycle of the 
reference signal. This is known as the continuous time 
approximation and is valid when the loop bandwidth is 
small relative to the reference frequency, or more 
specifically no greater than 1/10th of the reference frequency 
[1]. This assumes that the detailed behaviour of the loop 
within each cycle is not important and only the average 
behaviour over many cycles is important. By applying an 
averaged analysis, the time-varying operation can be 
bypassed and linear analysis can be applied. The DPLL 
system of fig. 1 is approximated by the linear system block 
diagram as shown in fig. 4.  
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Fig. 4.  Linear PLL (LPLL) system 
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The feedback frequency divider is used in frequency 
synthesis to produce an output signal frequency that is some 
multiple of the reference signal, N times FR in fig. 1. The 
inclusion of a feedback divider scales FV by N. In our 
analysis the divider introduces a scaling factor, however in 
this paper the feedback divide ratio is chosen to be equal to 
1 for clarity. The transfer function of the LPLL system of 
fig. 4 is then given by:  

( )
( )

2 ( )
V P

CL
V P

K I F s
H s

s K I F sπ
=

+
 (1) 

where IP is the charge pump current gain, KV is the VCO 
gain and F(s) is the loop filter transfer function. Using (1), 
Gardner [1] identifies the stability boundary for the second 
order PLL system to be: 
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π π
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(2) 

A plot of the stability boundary from equation (2) for a 
defined filter time constant τ2, and a range of reference 
frequencies (ωR radians/second) are shown in fig. 5.  
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Fig. 5.  Second order Gardner Stability Boundary 

For the 3rd order system Gardner offers a similar stability 
boundary as defined by (3). 
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Unlike Gardner [1] other linear stability criteria such as 
[10-12], do not provide a global prediction of the DPLL 
stability boundary. Instead they offer specific system 
parameter values from a chosen loop performance, such as 
the settling time [10], the phase margin [11], or the un-
damped natural frequency and damping factor [12]. These 
linear methods ignore the nonlinearities inherent in the CP-
PFD, however they do provide a starting point from which 
empirical design methods are used to choose optimum 
component values and to insure that the DPLL will operate 

as expected. In the next section an alternative stability 
criterion is proposed. This technique does not linearise the 
CP-PFD and thus determines a more accurate prediction of 
the DPLL stability boundary, allowing for more aggressive 
design. 

III. PIECEWISE LINEAR MODEL 

In this section a novel piecewise linear model is 
proposed. This model is used later to determine the stability 
boundaries of the high order DPLL. As discussed earlier 
there are two issues that need to be considered; the CP-PFD 
nonlinearity and the complexity of the high order loop 
equations. The proposed methodology considers the non-
linearity of the CP-PFD, by using a state transition diagram 
to model the changing states of the CP-PFD. The high order 
model complexity is reduced by approximating the charge 
on the loop filter capacitors, removing differential terms, 
and thus simplifying the system equations, making it 
mathematically feasible to increment the model to high 
orders. For illustrative purposes this section pays particular 
attention to the second order system, the equivalent 
expressions for higher order systems are given in appendix 
A. 

The proposed model assumes a small initial VCO control 
voltage offset V0 and determines the system stability from 
the state space response to this offset. V0 is chosen to be 
small for two reasons. First the error introduced by the 
model is directly proportional to V0, and second a small V0 
ensures that the maximum phase offset remains within the 
+/- π region, avoiding cycle slip events. Cycle slips occur 
when the feedback signal falling edge, to which the 
reference signal falling edge is being compared, changes, 
this incurs a 2π shift in the phase error. These phenomena 
occur when the system is substantially out of lock and in 
acquisition mode. Cycle slip events can be explained by this 
analysis but are beyond the scope of this paper. 

In fig. 6 a plot of the state space system trajectory is 
shown, where the two state variables are the phase error φe 
and the control voltage VC. For a stable system with a 
reference frequency equal to the VCO free running 
frequency FFR, and an initial control voltage offset of V0, the 
system will settle to the equilibrium of the origin, shown as 
the dashed line in fig. 6.  
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Fig. 6.  State Space Plot of Stable System 
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The continuous curve in fig. 6 is a piecewise linear curve 
where the dots correspond to samples of the VCO control 
voltage. In the case of the second order DPLL, the system is 
linear between these sample points, allowing the piecewise 
linear method to give an exact calculation of this state space 
curve. This is not the case with higher order systems as 
differential equations need to be solved to determine the 
response between these sample points. Such higher order 
systems are solved here using numerical iteration of the 
charge approximated equations given in appendix A. The 
continuous line of fig. 6 is one half cycle of the state space 
curve. If the value of Vm, which is the first zero crossing of 
φe(t), can be calculated, then the system stability can be 
determined as follows: if |Vm| > V0 then the system 
trajectory is diverging and is therefore unstable; If |Vm| < V0 

then the trajectory is converging and is stable. The 
calculation of φe(t) and VC(t) depends on the filter’s charge 
approximated difference equations. For the second order 
system φe(t) and VC(t) are determined using the set of 
difference equations (4) and (5). For higher order PLLs 
additional state variables need to be considered, specifically 
the charge on each additional filter capacitor. However if 
VC(t) reaches a stable equilibrium then the filter capacitor 
state variables have also reached the equilibrium. Therefore 
when considering the stability of a high order system, we 
need only monitor φe(t)  and VC(t). 

( ) ( )1
2

P B
C n C n

I T
V t V t

C+ = −  (4) 

( ) ( )( )1( ) ( ) 2e n e n R FR V Ct t T F F K V dtφ φ π+ = + − − �  (5) 

where FFR is the VCO free running frequency, and KV is 
the VCO gain, T is the reference signal time period, and TB 
is defined here as the boost time of the CP-PFD or the 
length of time during each period T where the CP-PFD 
pumps a non zero current into the loop filter. To further 
clarify consider one time period, T, of the loop. In this time 
period the DPLL operates in the coast state, where no 
current is output from the CP-PFD, for a period of time 
defined here as TC, and in boost state for a period of TB, as 
in fig. 7. TB is calculated as in equation (6). 
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Fig. 7.  One Period of VC  for 2nd Order DPLL 
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where φe(tn) is the phase error at time tn. The coast time 
period is calculated as TC = TB - T. Once the time periods are 
calculated, VC can be determined using (4). To solve 
equation (5) an estimate of the integral of VC is required. 
For the second order DPLL, the loop filter is first order, and 
therefore the integration corresponds to a linear ramp and 
can be expressed as: 

( )
2

2
22

B P
C C n B P

T I
V dt TV t T I R

C
= − −�  (7) 

As discussed earlier high order DPLLs have high order 
differential terms in their system equations, thus finding a 
closed form solution equivalent to the second order 
equations above becomes a difficult task. The solution 
suggested here is to approximate the high order system 
equations using charge approximation as presented in [13]. 
This approach converts a set of parallel integral equations 
into a set of linear difference equations. It considers the 
charge on each capacitor rather than the voltage at each 
node, making the assumption that the average current Iavg 

through a capacitor during the period Δt, which is unknown, 
is equal to the current at time t, I(t), as in fig. 8.  
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Fig. 8.  Assumption that current at time t is equal to the 

average current during Δt 

Utilising charge approximation, the complexity is 
reduced making it possible to derive closed form solutions 
to higher order DPLL systems. This can be justified for high 
frequency systems as a large FR will result in a small period 
T, making the approximation more accurate. For clarity 
consider the third order system before charge approximation 
is applied as in equation (8).  

3
2 3 2

2 2

1
( 1) ( )c

C P p c

dV C
V t I R C R I dt V t

dt C C
+ = − + −�  (8) 

This equation is complicated by differential and integral 
terms, as the order increases the equivalent VC solution 
becomes increasingly complex. Using charge approximation 
this equation can be rewritten as those given in equations 
(A1), (A3) and (A4) from appendix A. While these 
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equations may appear to be more expansive they do not 
have any differential terms. The benefit is more significant 
for 5th and 6th order systems as they cannot be solved in 
closed form without making such an approximation. The 
error introduced due to this approximation is bounded and 
tends to zero as the time interval Δt tends to zero, as shown 
in fig. 9(a) and fig. 9(b). For large reference frequencies or 
a small initial VC offset Δt, the error due to the charge 
approximation is minimal. The relevant charge 
approximated difference equations for a number of filters of 
increasing order are given in appendix A.  

Small Δt
Reduced ErrorZero Order Hold 

Approx

Error

Δt

Ideal Response

 

Fig. 9.  (a) Zero order hold approximation with large Δt, 
(b) smaller Δt smaller Error 

This model is a significant improvement over existing 
methods in that it is more accurate and results in simpler 
system equations, due to a combination of the piecewise 
linear method and the charge approximation. Using the 
methodology described in this section it is possible to 
determine the stability boundaries for any DPLL system by 
numerically iterating the charge approximated system 
equations given in appendix A, for a small initial VC offset, 
by looking at the system trajectory over a short period of 
time as shown in fig. 6. This is achievable for any order of 
DPLL system using numerical iteration; however it is 
possible to determine a closed form stability criterion for 
the second order system by extending the methodology 
described here. This is considered in the next section. 

IV. SECOND ORDER PIECEWISE LINEAR MODEL 

In this section a more detailed consideration of the 
piecewise linear model, in the case of the second order 
DPLL, is given. This approach determines the second order 
DPLL control voltage after m periods of the reference 
signal, Vm, as defined in fig. 6. The solution of Vm is used to 
define a closed form solution of the DPLL stability 
boundary for the second order system. 

To determine Vm two things need to be considered: first, 
when all parameters are known, any nth sample of the 
control voltage Vn needs to be calculated in closed form; 
and second the number of samples m needs to be calculated 
where Vm is the control voltage at the first zero crossing of 
the phase error as shown in fig. 6. These two requirements 
are considered in the following two subsections. 

1) Calculation of Vn 
The second order system, described by equations (4), and 

(5) can be reduced to the pair of summations given in (9) 
and (10), where V0 is an initial positive VC offset, the initial 
φe offset is zero, and φe is always negative as in fig. 6. 
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Equations (9) and (10) may be combined to give:  
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where Vn is equivalent to VC(n) and is an exact 
calculation of the control voltage after n samples. The 
double summation in equation (11) can be solved by either 
numerical iteration, or by solving a closed form 
simplification. This closed form solution is considered later 
in subsection 3.   

The control voltage at the zero crossing, Vm will not 
correspond exactly with Vn, as the last sample n will not fall 
exactly on the phase error zero crossing, but will cross that 
line by some value d, as shown in fig. 10.  If samples n-1 
and n are both known then it is possible to calculate the 
value of Vm by using a linear interpolation (12). 
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Fig. 10.  State Space Samples 
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where (Vx, φx) and (Vy, φy)  are the co-ordinates of the 
samples n and n-1 respectively in fig. 10. However (12) is 
not used in this model as the error introduced in the 
calculation of Vm is minimal and reduces as the reference 
frequency is increased.  
2) Calculation of number of samples m 

To calculate the number of samples m it is necessary to 
return to the linear approximation model and use the linear 
error transfer function:  

2
2

2
2 2 2

( )e
V P V P

C s
H s

C s K I R C s K I
=

+ +
 (13) 

Using linear theory to determine m does not reduce the 
accuracy of this technique, as we only require an 
approximate value of m and then round it up to the next 
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integer. To determine the phase error zero crossings the 
frequency step response of (13) is calculated and the inverse 
Laplace taken as shown in (14) and equated to zero. 

1
2

2
( ) 0F

eL H s
s

π− Δ� �
=� �

� �  
(14) 

where ΔF is the frequency step size. Solving (14) gives an 
equation of the form A(t)Sin(X(t))=0, which is zero when 
X(t)=0,π,2π,3π,… The first zero crossing after t = 0 occurs 
when X(t)=π. Solving this gives equation (15), the time of 
the first zero crossing.   
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The number of samples in one half cycle of the state 

space trajectory, (the solid arc of the system trajectory in 
fig. 6) is estimated as: 
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3) Closed Form Solution of Vm 

The value of Vm, the control voltage at the first zero 
crossing of the phase error, can be found using equations 
(11) and (16) and numerical iteration. However it is also 
possible to solve equation (11) in closed form, as shown 
below. 
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where A= -KVIP/(FR

2C2) and ΛΛΛΛ1 up to ΛΛΛΛ����m/2				 are a set of 
parameters defined as equations (B1-B5) from appendix B. 
Since parameter |A| is always << 1, a further simplification 
can be made. As FR

2 is a large number, |A| becomes less 
significant as the power of A is increased. In fact it is found 
that terms with powers of A greater than 4 are insignificant 
and have negligible influence on the final value of Vm. So 
(17) can be simplified to: 

( ) ( ) ( ) ( )2 3 4
0 1 2 3 41mV V A A A A� 	= + Λ + Λ + Λ + Λ�   (18) 

Now that the phase error at the zero crossing can be 
determined, it is possible to determine the stability 
boundary of the second order DPLL using the calculation of 
the system parameter Vm in equation (18) and an estimate of 
m in (16).  

An important system performance criterion is the pull-in 
rate. Using the system trajectory, as in fig. 6 and Vm, the 
system pull-in rate can be determined for an initial VCO 
control voltage offset V0. 

0

0

100 %m
in

V V
P

V

+
=  (19) 

If the pull-in percentage is negative, the system is 
unstable otherwise the system is stable. Combining (18) and 
(19) the stability criterion can be simplified to:  

2 3 4
1 2 3 42 0A A A A+ Λ + Λ + Λ + Λ >  (20) 

This is independent of the initial VCO control voltage 
offset V0. As would be expected, the initial condition does 
not have any effect on the stability boundary. Equating (20) 
to zero gives the stability boundary of the system and can be 
compared to the traditional stability boundary of [1]. In fig. 
11 the stability boundaries of the proposed second order 
technique are determined for a pull-in rate of 1%, 20% and 
40% and are shown along with Gardner’s linear boundary 
[1] and a stability boundary defined by a number of circuit 
level simulations. The accuracy of the circuit level 
simulation has been verified using other published 
behavioural and event driven DPLL models [14-16].  

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ωRτ2

K
τ 2

Piecewise Linear
BoundariesLinear

Boundary

Unstable Region

Circuit level
Simulation

1%

40%

20%

 
Fig. 11.  Stability boundaries of 1GHz second order PLL 

according to Gardner and the proposed method 

It is clear from fig. 11 that the circuit level model of the 
DPLL system suggests that Gardner’s prediction is not 
conservative enough and does not guarantee stability. In 
fact there is a significant stable region defined by Gardner, 
where the circuit level model predicts instability. This 
discrepancy is the reason why DPLL designers need to 
compliment linear design methods with rule of thumb and 
empirical design. The circuit level boundary also verifies 
that the proposed technique is more accurate, producing 
more conservative results than the linear boundary, which 
are inside the stability region of the DPLL system. Thus any 
DPLL system designed with parameters chosen from within 
this predicted boundary will be stable. This illustrates the 
inaccuracies of applying the linear model to the DPLL 
system, as described earlier. While comparing the proposed 
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technique to additional stability methods such as [10-12] is 
desirable, it is not possible due to the specific nature of 
these methods, and the difficulty in plotting any global 
stability boundary with such methods.  

In this section the second order piecewise linear model, 
introduced in section III, was considered in more detail. The 
system initial conditions, the phase error and the control 
voltage, are chosen to be zero and some positive real value 
respectively.  

V. HIGHER ORDER SYSTEMS 

The proposed piecewise linear technique can also be used 
to model higher orders by numerically iterating the relevant 
piecewise linear charge approximated equations as given in 
appendix A. The significant advantage of the charge 
approximation approach is that it removes differential terms 
from the filter equations and makes the solution of higher 
order DPLL system equations mathematically feasible.  

Using the piecewise linear model the stability boundary is 
found for the 3rd order DPLL and compared to the 
traditional boundaries of [1]. In fig. 12, the stability 
boundaries for the 3rd order system are plotted for various 
values of b, where b = 1+C2/C3. This definition of b is 
originally given in [1].  
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Fig. 12.  3rd Order Stability Boundaries for b = 2, 5, and 10 

Similar to the second order case, fig. 12 illustrates the 
weakness of the linear boundaries. To further illustrate this 
consider an example using the proposed technique to define 
the stability boundary of a third order DPLL with a 1 GHz 
reference signal, a divide ratio of 1 and a value of b equal to 
8. The predicted boundary is plotted in fig. 13, along with 
the stability boundary as defined by Gardner.  
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Fig. 13.  Predicted Stability Boundary for 1 GHz system 

The shaded section is the unstable region of the DPLL. 
Using this prediction of the boundary, two systems are 
considered, system A and B as defined in fig. 13. System A 
lies in the region between the predicted piecewise linear 
boundary and Gardner’s, with a choice of Kτ2 and ωRτ2 of 
0.025 and 1.75 respectively. System B is well within the 
stable region with a choice of Kτ2 and ωRτ2 of 0.03 and 5 
respectively. The response of both systems are determined 
using the circuit level simulation described earlier. The 
response of systems A and B are shown in fig. 14 and fig. 
15 below.  
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Fig. 14.  Response of System A 
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We can see that as predicted the DPLL response of 
system A is unstable, yet this is counter to Gardner’s 
prediction of stability. In the case of system B the system is 
found to be stable (fig. 15). It is clear from fig. 12 and the 
above example that, similar to the second order system, the 
third order piecewise linear technique provides a much 
better prediction of the stability boundary than linear 
methods. While it has yet to be proved conclusively, our 
initial results indicate that this is also true for other high 
order systems. 

VI. CONCLUSION 

Traditional CP-PLL design techniques use linear theory 
and empirical methods to identify and design stable 
systems. It is shown in this paper that stability boundaries 
defined using traditional linear methods are inaccurate and 
use complicated model equations that are limited to low 
order loops. The proposed technique uses a charge 
approximation methodology applied to the loop filter 
equations. This removes the differential terms, simplifies 
the model, and enables the model to be incremented up to 
high orders. The proposed technique also uses piecewise 
linear methods to significantly increase the accuracy of the 
model relative to existing linear methods, and thus identify 
more accurate estimates of the stability boundary.  This 
approach considers the exact nonlinear nature of the PFD, 
rather than simply approximating it to an adder component 
as in the linear case.  

The paper concentrates, in particular, on the second order 
loop, defining a closed form solution of the stability 
boundary using linear integration. Though this solution is 
expansive, it is mathematically tractable and is found to 
better define the stable region of the DPLL. For systems 
with orders of greater than second, the loop filter equations 
can no longer be solved in closed form, but must be solved 
using a numerical iteration. The resulting model is a 
significant improvement over existing linear techniques, 
defining the system stability boundary more accurately for 
arbitrary order of the DPLL.  

APPENDIX 

Appendix A – High Order Piecewise Linear Equations 
The third through fifth order piecewise linear model 

equations are outlined in the subsections below. In each of 
these cases, the control voltage VC is determined from the 
charge on the filter capacitors, where Z is the system order. 

( 1)
( 1) Z

C
Z

Q t
V t

C

+
+ =  (A1) 

The integral of VC, to replace the second order 
calculation in (7), is calculated from the knowledge of VC as 
shown in equation (A2). 

2( 1)
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2
Z B

C B C
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I t T
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+
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Third Order Difference Equations 
Q2 and Q3, the charges on the loop filter capacitors, C2 and 
C3 respectively, are calculated as follows: 

2 2 3( 1) ( ) ( ( 1))B PQ t Q t T I I t+ = − − +  (A3) 

3 3 3( 1) ( ) ( 1)BQ t Q t T I t+ = + +  (A4) 

where TB is equal to |φe(k)/2πFR| and I3 is calculated as: 
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Fourth Order Difference Equations 
For the fourth order system the charge on the loop filter 
capacitors are calculated as in equation (A6-A8). 
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3 3 3( 1) ( ) BQ t Q t T I+ = +  (A7) 
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(A8) 

where I3 and I4 are the current through C3 and C4 and are 
calculated as in equations (A9) and (A10). 
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Fifth Order Difference Equations 

The fifth order loop filter capacitor charges are calculated 
as shown in equations (A11 - A14) given below. 

2 2 2( 1) ( ) BQ t Q t I T+ = +  (A11) 
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(A12) 

1
4 4

2

32
5 5 2 2 2 2

2 3

2 2

( 1) ( )

( )( )
( ) ( )

D
Q t Q t

D

Q tQ t
T R C T I R C T C T

C C

C TD

+ = −

� �� �
+ + + −� �� �� �� �� �+

 

(A13) 

5 5 5( 1) ( ) BQ t Q t I T+ = +  (A14) 
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where I2, I5 and D1 to D4 are defined as in equations 
(A15-A20) (Equation (A16) is at the bottom of this page). 
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Appendix B – Closed Form Solution of Vm 

This Section defines the parameters of Λ as used in 
equations (17) and (18). 
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where b = 1-(KVR2IP/FR)).  
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If we consider ΛΛΛΛ3 to be equal to the function ΓΓΓΓk given in 
equation (B3) at the bottom of the page, where k = 6, then 
ΛΛΛΛ4 can be calculated using equation (B4). 
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It is possible to calculate all ΛΛΛΛ up to �m/2	 by using the 
same process between equations (B2) and (B4), i.e. define 
ΓΓΓΓ′′′′k as in equation (B5). Then ΛΛΛΛ5 can be calculated as in 
(B6), and so on up to ΛΛΛΛ����m/2				. 

1

2 2

2

1 0 0 0 0 1

1 0 0 0 1

1 0 0 1

1 1

T

k

k

k k

n kn

b

b b

b b b

+

+

−

Γ� 	 � 	 � 	

 � 
 � 
 �Γ
 � 
 � 
 �

 �′ 
 � 
 �Γ = Γ

 � 
 � 
 �

 � 
 � 
 �

 � 
 � 
 �Γ �  � � 

� � � � � ��
�

 (B5) 

 
 

2 232
5 5 5 2 2 2 2 2 5 1 2 5 2 4 2 4 2 5

2 3
5

2 4 2 5 5

( )( )
( ) ( ) ( ) ( )

( )

Q tQ t
C T R C T I R C T C T C C T D C C TD Q t C C TD Q t

C C
I

C C TD R C T

� �� �
+ + + − − + −� �� �� �� �� �=

+
 (A16) 

  

1

1 2

2
2

2

2
2

2

1 0 0 0 0

12 ( ) ( 1) 1 0 0 0 0 1 0 0 0
2 ( 1) ( ) 1 0 0 0

1 1
1 0 0 1 0 0

2 0
0

1 1
1 1 1

1

Tn k n k

n k n k

k

n k
n k

n k

bb b n k b n k
bb b n k b n k b

b b b
b b

b b
b

b b b
b b b b b

b b b

− − −

− − − −

−

−

−

�

 +� 	+ + + − + − + � 	 



 � 
 � 
+ + + − − + −
 � 
 � 
 + + +
 � 
 �Γ =

 � 
 �

+
 � 
 �

 � 
 �� 
 ��  + + + + + +

�

�
�

�
� � � � � � � �

�
��

1

1

1

1

	
�
� 	�

 ��

 ��

 �
 �

 �
 �

 �
 �

 �
 � � 
 �


 �

�

 

(B3) 

 

ISAST Transactions on Electronics and Signal Processing, No. 2, Vol. 3, 2008 
Brian Daniels and Ronan Farrell: Rigorous Stability Criterion for Digital Phase Locked Loops9



 
 

  

10

11

5 12 2

2 10

1 0 0 0 0 1

1 0 0 0 1

1 0 0 1

1 1

T

nn

b

b b

b b b −

′Γ� 	 � 	 � 	

 � 
 � 
 �′Γ
 � 
 � 
 �

 �′ 
 � 
 �Λ = Γ

 � 
 � 
 �

 � 
 � 
 �

 � 
 � 
 �′Γ �  � � 

� � � � � ��
�

 (B6) 

REFERENCES 

[1] Gardner, F.M., “Charge pump phase-lock loops,” IEEE 
Trans. Commun., vol. COM-28, pp1849-1858, Nov 
1980. 

[2] Abramovitch, D., “Lyapunov Redesign of Classical 
Digital Phase-Lock Loops”, Proceedings of the 
American Control Conference Denver, Colorado, 
pp2401-2406, June 2003 

[3] Eva Wu, N., “Analog Phaselock Loop Design Using 
Popov Criterion”, Proceedings of American Control 
Conf. Anchorage, pp16-18, May 2002 

[4] Rantzer, A., “Almost global stability of phase-locked 
loops”, Proceedings of the 40th IEEE conf. On 
Decision and control, vol. 1, pp899-900, December 
2001 

[5] Simon, D., El-Sherief, H., “Lyapunov Stability 
Analyses of Digital Phase Locked Loops”, IEEE 
Conference on Systems, Man and Cybernetics, 
San Antonio, TX, pp2827-2829, October 1994. 

[6] Young-Shig Choi, Hyuk-Hwan Choi, Tae-Ha Kwon, 
“An Adaptive Bandwidth Phase Locked Loop with 
Locking Status Indicator”, IEEE Russian-Korean 
International Symposium on Science and Technology, 
pp826-829, June 2005. 

[7] Yan Ge, Wennan Feng, Zhongjian Chen, Song Jia, 
Lijiu Ji, “A Fast Locking Charge-Pump PLL with 
Adaptive Bandwidth”, IEEE Conf on ASIC, pp383- 
386, Oct. 2005.  

[8] Minoru Kamata, Takashi Shono, Takahiko Sabo, Iwao 
Sasase, and Shinsaku Mori, “Third-Order Phase-
Locked Loops using Dual Loops with Improved 
Stability”, IEEE J Solid-State Circuits, pp338-341, 
Aug. 1997 

[9] Carlosena, A., Mànuel-Lázaro, A., “Design of High 
Order Phase-Lock Loops”, IEEE Transactions on 
Circuits and Systems II: Express Briefs, Vol 54, pp9-
13, Jan. 2007 

[10] Mirabbasi, S., and Martin, K., “Design of Loop Filter 
in Phase-Locked Loops”, IEEE Electronic Letters 
1999, Vol. 35, Issue. 21, pp1801-1802 

[11] O’Keese, W., “An Analysis and Performance 
Evaluation of a Passive Filter Design Technique for 
Charge Pump PLL’s”, National Semiconductor 
Application Note 1001, July 2001 

[12] Williamson, S.,“How to Design RF Circuits – 
Synthesisers”, IEE Colloquium on how to Design RF 
Circuits 2000. 

[13] Daniels, B., Farrell, R., Baldwin, G., “Arbitrary Order 
Charge Aproximation Event Driven Phase Locked 

Loop Model”, Irish Signals and Systems Conference, 
pp124 –128, June/July 2004 

[14] Van Paemel, M., “Analysis of a Charge-Pump PLL: A 
new Model”, IEEE Trans on Communications, 
VOL.42, No 7, pp2490-2498, July 1994 

[15] Hedayat, C.D., Hachem, A., Leduc, Y., Benhassat, G., 
“High-level modeling applied to the second-order 
charge-pump PLL circuit”, Texas Instruments 
Technical Journal, Vol 14, No. 2, March/April 1997 

[16] Hedayat, C.D., Hachem, A., Leduc, Y., Benhassat, G., 
“Modeling and Characterization of the 3rd Order 
Charge-Pump PLL: a Fully Event-driven Approach”, 
Analog Integrated Circuits and Signal Processing, vol. 
19, pp25-45, April 1999 

[17] Best, R., Phase Locked Loops Design, Simulation, and 
Applications, 4th edition, McGrath-Hill 1999 

[18] Abramovitch, D., “Phase-Locked Loops: A Control 
Centric Tutorial”, Proceedings of the American Control 
Conference  Anchorage, May 2002 

 
Brian Daniels is currently a lecturer in Department of Electronic 
Engineering in NUI Maynooth. He has completed Masters in 
Telecommunications and a BEng degree, both from Dublin City 
University in 2001 and 1998 respectively. Before returning to do the 
Masters Brian worked in Ericsson for three years, specialising in 
designing and testing new software functions for the AXE10 mobile 
exchange on the PDC network. 
Since 2001 he has being working in the Institute of Microelectronics and 
Wireless Electronics in the national university of Ireland Maynooth. As 
part of his graduate research Brian has been specialising in the modeling 
and design of digital phase locked loops.  
 
Ronan Farrell is currently the Director of the Institute of 
Microelectronics and Wireless Systems in NUI Maynooth and an SFI 
theme leader for RF electronics and systems within the Centre for 
Telecommunications Value-Chain Driven Research (CTVR) which is the 
academic partner to Bell Labs Ireland.  He graduated from University 
College Dublin in 1993 with a B.E. and proceeded to work with 
ICI/Zeneca Chemicals for the next two years in Louisiana, USA, and on 
various sites in Yorkshire, England. In 1995 he returned to University 
College Dublin to start a Masters on Sigma-Delta Modulators, sponsored 
by Analog Devices. This developed into a Ph.D. which he received in 
1998.  After receiving his Ph.D. he joined Parthus Technologies as a 
mixed signal IC designer. In 2001, he joined NUI Maynooth as a lecturer 
in the Department of Electronic Engineering.   In 2004, he participated in 
the foundation of the SFI Centre for Telecommunications Value-Chain 
Driven Research (CTVR) which is the academic partner to Bell Labs 
Ireland.   As of December 2005, Ronan was appointed director of the 
Institute of Microelectronics and Wireless Systems at NUI Maynooth.  The 
Institute is a multidisciplinary centre focused on applied research in 
wireless systems and their enabling technologies.  The institute has the 
objective of supporting both applied and fundamental research in the areas 
of wireless systems and microelectronics.  

ISAST Transactions on Electronics and Signal Processing, No. 2, Vol. 3, 2008 
Brian Daniels and Ronan Farrell: Rigorous Stability Criterion for Digital Phase Locked Loops10


