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Abstract: In this paper we consider the maximization of the throughput 
of a single large antenna, for two possible array configurations: focal 
plane imaging arrays and aperture plane phased arrays. We discuss 
trade-offs between the two types of array in terms of field of view, 
sampling efficiency and time to map a source. We also discuss limits 
on the number of feed elements in an imaging array imposed by the 
deterioration in aperture efficiency off-axis. 
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I Introduction. 

Coherent detectors, such as heterodyne receivers, are limited in 
response to a single spatial mode. In infrared terminology, the etendue 
or throughput (Af~) can never be greater than = ~2. Thus, unlike the 
situation in incoherent infrared astronomy, the throughput of the 
telescope cannot be increased merely by increasing A (for example, by 
opening a diaphragm in the focal plane). Array receivers, however, offer 
the possibility of a significant increase in the efficiency (or throughput) 
of single dish radiotelescopes. At the shorter wavelengths typical of the 
current generation of millimeter-wave telescopes the field of view is 
extensive, and the possible increase of throughput correspondingly large. 

The basic theory of array receiving systems is well known, and has 
been developed at some length for interferometric and phased arays of 
independent antennas (see e.g. refs.[1-5] and references therein). 
However, the question of how best to maximize the throughput of a 
single large antenna has not received the same attention, although there 
have been a number of recent papers and articles dealing particularly 
with antenna structures suitable for millimeter and submillimeter 
wavelength arrays [6-8]. In this paper we explore the trade-offs 
between sampling, efficiency (of an individual element) and field of 
view, using a consistent notation which facilitates the comparison of two 
fundamental array types. 

The possible configurations for an array receiver are bounded by two 
extremes. These are the focal plane array, where the array of detectors 
is placed on the telescope focal plane (see fig.l), and the aperture 
plane array, where the array is placed at a conveniently sized image of 
the telescope aperture, (e.g. as in fig. 1). In section II we consider how 
each array reconstructs a map of the brightness distribution of the 
source. Questions of how many array elements are needed and how 
long it takes to map a field of view are addressed in section III. We 
assume a simple source and telescope configuration as examples so that 
quantitative comparisons can be made. In section IV we derive a 
relationship for the deterioration of the aperture efficiency of an off-axis 
imaging array element. 
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II Types of arrays 

In this section it is assumed that the individual mixer elements 
have aperture feeds, such as the rectangular horn. The theory of 
mapping a field with the two types of array is considered. 

Focal plan~ arrays, 

Let us examine the case when an array of horns is placed on a part of 
telescope focal plane where there is an undistorted diffraction limited 
image of the sky. In Appendix 2 it is shown that, for horn i with 
power pattern on the sky G(0-0i), the power coupling to a celestial 
source with the source brightness distribution B(0), i.e.: 

Pi = ~ B(0)  G ( 0 i - 0 )  dA 0 (1) 

Note: The (2-component) vector 0 is such that the components of 0 
correspond to the projection onto two orthogonal axes in the aperture 
plane of a unit vector in the source direction (i.e. correspond to the 
direction cosines for the two axes). The notation JdA 0 indicates the 
double integral over the two components of dO (e.g. JdA 0 = ~fd0xd0y). 

A point r in the focal plane is related to a particular direction 0 by 
0 = -r, where r is a dimensionless quantity equal to the distance from 
the axes divided by ft. The power patterns G = l h(-0)*w(-0)l 2, where 
h is the hom-"phase centre" field and w is the fourier transform of  the 
telescope aperture weighting function W which represents the truncation 
of the incident beam at the telescope aperture. 

The map ]3(0) consists of a set of samples corresponding to the centres 
of the horns in the focal plane (or equivalently co~esponding to the set 
of directions of the array of beams on the sky): B(0i) = Pi. Thus, we 
can write: 

B ( 0 i )  = B ( 0 i ) * ( I h ( - 0 i ) * w ( - 0 i ) 1 2 }  (2) 

The focal plane intensity distribution f3(0) is bandlimited because of the 
finite spatial extent of the telescope as shown in (2), and can therefore 
be reconstructed perfectly if sampled at a sufficiently small spacing. 
This critical spacing (the Nyquist rate) is determined by the resolution 
of the telescope, given by G(0). For the optical transfer function [8] 
corresponding to a circular aperture with uniform illumination the 
Nyquist sampling interval on the focal plane is ~,F where F is the 
geometric focal ratio, ft/D, (D being the diameter of the telescope 
aperture). That is, we require a beam spacing on the sky of ~,/D. The 
sampling interval is equal to 41% of the radius of the first null of the 
Airy pattern produced in the focal plane by a point source at infinity. 
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Reference is sometimes made to the possibility of measuring higher 
spatial frequencies by measuring the voltage rather than intensity [6], 
the argument being that the process of (square-law) detection effectively 
doubles thespa t ia l  frequencies in the image. In the radioastronomical 
case we do not usually expect any coherence between the image points 
separated by more than a beamwidth and even that is enforced only by 
the truncation at the edge of the aperture. In other words, relative to 
some arbitrary reference position the fields at any point in the focal 
plane time-average to zero, and we are interested only in discovering 
the structure in the intensity pattem approximating the brighmess 
temperature distribution of the true sky, for which the usual sampling 
criteria apply. 

Aoermre nlane arrays 

The fields at the image of the aperture plane are a scaled version of 
the truncated aperture field distribution E a, i.e., E(p) = Ea(~,p)W(Tp) 
where p is a point on the image aperture plane and T = -fl/ft �9 (see 
fig.2). We can therefore choose to work in either the image plane or 
the actual aperture plane by considering the image fields or the image 
horns respectively. The following treatment assumes that we are working 
in the aperture plane itself (i.e. considering an image array at the true 
telescope aperture plane). 

There are two basic ways in which an array could be configured: 
(i) as a simple phased array, where a series of phase gradients is 

applied across the array, all the outputs for a particular gradient 
being added together to produce a series of beams on the sky [4]; 
see fig.3. 

(ii)as a synthesis array where the elements of the array are connected 
in interferometric pairs to sample the complex correlation function 
of the aperture fields[5]. 

(i) Phased array 

For a phased array we define the phase gradient 0 i = (0x,0y) to be the 
phase increment per unit wavelength divided by 2n along the two 
orthogonal axes of the array. We show in Appendix 2 that the total 
power output P(0 i) from such an array is given by: 

P ( 0 i )  = SdA 0 B(0) IH(0) I 2 . 1 G ( 0 - 0 i ) I  2 (3) 

G(0) can be written as a convolution of U(0) (the Fourier transform of 
a 2-dimensional array of 8-functions) and w(0) (the Fourier transform of 
W(0), the telescope aperture weighting function). U(0) has the form of 
the far field of an infinite phased array of isotropic radiators. 
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The map g consists of a set of samples where B(Oi)=P(Oi). : 

13(0i) = B ( 0 i ) .  iH(0 i ) l  2* ( iU(0 i )*w(0 i ) l  2} (4) 

It is possible to fill in all the spacings and map a source without 
moving the telescope, provided the elements are connected to a series 
of constant slope phase tapers corresponding to all the necessary 
spacings. 

The resolution of the array is determined by the spatial extent of W 
through w(0), the intrinsic telescope beam, while the sampling in the 
aperture plane determines the distance between gratin responses through 
U(0). As in the focal plane imaging receiver the observed Pi(0i) contain 
spatial frequencies up to the resolution of the telescope and the Nyquist 
interval is Z/2D. 

(ii) Synthesis array. 

In this case the outputs from the detectors are connected in pairs (by 
adding and square-law detecting the output or, alternatively, by 
multiplying and low pass filtering the output). We define the baseline t t 
to be the spacing (in the aperture plane) of the images of the two 
elements of the interferometer (which is physically located at the image 
of the aperture plane as in fig.l). In appendix 2 we show that the map 
I3(0) is given by: 

13(0) = IdA0,B(O')  IH(0 ' ) I  2 Yd(Wb(bi ) . cos [2nb  i . ( o - o ' ) ] }  
o r  

13(0) = (B(0) IH(0) 12}*(l~iWb(bi) .cos[2nb i . o ] } .  
(5) 

That is, the true source distribution B(O) has been multiplied by the 
primary beam power pattern IHi(O) 12 and convolved with the 
synthesised beam. We can rewrite this in terms of the array-plane 
quantity p and the magnification factor ~ - f l / f t  as: 

B(0) = (B(O) lH(0)12)*(~iW(yPil).W(yPi2).cos[2n(Pil-Pi2).0]} 
(6) 

Note that the synthesised beam is symmetric, but unlike the beam of a 
phased array it is not constrained to be positive and in fact contains 
zero power total power. 

A synthesis array is equivalent to a phased array except that the beam 
does not contain a d.c. term, the beam produced by the two 
configurations are otherwise equivalent and in the remainder of this 
discussion we just consider the phased array. 
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III Time tO mao a source. 

We wish to compare the merits of the two types of arrays when 
it comes to the question of the number of elements and the length of 
time it takes to map a source. 

In a focal plane array with elements dimensioned so as to maximise 
the aperture efficiency the fields at a hom aperture couple well to the 
Airy diffraction spot produced on the focal plane by a point source. 
Nyquist sampling, however, implies inter-horn spacing of 0.41• of 
the Airy disc, constraining the size of individual horns to be less than 
that required for good coupling. If  high efficiency is desired then the 
telescope must perforce be moved to record the missing samples - we 
refer to this technique as hybrid mapping. 

It is clearly always impossible to achieve full (Nyquist) sampling and 
maximum aperture efficiency simultaneously. A fundamental limit can be 
found simply from conservation of energy: if an array element having a 
circularly symmetric beam pattern and aperture efficiency of 11 a is 
surrounded by N equidistant similar elements, then the maximum 
response of any one of the N elements to a point source is just 
(1-1]a)/N, which yields an upper limit to the coupling of one of these 
elements to the source of l/N, regardless of ~a ! It is obviously possible 
to pack structures such as planar, slot, finline or bow-tie antennas closer 
together than is suggested by the fundamental limit, but in that case the 
mutual impedances of all antennas will conspire to reduce the response 
of all elements to satisfy the above constraint. Results such as those 
reported in [8] can be understood if it is recognised that under the test 
condition the adjacent antennas were not terminated, and hence 
presumably presented a large mismatch to the incoming radiation. Later 
we examine the throughput of a close-packed focal plane array of 
rectangular horn antennas where the size of the horns, and hence Tla, is 
allowed to vary. 

By contrast, an array of hom antennas in an aperture plane 
configuration has the advantage that there need be no missing spacings 
(as in the focal plane array) so a map can be made immediately. The 
drawback, however, is that the map will contain the grating responses 
of the array at _+_~/d (d is the spacing between the image horns at the 
aperture), which will tend to cause confusion for sources that have 
extent greater than about k/d. Thus, there is a limitation on the field of 
view of this type of array. Also, the signal to noise in the case of an 
aperture plane array is degraded according to the ratio of the power in 
the main lobe to the total power in the pattem. This reduction in 
sensitivity is severe for beams at the edge of the field of view of the 
array. 
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When comparing the performance of the two types of arrays for 
mapping sources all these factors have to be considered. In order to 
illustrate the various contributions of these factors let us suppose for 
simplicity that we have: 

a square source (of side angular extent 0 s) 
a square aperture (of side length D) 
a close packed array of long rectangular horns with dimensions 
a x b (E-plane x H-plane). 

We also assume that a TE 1 0 field distribution E h exists at the hom 
mouths. As the horns are long we assume the phase error across the 
horn apertures is negligible. The far field pauem H(0) of  a single horn 
a distance R from the horn aperture[9] is then given by: 

cosX sinY 
H(0) = - ~g C (7)  

[x=-(~rO=] v 

where C = j a b / ~ .  E o / R . e x p ( - j k R  ) 
X = ~ a / ~ . 0  x and Y = ~ b / k . 0 y  

(a )  C o u p l i n g  to  s o u r c e .  

In Appendix 3.1 we show that for a focal plane array the forward gain 
of the telescope is maximised when the horn dimensions are given by 
a = 1.88~vF and b = 1.36~a v, giving an aperture efficiency of 0.745. The 
Nyquist sampling rate is ~Fs so that the undersampling factors are 
2.72 along the y-axis (E-plane) and 3.76 along the x-axis (H-plane) 
giving an overall undersampfing factor of 10.2. We separately calculate 
the spiUover efficiency, as being that fraction of the horn power pattern 
which does not intercept the telescope aperture (this quantity is also 
sometimes known loosely as beam efficiency). In Appendix 3.1 we also 
show that the total spillover efficiency is qs=0.831. 

The forward coupling of an aperture plane array is reduced by two 
mechanisms. First, some fraction of the total power pattern is contained 
in the secondary "grating lobes", and is assumed to be wasted. The 
fraction lost to grating lobes depends on the exact position of the 
"synthesised beam" within the primary beam pattem defined by the 
individual array elements (see fig.4). In Appendix 3.2 we show that the 
maximum value for the fraction of the power in the main beam occurs 
when the synthesised l~eam is coincident with the centre of the primary 
power pattern (i.e. for zero phase taper), and has a value: ~lbmax = 
8/re 2 = 0.8106. At the edge of the field of view, rlb takes on its 
minimum value as the response of the primary beam decreases away 
from the centre of  the source. This is given by ~bmin = 0.2026 (see 
Appendix 3.2). 
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The number of horns nf required in a focal plane array just to cover 
the area of the source is given by the area of the image divided by 
the area of an individual horn aperture - we show in Appendix 3.1 that 
this has a value nf = (1/2.55).0~/(;UD) 2. For an aperture plane array 
the number of horns n a is set by the requirement to avoid aliasing, and 
so the phase taper must amount to less than ~ radians per element. It 
is shown in Appendix 3.2 that we therefore require at least n a = 
0~/(~./D) 2 horns to yield an unconfused field of view of angular 
dimension 0 s. 

(b) Total time to map a source. 

We now wish to compare the time it takes to map a source to a given 
signal to noise using both types of array. 

We denote antenna temperature and source temperature by T a and T B, 
respectively. We are interested in the change AT B over a solid angle 
occupied by the "main beam" on source. The corresponding change in 
antenna temperature AT a is given by: AT a = 1/LLATB.J A(0)dA0, 
where A(0) is the effective area of the telescope in direction 0 and the 
integral is over the main beam plus close-in side lobes. Beam 
efficiency riB is defined to be 1/X 2 ~nain beam A(0)dA0. If there are 
no sidelobes rl B = 1, (assuming no ohmic losses). Thus, AT a = 
riBATB. The minimum change in source temperature (ATB)mi n that is 
detectable with a system with a system noise temperature Tsy s is given 
by [10]: 

(ATB)mi n = 2 Tsys /~ t l ]B/Vt  (8) 

where v is the bandwidth of the receiver and t is the total observing 
time. 

In the case of a focal plane array riB = spillover efficiency (ris) as 
this corresponds to power lost into far out side lobes. In the case of an 
aperture plane array riB = fraction of power in the main lobe for a 
particular beam. 

Thus, denoting by t the time required to map the source using a 
minimum number of horns to a given S/N (and including undersampling 
factors), the ratio of the times for the two arrays is given by: 

t a / t f  = ( 1 / ~ b m i n 2 ) / ( u n d e r s a m p l i n g  f a c t o r / ~ s 2 )  
= ( 1 / . 2 0 2 6 ) z / ( 4 x 2 . 5 5 / ( 0 . 8 3 1 ) 2 )  
= 1.647 

i.e the focal plane array is faster by a factor = 1.6. 
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(c) Alternative schemes. 

The rather surprising result that a focal plane array maps more quickly 
than an aperture plane array is due mostly to the rather large value for 
1/rlbmin for the aperture plane array, The sensitivity of  the beams at 
the edge of the field is low. For a source extended over a large 
number of pixels, such that the number of  pixels is greater than the 
sampling factor, there are a number of ways to improve the speed of  
the aperture plane array. The most straightfoward way to give all pixels 
equal sensitivities for a large source is to move the telescope in 1-pixel 
increments, so that ultimately all pixels receive the same effective value 
for ATB. Alternatively, we could instead just map a fraction of the 
source using only the centre beams with higher sensitivity and then 
move the telescope to complete mapping of the source (i.e. we 
"undersample" in the sense that we do not map the whole source at 
once as in our earlier calculations). 

Equally, however, it turns out that we can also map the source faster 
with the focal plane array if  we allow a closer spacing in the focal 
plane with a higher spillover loss, and assume that the number of horns 
is increased to cover the source field of view (essentially we are trying 
to maximize the throughput per unit area of focal plane). Clearly, if the 
number of horns is fixed the observing time is maximised when rla is 
optimised, provided the field of view is less than or equal to the size 
of the source. The time it would take to map the source relative to the 
maximum efficiency case is given from (3.7) by: t ~ Uf/rls 2, where TIs 
is the spill-over loss (as discussed in section 3.1 (a)) and Uf is the 
undersampling factor: Uf = 4ab/F2)~ 2. 

We show in Appendix 3.1 that the minimum mapping time is achieved 
for horns having dimensions a = 1.305FL and b = 0.96F)~ 
(corresponding to an undersampling factor of 5.0), when the aperture 
efficiency decreases to 0.820 times its maximum value. This minimum 
time is 0.720 times that using the maximum aperture efficiency 
criterion. 

Applying a similar calculation to the case of  an aperture plane array, 
in Appendix 3.2 we show that the time is minimised when p, the 
fraction of the total possible number of  beams which could have been 
used to map the source, is 0.605. This yields a reduction in the time 
to map the source by a factor of 2.2 (thus a map can be made to the 
same signal to noise over 2.2 times as fast as if we map with all the 
beams). When we impose the constraint that p must be a sub-multiple 
of 1, then we find p=0.5, the reduction factor is still 2.1; still a saving 
of over 50% on the time required to make the map. 
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Note, however, that if the unconfused field of view of the array is now 
less than twice the size of the source then any "hybrid" technique 
(rastering in 1-pixel increments or greater) will yield a confused image 
which will require deconvolution (using, for example, CLEAN or 
Maximum Entropy). 

IV Field of View of a Casseerain Telescooe. 

An important limitation on the size of a focal plane array will be 
the deterioration in the quality of the field of view as the feed is 
moved off axis. A Cassegrain telescope (where the primary is 
paraboloidal and the subreflector hyperboloidal) is free from spherical 
aberration, but does suffer from off-axis aberrations viz. coma, 
astigmatism and field curvature. In microwave and millimetre-wave 
antennas we are interested primarily in the aperture efficiency, i.e. the 
coupling between the image of a point source in the field of view and 
a microwave feed on the telescope focal plane. Aberrations cause a 
deterioration in the aperture efficiency as one moves away from the 
telescope optical axis. 

It is usually assumed that the microwave Cassegrain behaves like a 
single paraboloidal dish (known as the "equivalent paraboloid") with a 
focal length equal to the effective focal length of the Cassegrain 
system, and with a diameter the same as that of the primary[Ill,J12]. 
The results of Ruze [13] for the effect of displacing a feed in a single 
paraboloidal dish are then sometimes applied. However, Ruze considered 
only the case where the displaced feed points at the centre of the 
parabolic reflector and is placed on the Petzval surface. Also, for high 
F-ratio systems, Ruze's results can only be applied for very small 
displacements[14]. Thus, these results from the microwave literature are 
not applicable to a flat foca'l plane array on a high F ratio Cassegrain 
system. To summarize there are basically two reasons why the usual 
microwave approach is inadequate: 
(i) on high F-ratio systems coma is not the dominant aberration present 

(as is the case in Ruze, for example). 
(ii) if one is dealing with a fiat array on the focal plane without a 

field lens then non-symmetrical illumination of the subreflector by 
the off-axis feeds leads to more severe spill-over effects than for 
an on-axis feed. 

In our study of array systems we can however make use of knowledge 
gained from traditional geometrical optics studies, since diffraction 
effects can usually be neglected outside the telescope focal region. It is 
useful to consider the quantity used in optical systems called the 
"aberration function"[15]. In a general image forming system shown in 
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fig.5 a paraxial image of an object at P a distance 1 off-axis is formed 
at P' with no distortion effects a distance h off-axis. The aberration 
function is defined by [15]: 

~b(Q) = optical path length (PQP') - optical path length (POP') 

where O is the centre and Q is any point on the exit pupil of the 
optical system. For a Cassegrain telescope the exit pupil is defined by 
the subreflector (fig.6). In Appendix 4 it is shown that for a telescope 
where the focal length of the primary reflector fp is much less than the 
effective focal length f, curvature of field is the-dominant aberration for 
values of h > (fp/f)a. In that case q5 can be written as a function of 
the radial coordinate r for point Q as: 

~ ( r )  = T ( h / 3 2 F 3 ) ( h / a ) ( r / a )  2 where y = f / f p .  (9)  

The plane wave incident on the primary mirror from a distant point 
source will be focused to a distorted and truncated spherical wave 
impinging on P'. The phase deviation at the subreflector is given by 
kqb(Q). The distorted wave after reflection from the subrefiector is given 
by: 

E s = e x p ( + j k [ r 2 / 2 d s  + ~ ( r ) ] )  
e x p ( + j k [ r 2 / 2 d s  + y ( h / 3 2 F 3 ) ( h / a ) ( r / a ) ~ ] ) ,  (lo) 

where d s is the subreflector-telescope focal plane distance. 

The radiation field of a microwave feed placed on the telescope focal 
plane will have spherical phase fronts at the exit pupil (the 
subreflector), provided the subreflector is in the far field of the feed. 
Let us suppose that a microwave feed offset by h laterally from the 
focal point produces a Gaussian beam in its far field. If we choose to 
have a fla~ array, then the beam propagates parallel to the axis of the 
telescope and the centre of the beam at the subreflector is displaced by 
h. The electric field of the feed beam at the subreflector (exit pupil; 
see fig.5) can be written : 

Eg(r,q0) ~ e x p ( - [ ( r c o s q > - h )  2+r2s in29] /W 2) (11) 

where 2W is the 1/e full amplitude width of the Gaussian shaped 
beam. Clearly, spillover loss will be important for values of h 
approaching the radius of the subreflector a. 

The central region of the incident wave from the point source is first 
blocked by the subreflector, and then further truncated by the central 
blocked area of the primary as it is reflected (see fig.7). Since the 
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plane wave is incident at an angle 0, the two truncated central regions 
are not quite coincident; their centres are separated by 0d, where d is 
the distance between the mirrors. The image of this doubly truncated 
form then ends up displaced on the subrefiector by a distance o f  e = 
0d and also, of  course, the subreflector further truncates the wave at its 
outer edge. If  the subreflector is the same size as the blockage in the 
primary, the field on the subreflector is non-zero over the area A' ,  as 
shown in fig.7. However, for a telescope where f/fp is much greater 
than 1 then e = 0d = (h/f)d = (h/f)fp ~ h so that the effect of the 
spillover of the illuminating feed beam at the subreflector dominates 
over the truncation effects on the incident signal from the point 
source. 

The feeds of  the array could be configured so that the feed (h off-axis) 
is pointed at the centre of  the subreflector mirror; in this way 
truncation effects on the feed beam are reduced at the subreflector, and 
the beam is more symmetrically positioned with respect to the incident 
beam (a field lens located immediately in front of  the array 
accomplishes much the same thing - each element of  the array sees an 
optical path consisting o f  a weak lens and a prism directing its beam 
towards the centre of  the subreflector). We concentrate on the case of  a 
flat array, however, as this type is easier to construct in practice. 

In Appendix 5 we derive a relationship for the efficiency with which a 
feed a distance h from the axis couples to the incoming wave - viz: 

K(h)  ,, 1 - 1 . 9 5 [ F ) ~ / 2 a ] 2 . q  2 2.6x10-3.[y)~/F(2a) ]2.q4 (12)  

where q=h/W o. The term that depends on q~ is due to the offset, h, of  
the beam from the feed at the subreflector: the term in q4 is due to 
the curvature of  field. 

For a focal plane array where one is prepared to allow no more than a 
given deterioration in the aperture efficiency this implies a constraint on 
h and, therefore, also a constraint on the total number of  array elements 
possible. For a closely packed array the elements are typically separated 
by a distance equal to the linear size of  the aperture required to 
produce the optimum waist. For a long pyramidal horn, as discussed in 
[16], the length and height of  the horn aperture are approximately 3W o 
and 2W o, respectively; while for a long scalar horn the diameter is 
approximately 3W o. For the James Clerk Maxwell Telescope (JCMT) 
[17], for example, 2a = 750ram, F = 12, 7 = 33.3 and at ~. = lmm 
the reduction in efficiency is given by: 

K0a) ~ 1 - (q/44.6) 2 - (q/72.6) 4 = 1 - (q/44.6) 2. 
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Clearly, spill-over at the subreflector is the more serious constraining 
factor and for a 10% reduction in efficiency arrays with radii up to 
t4W o or a total of  about 70 elements are possible (assuming a circular 
array of  scalar horns on a square grid so that the area per element is 
9Wo). 

For arrays with larger numbers of  elements the beams should point at 
the centre of the subreflector and the array size then becomes limited 
by the field curvature. The required pointing can be achieved with a 
field lens of focal length d s in front of the lens (d s is the distance to 
the subreflector). In this case for the JCMT, arrays with radii of 41W o 
(or about 580 scalar horn elements maximum) are feasible. Further the 
curvature of field effects can be reduced by, for example, stepping the 
thickness of  the field lens (as shown in fig.8), so that the optical path 
difference between the on-axis beam and an off-axis beam is less than 
the depth of focus. Thus, the first step would occur at a radius of 
[ 7~,/F(2a) 19.5 ]- ~. 10- �88 .W o. 

At subminimetre wavelengths for arrays of horn antennas one is usually 
constrained to use lower F-ratio beams as otherwise the horns become 
too long and the losses and expense correspondingly high. This implies 
the use of tertiary optics to refocus the beams to have narrow waists at 
the array (since W o ~ FZ,). Optics for a large array, consisting of a 
Gaussian telescope[18], are likely to be well approximated by a 
geometrical system, since the lenses will tend to be positioned in the 
far field of the array. Thus, the system should be designed so that 
geometrical coma and astigmatism are minimised, or they will cause 
deterioration in the quality of the field of view. The array waists will 
then lie on a Petzval surface whose radius of curvature R o is given by 
1/R13=l/n_f 1 +l /nf  2, where n is the refractive index "of the lens 
maferial[15]. This can be chosen to match the field curvature due to 
the Cassegrain configuration. A field lens will be unnecessary if the 
position of the first lens of the Gaussian telescope is moved by f2/ds; 
then the central ray of an off axis horn beam is incident on the centre 
of the subreflector as illustrated in fig.9 

IV-Summarv and Conclusion~ 

1. We have considered in detail mapping of a field with focal plane 
and aperture plane arrays. As an example, to compare quantitatively the 
number of  horn elements and length of time to observe a field, we 
assumed a square source of angular extent 0sX0 s being mapped by a 
telescope with a square aperture D• fed by an array of long 
rectangular homs the apertures of which have dimensions axb. 
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2. In the case of the focal plane array the condition for maximum 
aperture efficiency is a=l.88F~, and b=l.36FL, which corresponds to an 
undersampling factor Uf of 10.2. For this array the total number of 
horns needed to map the source is: [4.0~/(~./D) ]/Uf. 

3. In the case of the aperture plane array of closely packed elements 
the maximum main lobe sensitivity is given by 8/~ 2. The minimum 
number of homs required to map the source without confusion is 
[ 0s/(X ) ]2. 

4. With a focal plane array, a source can be mapped to a given 
signal-to-noise faster if we relax the requirement of maximum aperture 
efficiency for each individual element of the array and reduce the size 
of the horns, increasing the number of horns commensurately. Horns 
with dimensions of a = 1.31FL and b = 0.96F)~ give a reduction in 
aperture efficiency of 18% but a reduction in the undersampling factor 
by 2, thus decreasing the overall time to map a source by 28%. 

5. The time taken to map a source using an aperture plane array can 
be similarly reduced by using only the central beams and using a 
hybrid mapping technique whereby the telescope is moved to cover the 
entire source. However, this implies either increasing the total number 
of array elements (to give a bigger field, and hence lower losses 
anyway) or accepting the resultant confusion and applying a 
deconvolution technique to the image. 

6. We conclude that, with the possible exception of the number of 
elements required to map a field, the advantages of the focal plane 
array over an aperture plane array far outweigh the disadvantages for 
most purposes. The focal plane array has simpler electronics, fewer 
restrictions on the field of view, and lends itself to an easier form of 
"hybrid" mapping (when the telescope is moved to compensate for 
undersampling of either image or beam space). 

7. The field of view of a Cassegrain telescope was considered for the 
case of a focal plane array of feeds which have Gaussian shaped 
beams. For a fiat array off-axis aberrations (coma, astigmatism and 
curvature of field) and spill-over at the subreflector contribute to the 
deterioration in aperture efficiency, and their effect on the maximum 
size of an array was quantified. 
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APPENDIX 1 Glossaw of terms 

S e c t i o n  II and Appendix 2: 

Plane c o o r d i n a t e s  0 u a n t i t i e s  

sky 0 e s ( f i e l d  of  source)  
B ( b r i g h t n e s s  = les 12) 

a p e r t u r e  u (= x/~) 

foca l  p lane r (= x / f t )  

image plane P ( = f , x / f t ~ )  

E a ( E - f i e l d s )  
W ( a p e r t u r e  

weight ing  func t i on )  
hmn (image horns)  

h (horn f i e l d s )  
e ( source  f i e l d )  

w (FT (W)) 

E ( source  f i e l d s )  

b 
B 

d 
D 
fl  
f t  
F 
O 
h 
It 
m,n  

Pi 
S , t  
U 
v i )  
v ( 
7 

17 
qOmn 

s y n t h e s i s  a r ray  b a s e l i n e  
source b r i g h t n e s s  
map 
in te re lement  s e p a r a t i o n  
t e l e s c o p e  d iameter  
foca l  l eng th  of  t e r t i a r y  lens 
t e l e s c o p e  e f f e c t i v e  focal  l eng th  
t e l e s c o p e  foca l  r a t i o  
t e l e s c o p e  power p a t t e r n  
f i e l d s  at horn phase c e n t r e  
horn f a r - f i e l d  p a t t e r n  
ind ices  
IVi 12 
i n t e r - e l e m e n t  spacings  in phased a r ray  
far  f i e l d  of  a r r ay  of  i s o t r o p i c  r a d i a t o r s  
v o l t a g e  from horn or a r r ay  
v i s i b i l i t y  
( = - f t / f l )  
wavelength  of  r a d i a t i o n  
(=U'w) 
phase increment for  mnth element of  a r r ay  
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Sec t ion  I I I  and Aooendix 3: 

A 
a ,b  
d 
D 
F 
f 
g 
K 
N 
N 
na 
nf  
P 
Pn 
Uf 
ta 
t f  
Ta 
% 
Tsys 
X,Y 
(I 

qa 
qb 
+ls 

0 
0s 
q~x, y 

e f f e c t i v e  area  of  t e l e s c o p e  ape r tu re  
horn dimensions 
spacing between image horns 
t e l e s c o p e  diameter  
t e l e s c o p e  focal  r a t i o  
t e l e s c o p e  focal  length  
r educ t ion  in t o t a l  time to map source 
power coupl ing  horn f i e l d  with s ignal  f i e l d  
number of  a r r ay  elements in x d i r e c t i o n  
number of  a r r ay  elements  in y d i r e c t i o n  
number of  horns in ape r tu re  plane a r r ay  
number of  horns in focal  plane a r ray  
f r a c t i o n  of  phased a r ray  beams 
f r a c t i o n  of  the power in lobe n 
undersampling f a c t o r  
t o t a l  obse rv ing  time ape r tu r e  p lane  a r r ay  
t o t a l  obse rv ing  time focal  plane a r r ay  
antenna temperature  
source temperature  
system no i se  tempera ture  
(=~/X(a0x,b0y))  
(=~/kF) 
ape r tu r e  e f f i c i e n c y  
main beam e f f i c i e n c y  
s p i l l - o v e r  e f f i c i e n c y  
(wavelength)  
(=0x,0y) d i r e c t i o n  in sky 
source ex ten t  
phase increment in (x ,y )  d i r e c t i o n s  
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Sec t ion  IV and Appendices 4 ~nd 5" 

A area of  the s u b r e f l e c t o r  
a radius  of  s u b r e f l e c t o r  
b radius  of  blockage at secondary 
C as t igmat i sm c o e f f i c i e n t  
D diameter  o f  pr imary 
D cu rva tu re  of f i e l d  c o e f f i c i e n t  
d s s u b r e f l e c t o r  horn d i s t a n c e  
E d i s t o r t i o n  c o e f f i c i e n t  
E s source f i e l d  at s u b r e f l e c t o r  
E f i e l d  due to horn at s u b r e f l e c t o r  
F g coma c o e f f i c i e n t  
F t e l e scope  focal  r a t i o  
f e f f e c t i v e  focal  l eng th  of  t e l e scope  
fp focal  l eng th  of  pr imary 
g (=p. expp/[ 1 -expp ]) 
h d i s t a n c e  of  a r ray  element o f f - a x i s  
I o modif ied  Bessel  func t ion  of  order  zero 
k (=2~/~) 
K coupl ing e f f i c i e n c y  
P poin t  o f f - a x i s  
q (=n/Wo) 
Q poin t  on e x i t  pupi l  

(=(D/2a).  r) 
~r Pe tzva l  su r face  radius of  cu rva tu re  

1/e in amplitude beam radius  
W o W at the horn phase cen t re  

(=h / f )  
(=7(hk/32F3)(h/a)(W/a)  2 

7 ( = f / f p )  
o f f - a x i s  beam displacement  on s u b r e f l e c t o r  

p (=(r/W) 2) 
0 angle of  source o f f - a x i s  

a b e r r a t i o n  func t i on  
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APPENDIX 2 Focal plane and aperture plane arrays 

Focal plane arrays, 

Fourier optics can be used to examine the effect of diffraction and 
vignetting on the radiation from the sky at the focal plane. Suppose the 
fields - due to radio sources in the sky - at the aperture plane of a 
telescope are given by Ea(u), where u is some point on the plane 
defined by the telescope aperture and the origin is taken to lie on the 
telescope axis (see fig.2). We can write the aperture fields in terms of 
a sum of incident plane waves with appropriate phase terms, the 
relative amplitude of the wave in the direction 0 being es(0). Thus we 
get: 

Ea(u)  = I d A  0 e s ( 0 )  e x p ( - 2 n j u . 0 }  ( 2 . 1 )  

To simplify the algebra u been made dimensionless by expressing the 
distance in wavelengths. The sky brighmess (the intensity of the 
radiation from the 0 direction) is given by B(0) ~ l es(0)l 2 

Assuming that the effective focal length of the telescope is much 
greater than its aperture diameter, the signal fields at the aperture and 
focal planes of the telescope are a Fourier pair, so that we have: 

focal  plane e ( r )  = IdA u Ea(u  ) W(u) e x p ( - 2 ~ j r . u }  

aperture plane Ea(u)W(u) = IdA r e ( r )  e x p { 2 g j r . u }  
( 2 . 2 )  

W(u), the telescope aperture weighting function, represents the truncation 
of the incident beam at the telescope aperture, and w(r) is its Fourier 
transform. In fact, w(r) is the intrinsic field pattern of the telescope, or 
the far field pattern produced by the uniformly illuminated aperture, e(r) 
is the field due to the source at the telescope focal plane. 

Note that r is the distance from the axis divided by ft (thus, r is 
dimensionless) and we define the forward Fourier transform (along the 
propagation axis z) such that the argument of the exponential is 
negative; the reverse transform therefore has a positive sign. 

We consider an array of homs placed on a part of telescope focal 
plane where there is an undistorted diffraction limited image of the sky. 
For the ith horn we write the virtual fields (those which would exist if 
the fields in the aperture of the horn were propagated back to its phase 
centre in free space) as hi(r). If all the horns are identical then: hi(r) = 
h(r-q). Thus, the voltage output available at the terminals of horn "i" 
will be: 
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v i = ] dArh~( r )  e ( r )  ( 2 . 3 )  

and so the power coup l ed  to ho rn  " i "  i s :  

Pi = <lVi 12> 

where angle brackets denote time average. This is equivalent to the 
response of the antenna to a celestial source and is given by the 
convolution of the antenna power pattem with the source intensity 
distribution, i.e.: 

Pi = S B(0)  G ( 0 i - r )  dA ( 2 . 4 )  

where G(r) = I FT(H(-u).W(-u))I 2 and H(u) is the far field pattern of 
a horn with "phase centre" fields h(r). G(r) has the same functional 
form as the intensity or power pattern of the horn on the sky (i.e is 
the squared modulus of the far fields of the truncated horn beam at the 
telescope aperture). A particular point r in the focal plane is related to 
a particular direction 0 = -r on the sky. 

Aperture Diane arrays 

(i) Phased array 

Consider a regular array of MxN horn-fed mixer elements in the 
aperture plane of the telescope; the (dimensionless) distance between the 
elements in the u x direction is s = dx/'L and in the Uy direction is t = 
dy./'L. The outputs of the array are added together, as shown in fig.3, 
with a linear phase delay 0 i (= (0ix,0iy)) applied in the u x and Uy 
directions so that for the (m,n)th element at position Umn = (ms,n0 th~ 
phase with respect to a fictitious (0,0) point can be represented as: 

9mn(0i)  = 2n(Umn.0i)  (2.5) 

Then the output voltage from the array due to the signal fields E a at 
the telescope aperture is given by: 

M N 
v ( 0 i )  = E Y~(]dAu.hmn(u) .W(u) .E~(u) )exp( -2~jUmn.0  i )  ( 2 . 6 )  

m = I n = 1 

where (IdA u * hmn(u).W(u).Ea(u)) represents the coupling of the fields 
of the image detector antenna hmn(U ) to the signal field Ea(u) in the 
plane of the aperture. W(u) is the telescope aperture weighting function 
as before. If the image array of horns is of physical extent less than 
the telescope aperture then W(u) is uniform over the array and can be 
ignored. Outside this region, W(u) is zero and so represents the 
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truncation of the image array by the finite extent of the telescope 
aperture. 

For an array of identical elements, where the virtual fields at the 
element phase centres are hmn(u)=h(u-Umn), (2.6) can be written: 

M N 
v ( 0 i )  = ~ Y. IdA u h(u-Umn).Ea(u) .W(umn).exp(-2rCjUmn.0 i )  

m=l n=l 

= ~dA u. ida  u,  .h (u -u ' )  [Y~m,n 8(u'-Umn) .W(umn)] 
x E ~ ( u ) . e x p ( - 2 n j u ' . O  i )  

= f d A u " [  Y,m,n 8(u '-Umn) ] . e x p ( - 2 n j u ' . O i )  

• fdA u, h ( u - u ' ) . E a ( u )  (2 .7 )  

By the convolution theorem we can write v(O l) as the convolution of 
, :,1. 

the Fourier transforms of JdAu,h(u-u).Ea(u) and EmnS(U-Umn).W(Umn), 
the latter which we shall denote by II(Oi). 

The Fourier transform of ~dA u, h(u-u').E*(u) is the product of the far 
field pattern of the image horn H(O) and the incident signal field from 
the direction O, es(O), yielding 

v ( 0 i )  = fdA 0 H ( 0 ' - 0 i ) . H ( 0 ) . e s ( 0 )  (2.8) 

Squaring and taking the time average using a procedure similar to that 
applied to the focal plane array, we find that the total power P(0i) is 
given by: 

P ( 0 i )  = idA 0 B(0) IH(0) I 2 . 1 G ( 0 - 0 i ) I  2 (2 .9 )  

where B(0) = l es(0)12 and G(0) = I I'I(0)l 2 is the source field. 

G is the fourier transform of Zrnn~i(U-Umn).W(umn) and so can be 
written as a convolution of U(0), the Fourier transform of a 
2-dimensional array of 5-functions and w(0), the Fourier transform of 
W(0) - the truncation function for the array. U(0) has the form of the 
far field of a phased array of isotropic radiators. 
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(ii) Synthesis array. 

The telescope is pointed at some point 0 o in the source field. We 
define the baseline b i = Au i = uil-ui2, to be the spacing (in the 
aperture plane) of the images of the two elements of the intefferometer 
(which is physically located at the image of the aperture plane as in 
fig.l). Then, if 0 is the position of the source and assuming 0o.b i = 0, 
the output from the correlator is given by: 

V(bi )  = f dA 0 B(0) IH(0) 1 2 . W b ( b i ) . e x p ( 2 ~ j b i . 0 )  (2 .10)  

where H(0) is the far field pattem of the image of the horn as before. 
The factor WbCOi) = Wb[b(ui2,ui,)] = W(ui2).W(ui~) ensures that the 
interferometer pair does not contribute to the final signal if either, image 
element lies outside the physical aperture of the telescope. 

Noting that V(-b)=V*(b), we can then write the visibility-plane 
distribution in terms of the samples V i as: 

V(b) = ]~i [ V i S ( b - b i )  + V16(b+bi) ] (2 .11)  

The original brightness distribution, B(0), is often estimated from V(b) 
by taking the inverse Fourier Transform. Then (ignoring subtleties such 
as gridding) we have: 

B(0) = I d A b . V ( b ) . e x p ( - 2 g j b . 0  ) (2 .12)  

Substimting V(b) and V i using (2.10) and (2.11) we find that: 

B(0) = ~ d A 0 , B ( 0 ' ) l H ( 0 ' ) 1 2 ~ i W b ( b i ) . c o s [ 2 n b i . ( 0 - 0 ' ) ]  
o r  

B(0) = {B(0) IH(0) 1 2 ) , ( ~ i W b ( b i ) . c o s [ 2 n b i . 0 ] } .  
(2 .13)  

That is, the true source distribution B(0) has been multiplied by the 
primary beam power pattern I Hi(0) I 2 and convolved with the 
synthesised beam. We can rewrite this in terms of the array-plane 
quantity p and the magnification factor 7=-fl/ft as: 

13(0) = (B(0) l H ( 0 ) 1 2 } , { ] ~ i W ( T P i l ) . W ( Y o i 2 ) . c o s [ 2 n ( P i , - P i 2 ) . 0 ] )  
(2 .14)  



696 Murphy and Padman 

APPENDIX 3 
source 

Derivations of foward couplin~ anal time to map 

3.1 Focal olane array. 

Couoline Efficiency 
v 

In a focal plane array one normally optimises the aperture efficiency 
for each horn of the array (the coupling between the horn and a point 
source situated along the optic axis for that horn). In this case it is 
easiest to perform the coupling integral (between the fields radiated by 
thehom and the incoming field from a point source) at the 
h0m mouth. A point source at infinity produces a top-hat distribution at 
the square aperture of the antenna which produces a sinc-like 
distribution in both the E and H directions in the focal plane. The 
coupling K is given by: 

[ ~ H d A ' c o s ( ~ x ' / a ) s i n c ( a x ' ) s i n c ( a y ' ) ]  2 
K = (3 .1 )  

[~IH dA 'cos2 (x  x / a ) ] [ ~ _ , ~ d A  s i n c 2 ( a x ' ) s i n c 2 ( a y  ' ) ]  

where ~ = n/'LF, dA' = dx'dy' and IIH -= I+~I+~22. This can be 
rewritten as: 

2aZab 2 f l  ~ Ir~dys inc (abWrO . gdg. ( aag /~ )  

K has a maximum when o~Vrc -- 1.88 and ab/rc = 1.36, giving a ratio 
for afo of 1.38 with a coupling K given as 0.745. Since a depends on 
the focal ratio only, a and b are thus fixed by F: 

{xa/n = 1.88 gives a = 1.88rt/a = 1.88~F 
ab/rr = 1.36 gives b = 1.36n/or = 1.36~.F 

The Nyquist sampling rate is ~F~, so that for a physically realizable 
array the undersampling factor Uf is given by: 

Uf ~ 4ab / (FL)  2 (3 .3 )  

In this case the undersampling factors are 2.72 along the y-axis 
(E-plane) and 3.76 along the x-axis (H-plane) giving an overall 
undersampling factor of 10.2 
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Spillover 

At the telescope the beams are truncated at the edge of the 
square aperture. Along the E-plane the distribution is sinY/Y where Y = 
xby/Xf. The fraction of the power lost to spill-over is then: 

1 - I~ .SSn (s inY/Y) 2 dY/ 17 (s inY/Y)  2 dY ( 3 . 4 )  

Similarly along the H-plane the distribution is cosX/[ 1-(X/~g) 2 ] where 
X = ~ay/kf. The spillover efficiency is therefore given by: 

cos2X sin2Y 
~s = @ - 3  . I  XmdX IYo mdY [ [ ( ~ ) 2 -  X212 y2 I ( 3 .5  ) 

where (Xm,Ym) = ~/4F~.(a,b). X is truncated at X=0.94rc and Y at 
Y=0.68~ corresponding to an edge taper of -8.1dB in both planes. The 
total spill-over efficiency therefore is rls=0.831. 

The extent of the image of the source in the telescope focal plane is 
given by f0sxf0 s. Therefore, the number of horns nf in the focal plane 
array is given by: 

n f  = f2 0 ~ / ab  
= f 2 0 ~ / 1 . 3 6 x l . 8 8 . ( F 2 ~ 2 )  
= ( 1 / 2 . 5 5 ) . 0 ~ / ( ~ / D ) 2  ( 3 . 6 )  

If the focal plane were fully sampled, ignoring the penalty in aperture 
efficiency, than the total number of horns required would be 4.0~/0~/D). 

Time to mad a source 

For Uf  = 4ab/(FX) 2, the time to map a source t is ~ven by: 

[~ Xm I Ym [ c~ s inzY t ! -2  t 0~ Uf/TI~ = n2XmYm . dX dY [ ( ~ x ) ~  _ X2]~" y2 3 7) 

where (Xm,Ym) = n/4F)L(a,b) as before. The minimum mapping time 
is achieved for horns having a = 1.305F~, and b = 0.96FX 
(corresponding to an undersampling factor of 5.0) with a decrease in 
aperture efficiency to 0.820 times the maximum aperture efficiency. This 
minimum time is 0.720 times that using the maximum aperture 
efficiency criterion. It might be argued that we should be using rla 
rather than rls in the above expression, in order to maximise the 
transfer functions for source variation on a scale equal to the telescope 
resolution. The calculation proceeds along similar lines; however, it is 
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easy to see that as we reduce the size of the hom 11 a asymptotically 
approaches ~s, so we could expect the optimum values of a and b to 
be very similar. 

32  Aperture-plane array, 

Couolin~ efficiency 

We consider an aperture plane array consisting of an array of 
NxM elements. The phase increments per half element ("phase slopes") 
in the x and y directions are 9x = ~acos0ix/'L and q0y = rcbcos0iy/'L , 
respectively - see equation (2.5). Then the field produced by the array 
is of the form: 

[ cosX.s inY ][ sin(M(X-q~x)).sin(N(Y-tpy)) } 

E(X,Y:9) = C. [ l _ ( X / ~ r 0 2 ] .  Y ~ ~ . s i n ( Y - ( p y )  
(3.8) 

where (X,Y) = 7t/'L.(acos0x,bcos0y ). Thus, the direction cosines in the H 
and E planes in the far field are (cos0x,COS0y), respectively. 

We can separate this expression into E-plane and H-plane components. 
First we treat the E-plane component: 

E o, [ s inY/Y] . [  sin(M(Y-qOy))/sin(Y-Cpy) ]. (3 .9 )  

Assuming M is large then sinY/Y does not vary over an individual 
lobe of [sin(M(Y-tpy))/sin(Y-gv) ] and it is possible to calculate the 
power in the nth grating lobe as approximately the square of the 
primary beam amplitude at each point where the grating lobe occurs, 
multiplied by the normalised power of each grating lobe - i.e., after 
some tedious manipulation: 

Pn = (sin(nn+~x)/nn+~x) 2 ~ (s inMY'/Y')2dY ' (3 .10)  

The fraction of the total power in the zero order lobe is then given by: 
(Po/~Pn)E = sinc2tPx. Similarly along the H-plane the fraction of the 
total power in the zero order mode is given by: (Po/,~;Pn) H = 
(8/n2).cos2tPxl(1-(29x/n)2) 2. Combining these two results we fred that 
the fraction of the power in the main (zero-order) lobe is given by: 

2 cosq~x ] 2 (3 .11)  8 s inq0y ] [ 1 -  
~lb(~Px,gy) = n2 [ q0y �9 (Cpx/~rc) 2 
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rlb has a maximum value given by rlbmax = 8/re2 = 0.8106. 

In order that there are no aliasing effects when a source is being 
mapped none of  the higher order lobes should intersect the source. For 
a square source o f  angular extent 0sX0 s, this implies a maximum g~x 
and g~, of  ~rc, (see rigA). At the comer o f  the source where q~x = 
(py = ~n, rib takes on its minimum value given by llbmin = 0.2026. 

NO of  horn8 in the array. 

The required beam spacing is given by (X/2D) 2 and the total number 
of  beams to map the 0sX0 s source is 4.0g/(MD)2. The number of  
horns in an aperture plane array is set by the fact that the maximum 
allowed phase slopes to avoid aliasing (see previous paragraph) are qk 
= ~y  = +~Tt giving the source extent in the x and y directions o f  0 x 
= Ma, 0y = )Co; 0~ = )~2/ab = MNX2/D 2 (since qo x = na0x/L, g ~ v =  
r~b0y/L and D = Ma = Nb). Thus, the total number of  bores i n ' t h e  
aperture plane = 0~/(L/D) 2 

Time ~o map a source 

I f  use a fraction pxp of  the array of  beams, then rlbmin (the minimum 
sensitivity for the subset of  beams now being used) is given by 
rlb(P~r~,p~Tt) and the undersampling factor is 1/p 2. The relative time it 
would take to map the source would then be given (from equation (22) 
by: t ~ undersampling factor x 1/rlbmin2). The total time to map the 
source is reduced by a factor g, where: 

[ r~p~(1 - p2) ]4 
g 2-~'npg- J ( 3 . 1 2 )  

It turns out that this has a minimum when p = 0.605 which gives g = 
0.4490 (thus a map can be made to the same signal to noise over 
twice as fast as if we map with all the beams). There is however no 
tesselation o f  the unit square into squares of  side 0.605, so the solution 
is o f  academic interest only; if we assume instead a value of  p=0.5 we 
find that g = 0.4865, which is still a saving of  over 50% in the time 
to make a map. 
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APPENDIX 4 Derivation of the aberration function 

In fig.6 the deviation in phase from a spherical wave front at Q for 
the wave impinging on P',  a distance h from the telescope axis is 
equal to k~(Q).  ~b(Q), the aberration function, can be written as an 
expansion in terms of the coordinates of Q and ~ = h/f, where f is 
the focal length of the system. For a Cassegrain telescope (i.e. no 
spherical aberration) with a primary diameter of D and a subreflector 
radius of a, q> is given in the usual notation by: 

~ ( ~ , t )  = -C.et2t2cos2q> - ~D.~2t2 + E.ct3~cosq) + F .a t3cosq~ 
( 4 . 1 )  

where t = (D/2a).r, r being the distance from the centre of the 
exit pupil of the optical system (the subreflector), and q> the angle r 
makes with the plane determined by the object and the axis of the 
optical system [15](see fig.5). 

The first term (in C) is the "astigmatism" term 
The second (in D) is the "curvature of field" term. 
The third term (in E) is the "distortion" term and can be neglected 

for small values of  t~. 
The fourth term (in F) is the "coma" term. 

For a Cassegrain where the effective telescope focal length f is 
much greater than fp, the primary focal length C, D and F are given 
by [19]: 

C = - T d / 2 f d  s ,  D = -dT2/2ds  and F = - 1 / 4 f  2 ( 4 . 2 )  

where T = f/fp, d is the distance between the primary and the 
subreflector a n d - d  s is the distance between the subreflector and the 
Cassegrain focus. For large values of 7, D >) C and so only coma and 
curvature of field need be considered. Thus, 

~ ( ~ , r )  = [ T h 2 / 3 2 F 3 a ] ( r / a )  ~ [ h / 3 2 F 3 ] ( r / a ) 3 . c o s ~  ( 4 . 3 )  
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APPENDIX $ Efficiency of  an 0ff-axis Gaussian feed 

The efficiency with which the (off-axis) Gaussian feed pattern Eg 
couples to the incoming wave with fields E s is given by: 

IS EsEg dAI e 
K = ( 5 . 1 )  

I I E s l e d A  [ I E g l e d A  

where the integration is performed over the plane defined by the 
subreflector. Thus, 

I SA' exp(-(r2+2h'rcosq0 -h' 2)/W2)exp(jl3(r/W)2 )rdrdrpl 2 
K = 

W e A 
(5.2) 

where [3 = ~kh/32Fa)(h/a)(W/a) 2, i.e. ~r2]V~ 2 = k4)(r), and A is the 
area of  the subreflector. 

The integration is performed at the subreflector for values of  r from r 
= b to r = a, where b is the radius of  the image of  the blocked 
central region of  the primary. First integrating with respect to q0 gives: 

K = 
1 2 ~ J A , I o ( 2 r h / W 2 ) e x p ( - ( r 2 - h ' 2 ) / W 2 ) e x p ( j ~ ( r / W ) 2 ] ) r d r l 2  

W 2 A 
(5.3) 

where I o is the modified Bessel function of order zero. 

I f  the loss in K is to be small we must have both tv'W < 1 and ~ < 
1. In this case we can write: 

and 
I o ( 2 r h / W 2 ) . e x p ( - ( h / W ) z )  -- 1 + ( h / W ) 2 . [ ( r / W )  2 1]  
e x p ( j l g ( r / W )  2) --- 1 + j l3 ( r /W)  ~ - ~ ( r / W )  2 ( 5 . 4 )  

A change of  variable to P = (r/W) 2 gives: 

K = (TtW2/A)(I ] e x p ( - p )  ~[ . l+(h/W) 2(p_ 1 ) -  ~132p z ]dpJ ~ 
+1 JlSpexp( - p ) d p  I 2} 

where the limits of  integration are at p = (b/W) 2 and (a/W) 2. 
some algebra and assuming b/W ~ 1 we find that: 

( 5 . 5 )  

After 

K(h) ,,~ (1 - 2.g.(h/a) 2 - [ 1-g(p+g ) ] .p-z.[~lka/32F 3) ]2(h/a)4} 
( 5 . 6 )  
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where g = p .exp(-p) / [  1 - exp(-p)] with P = (a/W) 2- 

For a feed with an on-axis nominal taper of  10riB, p = 1.15, and 
g=0.5328, so: 

K(h)  ~, 1 1 . 0 5 ( h / a )  2 0 . 1 9 2 9 [ y ( 2 a ) / 1 6 ) d z 3 1 2 ( h / a )  4 ( 5 . 7 )  

We express this in terms of  the dimensionless parameter q = h/W o 
where W o is the 1/e beam radius in amplitude of  illuminating feed 
beam at the phase centre (on the telescope focal plane), using (for a 
10dB edge taper) Wo=0~Is/nW)=(0.683F)~), d s is the subreflector-focus 
distance. Thus: 

K(h )  o, 1 1 . 9 5 [ F ~ , / 2 a ] 2 . q  2 - 2 . 6 x 1 0 - 3 . [ " / ~ , / F ( 2 a ) ] 2 . q  4 ( 5 . 8 )  

The term that depends on q2 is due to the offset, h, of  the beam from 
the feed at the subreflector: the term in q4 is due to the curvature of  
field. 
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