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Abstract: In this paper we consider the maximization of the throughput
of a single large antenna, for two possible array configurations: focal
plane imaging arrays and aperture plane phased arrays. We discuss
trade-offs between the two types of array in terms of field of view,
sampling efficiency and time to map a source. We also discuss limits
on the number of feed elements in an imaging array imposed by the

deterioration in aperture efficiency off-axis.
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668 Murphy and Padman

I Introduction.

Coherent detectors, such as heterodyne receivers, are limited in
response to a single spatial mode. In infrared terminology, the etendue
or throughput (AQ)) can never be greater than = A2. Thus, unlike the
situation in incoherent infrared astronomy, the throughput of the
telescope cannot be increased merely by increasing A (for example, by
opening a diaphragm in the focal plane). Array receivers, however, offer
the possibility of a significant increase in the efficiency (or throughput)
of single dish radiotelescopes. At the shorter wavelengths typical of the
current generation of millimeter-wave telescopes the field of view is
extensive, and the possible increase of throughput correspondingly large.

The basic theory of array receiving systems is well known, and has
been developed at some length for interferometric and phased arays of
independent antennas (see e.g. refs.f1-5] and references therein).
However, the question of how best to maximize the throughput of a
single large antenna has not received the same attention, although there
have been a number of recent papers and articles dealing particularly
with antenna structures suitable for millimeter and submillimeter
wavelength arrays [6-8]. In this paper we explore the trade-offs
between sampling, efficiency (of an individual element) and field of
view, using a consistent notation which facilitates the comparison of two
fundamental array types.

The possible configurations for an array receiver are bounded by two
extremes. These are the focal plane array, where the array of detectors
is placed on the telescope focal plane (see fig.1), and the aperture
plane array, where the array is placed at a conveniently sized image of
the telescope aperture, {(e.g. as in fig. 1). In section II we consider how
each array reconstructs a map of the brightmess distribution of the
source. Questions of how many array clements are needed and how
long it takes to map a field of view are addressed in section III. We
assume a simple source and telescope configuration as examples so that
quantitative comparisons can be made. In section IV we derive a
relationship for the deterioration of the aperture efficiency of an off-axis
imaging array clement.
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Fig. 1 SCHEMATIC OUTLINE OF A FOCAL PLANE AND APERTURE PLANE ARRAY
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I _Types of arrays

In this section it is assumed that the individual mixer elements
have aperture feeds, such as the rectangular hom. The theory of
mapping a field with the two types of array is considered.

Focal plane arrays.

Let us examine the case when an array of homs is placed on a part of
telescope focal plane where there is an undistorted diffraction limited
image of the sky. In Appendix 2 it is shown that, for hom i with
power pattern on the sky G(6-6;), the power coupling to a celestial
source with the source brightness distribution B(8), i.e.:

P; = [ B(®) G(8;-6) dAg (1)

Note: The (2-component) vector 6 is such that the components of @
correspond to the projection onto two orthogonal axes in the aperture
plane of a unit vector in the source direction (i.e. correspond to the
direction cosines for the two axes). The notation JdAg indicates the
double integral over the two components of d8 (e.g. JdAg = Jldydey).

A point r in the focal plane is related to a particular direction 0 by
@ = -r, where r is a dimensionless quantity equal to the distance from
the axes divided by f;. The power patterns G = 1h(-8)*w(-0)12, where
h is the hom-"phase centre" field and w is the fourier transform of the
telescope aperture weighting function W which represents the truncation
of the incident beam at the telescope aperture.

The map B(0) consists of a set of samples corresponding to the centres
of the homns in the focal plane (or equivalently corresponding to the set
of directions of the array of beams on the sky): B(8) = P;. Thus, we
can write:

B(0;) = B(8;)*{1h(-0j)*w(-0{)12} (2)

The focal plane intensity distribution B(0) is bandlimited because of the
finite spatial extent of the telescope as shown in (2), and can therefore
be reconstructed perfectly if sampled at a sufficiently small spacing.
This critical spacing (the Nyquist rate) is determined by the resolution
of the telescope, given by G(6). For the optical transfer function [8]
corresponding 1o a circular aperture with uniform illumination the
Nyquist sampling interval on the focal plane is 1AF where F is the
geometric focal ratio, fi/D, (D being the diameter of the telescope
aperture). That is, we require a beam spacing on the sky of 4A/D. The
sampling interval is equal to 41% of the radius of the first nuil of the
Airy pattern produced in the focal plane by a point source at infinity.
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672 Mourphy and Padman

Reference is sometimes made to the possibility of measuring higher
spatial frequencies by measuring the voltage rather than intensity [6],
the argument being that the process of (square-law) detection effectively
doubles the " spatial frequencies in the image. In the radioastronomical
case we do not usually expect any coherence between the image points
separated by more than a beamwidth and even that is enforced only by
the truncation at the edge of the aperture. In other words, relative to
some arbitrary reference position the fields at any point in the focal
plane time-average to zero, and we are interested only in discovering
the structure in the intensity pattern approximating the brighiness
temperature distribution of the true sky, for which the usual sampling
criteria apply.

Aperture plane arrays

The fields at the image of the aperture plane are a scaled version of
the truncated aperture field distribution E,, ie., E(p) = E,(yp)W(yp)
where p is a point on the image aperture plane and y = -f, /. (see
fig.2). We can therefore choose to work in either the image plane or
the actual aperture plane by considering the image fields or the image
homs respectively. The following treatment assumes that we are working
in the aperture plane itself (i.e. considering an nnage array at the true
telescope aperture plane).

There are two basic ways in which an array could be configured:

(i) as a simple phased array, where a series of phase gradients is
applied across the array, all the outputs for a particular gradient
being added together to produce a series of beams on the sky [4];
see figs.

(i)as a synthesis array where the clements of the array are connected
in interferometric pairs to sample the complex correlation function
of the aperture fields[5].

(i) Phased array

For a phased array we define the phase gradient € - (ex,ey) to be the
phase increment per unit wavelength divided by 2x along the two
orthogonal axes of the array. We show in Appendix 2 that the total
power output P(8;) from such an array is given by:

P(8;) = JdAg B(8) 1H(6)12.1G(0-8;)12 (3)

G(0) can be written as a convolution of U(0) (the Fourier transform of
a 2-dimensional array of &-functions) and w(0) (the Fourier transform of
W(0), the telescope aperture weighting function). U(@) has the form of
the far field of an infinite phased array of isotropic radiators.
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The map B consists of a set of samples where 1‘3(99:?@. :
B(8;) = B(8;). 1H(8;) 12*{1U(8;)*w(8;)12) 4)

It is possible to fill in all the spacings and map a source without
moving the telescope, provided the elements are connected to a series
of constant slope phase tapers corresponding to all the necessary
spacings.

The resolution of the array is determined by the spatial extent of W
through w(0), the intrinsic telescope beam, while the sampling in the
aperture plane determines the distance between gratin responses through
U(0). As in the focal plane imaging receiver the observed Pj(;) contain
spatial frequencies up to the resolution of the telescope and the Nyquist
interval is A/2D.

(ii) Synthesis array.

In this case the outputs from the detectors are comnected in pairs (by
adding and square-law detecting the output or, altematively, by
multiplying and low pass filtering the output). We define the baseline b
to be the spacing (in the aperture plane) of the images of the two
elements of the interferometer (which is physically located at the image
of the aperture plane as in fig.1). In appendix 2 we show that the map
B(9) is given by:

B(0) = [dAg'B(8’) 1H(0") 12 Ti{Wp(b;).cos[2nb;.(8-6") ]}

or (&)
B(0)

{B(8) I1H(8)12}*{¥;Wp(b;j).cos[2mb;.0]}.

That is, the true source distribution B(@) has been multiplied by the
primary beam power pattern |Hj(0)12 and convolved with the
synthesised beam. We can rewrite this in terms of the array-plane
quantity p and the magnification factor y=-f, /f; as:

B(6) = (BCO) () 17)* (31¥(rp; ) WCpi ) .cos[ 2n(pi i) -0 ]

Note that the synthesised beam is symmetric, but unlike the beam of a
phased array it is not constrained to be positive and in fact contains
zero power total power.

A synthesis array is equivalent to a phased array except that the beam
doesnot contain a d.c. term, the beam produced by the (wo
configurations are otherwise equivalent and in the remainder of fthis
discussion we just consider the phased array.
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III Tim ma rce.

We wish to compare the merits of the two types of arrays when
it comes to the question of the number of elements and the length of
time it takes t0 map a source,

In a focal plane arrgy with elements dimensioned so as to maximise
the aperture efficiency the fields at a hom aperture couple well to the
Airy diffraction spot produced on the focal plane by a point source.
Nyquist sampling, however, implies inter-hom spacing of 0.41xradius of
the Airy disc, constraining the size of individual horns to be less than
that required for good coupling. If high efficiency is desired then the
telescope must perforce be moved to record the missing samples - we
refer to this technique as hybrid mapping.

It is clearly always impossible to achieve full (Nyquist) sampling and
maximum aperture efficiency simultaneously. A fundamental limit can be
found simply from conservation of energy: if an array element having a
circularly symmetric beam pattern and aperture efficiency of 1, is
surrounded by N equidistant similar elements, then the maximum
response of any one of the N clements to a point source iS just
(Imy)/N, which yields an upper limit to the coupling of one of these
elements to the source of 1/N, regardless of mM,! It is obviously possible
t0 pack structures such as planar, slot, finline or bow-tie antennas closer
together than is suggested by the fundamental limit, but in that case the
mutual impedances of all antennas will conspire to reduce the response
of all elements to satisfy the above constraint. Results such as those
reported in [8] can be understood if it is recognised that under the test
condition the adjacent antennas were not terminated, and hence
presumably presented a large mismatch to the incoming radiation. Later
we examine the throughput of a close-packed focal plane array of
rectangular horn antennas where the size of the homns, and hence 1y, is
allowed to vary.

By contrast, an array of hom antennas in an aperture plane
configuration has the advantage that there need be no missing spacings
(as in the focal plane array) so a map can be made immediately. The
drawback, however, is that the map will contain the grating responses
of the array at +A/d (d is the spacing between the image homs at the
aperture), which will tend to cause confusion for sources that have
extent greater than about A/d. Thus, there is a limitation on the field of
view of this type of array. Also, the signal to noise in the case of an
aperture plane array is degraded according to the ratio of the power in
the main lobe to the total power in the pattern. This reduction in
sensitivity is severe for beams at the edge of the field of view of the
array.
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When comparing the performance of the two types of arrays for
mapping sources all these factors have to be considered. In order to
illustrate the various contributions of these factors let us suppose for
simplicity that we have:

a square source (of side angular extent 0Og)

a square aperture (of side length D)

a close packed array of long rectangular homs with dimensions

a X b (E-plane x H-plane).

We also assume that a TE,, field distribution Ep exists at the hom
mouths. As the homs are long we assume the phase error across the
horn apertures is negligible. The far field pattem H(0) of a single hom
a distance R from the horn aperture{9] is then given by:

cosX sinY
H(®) = - sn C (7
[Xl’-(iﬂt)z] Y
where C = jab/A. Ey/R.exp(-jkR)
X =rna/h.6y and Y = nb/k.ey

(a) Coupling to source.

In Appendix 3.1 we show that for a focal plane array the forward gain
of the telescope is maximised when the horn dimensions are given by
a = 1.88\F and b = 1.36AF, giving an aperture efficiency of 0.745. The
Nyquist sampling rate is iFA, so that the undersampling factors are
272 along the y-axis (E-plane) and 3.76 along the x-axis (H-plane)
giving an overall undersampling factor of 10.2. We separately calculate
the spillover efficiency, as being that fraction of the horn power pattern
which does not intercept the telescope aperture (this quantity is also
sometimes known loosely as beam efficiency). In Appendix 3.1 we also
show that the total spillover efficiency is ng=0.831.

The forward coupling of an aperture plane array is reduced by two
mechanisms. First, some fraction of the total power pattern is contained
in the secondary "grating lobes", and is assumed to be wasted. The
fraction lost to grating lobes depends on the exact position of the
"synthesised beam"” within the primary beam pattem defined by the
individual array elements (see fig.4). In Appendix 3.2 we show that the
maximum value for the fraction of the power in the main beam occurs
when the synthesised peam is coincident with the centre of the primary
power pattern (i.e. for zero phase taper), and has a value: Nppax =
8/r2 = 0.8106. At the edge of the field of view, mp takes on its
minimum value as the response of the primary beam decreases away
from the centre of the source. This is given by Mppiy = 0.2026 (see
Appendix 3.2).
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The number of homs ny required in a jfocal plane array just to cover
the area of the source is given by the area of the image divided by
the area of an individual hom aperture - we show in Appendix 3.1 that
this has a value ny = (1/2.55).6¢/(A/D)2. For an daperture plane array
the number of homs n, is set by the requirement to avoid aliasing, and
so the phase taper must amount to less than 7 radians per element. It
is shown in Appendix 3.2 that we therefore require at least n, =
82/(A/D)2 homs to yield an wunconfused field of view of angular
dimension 0.

(b) Total time to map a source.

We now wish to compare the time it takes to map a source to a given
signal to noise using both types of array.

We denote antenna temperature and source temperature by T, and Tg,
respectively. We are interested in the change AT over a solid angle
occupied by the "main beam" on source. The corresponding change in
antenna temperature AT, is given by: AT, = 1/A2.ATp.J A(@)dAg,
where A(Q) is the effective area of the telescope in direction 8 and the
integral is over the main beam plus close-in side lobes. Beam
efficiency npg is defined to be 1/A2 Jnain beam A()dAg. If there are
no sidelobes mg = 1, (assuming no ohmic losses). Thus, AT, =
NBATR, The minimum change in source temperature (ATR)yin that is
detectable with a system with a system noise temperature TSys is given
by [10]:

(ATR)min = 2 Tsys/MMpvt (8)

where v is the bandwidth of the receiver and t is the total observing
time.

In the case of a focal plane array mg = spillover efficiency (ng) as
this corresponds to power lost into far out side lobes. In the case of an
aperture plane array ng = fraction of power in the main lobe for a
particular beam.

Thus, denoting by t the time required to map the source using a
minimum number of homs to a given S/N (and including undersampling
factors), the ratio of the times for the two arrays is given by:

ta/ts (1/Mppin?)/(undersampling factor/mg?)
(1/7.2026)2/(4%x2.55/(0.831)2)
1.647

i.e the focal plane array is faster by a factor = 1.6,
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(c) Altemative schemes.

The rather surprising result that a focal plane array maps more quickly
than an aperture plane array is due mostly to the rather large value for
I/Mpmin for the aperture plane array. The sensitivity of the beams at
the edge of the field is low. For a source extended over a large
number of pixels, such that the number of pixels is greater than the
sampling factor, there are a number of ways to improve the speed of
the aperture plane array. The most straightfoward way to give all pixels
equal sensitivities for a large source is to move the telescope in 1-pixel
increments, so that ultimately all pixels receive the same effective value
for ATg_ Alternatively, we could instead just map a fraction of the
source using only the centre beams with higher sensitivity and then
move the telescope to complete mapping of the source (ie. we
"undersample” in the sense that we do not map the whole source at
once as in our earlier calculations).

Equally, however, it tums out that we can also map the source faster
with the focal plane array if we allow a closer spacing in the focal
plane with a higher spillover loss, and assume that the number of horns
is increased to cover the source field of view (essentially we are trying
to maximize the throughput per unit area of focal plane). Clearly, if the
number of homs is fixed the observing time is maximised when 1), is
optimised, provided the field of view is less than or equal to the size
of the source. The time it would take to map the source relative to the
maximum efficiency case is given from (3.7) by: t o Ug/ng2?, where 1
is the spill-over loss (as discussed in section 3.1 (a)) and Ug is the
undersampling factor: Up = 4ab/F2A2.

We show in Appendix 3.1 that the minimum mapping time is achieved
for homs having dimensions a = 1305FA and b = 0.96FA
(corresponding to an undersampling factor of 5.0), when the aperture
efficiency decreases to 0.820 times its maximum value. This minimum
time is 0.720 times that using the maximum aperture efficiency
criterion,

Applying a similar calculation to the case of an aperture plane array,
in Appendix 3.2 we show that the time is minimised when p, the
fraction of the total possible number of beams which could have been
used to map the source, is 0.605. This yields a reduction in the time
to map the source by a factor of 2.2 (thus a map can be made 1o the
same signal to noise over 2.2 times as fast as if we map with all the
beams). When we impose the constraint that p must be a sub-multiple
of 1, then we find p=0.5, the reduction factor is still 2.1; still a saving
of over 50% on the time required to make the map.
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Note, however, that if the unconfused field of view of the array is now
less than twice the size of the source then any "hybrid" technique
(rastering in 1-pixel increments or greater) will yield a confused image
which will require deconvolution (using, for example, CLEAN or
Maximum Entropy).

IV Field of View of a Cassegrain Telescope

An important limitation on the size of a focal plane array will be
the deterioration in the quality of the field of view as the feed is
moved off axis. A Cassegrain telescope (where the primary is
paraboloidal and the subreflector hyperboloidal) is free from spherical
aberration, but does suffer from off-axis aberrations viz. coma,
astigmatism and field curvature. In microwave and millimetre-wave
antennas we are interested primarily in the aperture efficiency, i.e. the
coupling between the image of a point source in the field of view and
a microwave feed on the telescope focal plane. Aberrations cause a
deterioration in the aperture efficiency as one moves away from the
telescope optical axis.

It is usually assumed that the microwave Cassegrain behaves like a

single paraboloidal dish (known as the “"equivalent paraboloid”) with a

focal length equal to the effective focal length of the Cassegrain

system, and with a diameter the same as that of the primary[11],[12].

The results of Ruze [13] for the effect of displacing a feed in a single

paraboloidal dish are then sometimes applied. However, Ruze considered

only the case where the displaced feed points at the centre of the
parabolic reflector and is placed on the Petzval surface. Also, for high

F-ratio systems, Ruze’s results can only be applied for very small

displacements[14]. Thus, these results from the microwave literature are

not applicable to a flat focal plane array on a high F ratio Cassegrain
system. To summarize there are basically two reasons why the usual
microwave approach is inadequate:

(i) on high F-ratio systems coma is not the dominant aberration present
(as is the case in Ruze, for example).

(ii) if one is dealing with a flat array on the focal plane without a
field lens then non-symmetrical illumination of the subreflector by
the off-axis feeds leads to more severe spill-over effects than for
an on-axis feed.

In our study of array systems we can however make use of knowledge
gained from traditional geometrical optics studies, since diffraction
effects can usually be neglected outside the telescope focal region. It is
useful to consider the quantity used in optical systems called the
"aberration function"[15]. In a general image forming system shown in
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fig.5 a paraxial image of an object at P a distance 1 off-axis is formed
at P° with no distortion effects a distance h off-axis. The aberration
function is defined by [15]:

d(Q) = optical path length (PQP’) - optical path length (POP’)

where O is the centre and Q is any point on the exit pupil of the
optical system. For a Cassegrain telescope the exit pupil is defined by
the subreflector (fig.6). In Appendix 4 it is shown that for a telescope
where the focal length of the primary reflector f, is much less than the
effective focal length f, curvature of field is the dominant aberration for
values of h > (fy/D)a. In that case ® can be written as a function of
the radial coordinate r for point Q as:

O(r) = y(h/32F3)(h/a)(r/a)? where y = f/fp' {(9)

The plane wave incident on the primary mirror from a distant point
source will be focused to a distorted and truncated spherical wave
impinging on P’. The phase deviation at the subreflector is given by
k®(Q). The distorted wave after reflection from the subreflector is given
by:

Eg exp(+jk(r2/2dg + ®(r)])
exp(+jk[r2/2dg + y(h/32F3%)(h/a)(r/a)2]), (10)

won

where dg is the subreflector-telescope focal plane distance.

The radiation field of a microwave feed placed on the telescope focal
plane will have spherical phase fronts at the exit pupil (the
subreflector), provided the subreflector is in the far field of the feed.
Let us suppose that a microwave feed offset by h laterally from the
focal point produces a Gaussian beam in its far field. If we choose to
have a flat array, then the beam propagates parallel to the axis of the
telescope and the centre of the beam at the subreflector is displaced by
h. The electric field of the feed beam at the subreflector (exit pupil;
see fig.5) can be written :

Eg(r,cp) « exp(-[(rcosg-h)2+r2sin2¢@}/W?) (1

where 2W is the 1/ full amplitude width of the Gaussian shaped
beam. Clearly, spillover loss will be important for values of h
approaching the radius of the subreflector a.

The central region of the incident wave from the point source is first
blocked by the subreflector, and then further fruncated by the central
blocked area of the primary as it is reflected (see fig.7). Since the
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plane wave is incident at an angle 6, the two truncated central regions
are not quite coincident; their centres are separated by 0d, where d is
the distance between the mirrors. The image of this doubly truncated
form then ends up displaced on the subreflector by a distance of € =
6d and also, of course, the subreflector further truncates the wave at its
outer edge. If the subreflector is the same size as the blockage in the
primary, the field on the subreflector is non-zero over the area A’, as
shown in fig.7. However, for a telescope where f/fy is much greater
than 1 then ¢ = 6d = (wWhHd = (h/f)fp € h so that the effect of the
spillover of the illuminating feed beam at the subreflector dominates
over the truncation effects on the incident signal from the point
source.

The feeds of the array could be configured so that the feed (h off-axis)
is pointed at the centre of the subreflector mirror; in this way
truncation effects on the feed beam are reduced at the subreflector, and
the beam is more symmetrically positioned with respect to the incident
beam (a field lens located immediately in fromt of the array
accomplishes much the same thing - each element of the array sees an
optical path consisting of a weak lens and a prism directing its beam
towards the centre of the subreflector). We concentrate on the case of a
flat array, however, as this type is easier to construct in practice.

In Appendix 5 we derive a relationship for the efficiency with which a
feed a distance h from the axis couples to the incoming wave - viz:

K(h) « 1 - 1.95[FA/2a]2.g2 - 2.6x10-2.[ yA/F(2a) ]2.q*  (12)

where ¢=h/W,. The term that depends on gq? is due to the offset, h, of
the beam from the feed at the subreflector: the term in ¢ is due to
the curvature of field.

For a focal plane array where one is prepared to allow no more than a
given deterioration in the aperture efficiency this implies a constraint on
h and, therefore, also a constraint on the total number of array elements
possible. For a closely packed array the elements are typically separated
by a distance equal to the linear size of the aperture required to
produce the optimum waist. For a long pyramidal hom, as discussed in
[16], the length and height of the homn aperture are approximately 3Wy
and 2W,, respectively; while for a long scalar hom the diameter is
approximately 3W,. For the James Clerk Maxwell Telescope (JCMT)
[17], for example, 2a = 750mm, F = 12, v = 333 and at A = 1mm
the reduction in efficiency is given by:

Kh) = 1 - (q/44.6)2 - (¢/712.6)7 = 1 - (q/44.6)2.
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Clearly, spill-over at the subreflector is the more serious constraining
factor and for a 10% reduction in efficiency arrays with radii up to
14W, or a total of about 70 elements are possible (assuming a circular
array of scalar homs on a square grid so that the area per element is
SWo).

For arrays with larger numbers of elements the beams should point at
the centre of the subreflector and the array size then becomes limited
by the field curvature. The required pointing can be achieved with a
field lens of focal length dg in front of the lens (dg is the distance to
the subreflector). In this case for the JCMT, arrays with radit of 41W,
(or about 580 scalar horn elements maximum) are feasible. Further the
curvature of field effects can be reduced by, for example, stepping the
thickness of the field lens (as shown in fig.8), so that the optical path
difference between the on-axis beam and an off-axis beam is less than
the depth of focus. Thus, the first step would occur at a radius of
[ YMEQ2)19.5 T£.10°%. Wy,

At submillimetre wavelengths for arrays of hom antennas one is usually
constrained to use lower F-ratio beams as otherwise the homs become
too long and the losses and expense correspondingly high. This implies
the use of tertiary optics to refocus the beams to have narrow waists at
the array (since Wq o FA). Optics for a large array, consisting of a
Gaussian telescope[18], are likely to be well approximated by a
geometrical system, since the lenses will tend to be positioned in the
far field of the array. Thus, the system should be designed so that
geometrical coma and astigmatism are minimised, or they will cause
deterioration in the quality of the field of view. The array waists will
then lie on a Petzval surface whose radius of curvature R, is given by
1/Rp=1/nf,+1/nf,, where n is the refractive index "of the lens
maferial[15]. This can be chosen to match the field curvature due io
the Cassegrain configuration. A field lens will be unnecessary if the
position of the first lens of the Gaussian telescope is moved by f2/dg;
then the central ray of an off axis homn beam is incident on the centre
of the subreflector as illustrated in fig.9

IV-Summary and Conclusions.

1. We have considered in detail mapping of a field with focal plane
and aperture plane arrays. As an example, to compare quantitatively the
number of hom elements and length of time to observe a field, we
assumed a square source of angular extent ©gx8; being mapped by a
telescope with a square aperture DxD fed by an array of long
rectangular homs the apertures of which have dimensions axb.
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2. In the case of the focal plane array the condition for maximum
aperture efficiency is a=1.88FA and b=1.36FA, which corresponds to an
undersampling factor Uy of 10.2. For this array the total number of
homns needed to map the source is: [4.88/(A/D) JU.

3. In the case of the aperture plane array of closely packed elements
the maximum main lobe sensitivity is given by 8/x?. The minimum
number of homs required to map the source without confusion is

[ 65/(A/D) ]2.

4. With a focal plane array, a source can be mapped t0 a given
signal-to-noise faster if we relax the requirement of maximum aperture
efficiency for each individual element of the array and reduce the size
of the homs, increasing the number of horns commensurately. Homns
with dimensions of a = 1.31FA and b = 0.96FA give a reduction in
aperture efficiency of 18% but a reduction in the undersampling factor
by 2, thus decreasing the overall time to map a source by 28%.

5. The time taken to map a source using an aperture plane array can
be similarly reduced by using only the central beams and using a
hybrid mapping technique whereby the telescope is moved to cover the
entire source. However, this implies either increasing the total number
of array elements (to give a bigger field, and hence lower losses
anyway) or accepting the resultant confusion and applying a
deconvolution technique to the image.

6. We conclude that, with the possible exception of the number of
elements required to map a field, the advantages of the focal plane
array over an aperture plane array far outweigh the disadvantages for
most purposes. The focal plane array has simpler electronics, fewer
restrictions on the field of view, and lends itself to an easier form of
"hybrid" mapping (when the telescope is moved to compensate for
undersampling of either image or beam space).

7. The field of view of a Cassegrain telescope was considered for the
case of a focal plane array of feeds which have Gaussian shaped
beams. For a flat array off-axis aberrations (coma, astigmatism and
curvature of field) and spill-over at the subreflector contribute to the
deterioration in aperture efficiency, and their effect on the maximum
size of an array was quantified.
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APPENDIX 1 Glossary _of terms

Section Il and Appendix 2:

Plane coordinates Quantities
sky 0 eg (field of source)

B (brightness = 1egl?)

aperture u (= x/A) E; (E-fields)
W (aperture
weighting function)
by (image horns)

focal plane r (= x/f¢) h (horn fields)
¢ (source field)
w (FT (W})
image plane p (=f,x/fA) E (source fields)

synthesis array baseline

source brightness

map

interelement separation

telescope diameter

focal length of tertiary lens

telescope effective focal length

telescope focal ratio

telescope power pattern

fields at horn phase centre

horn far-field pattern

,n indices

i Ivit?2

,t inter-element spacings in phased array
far field of array of isotropic radiators

(i) voltage from horn or array

visibility

(=-f¢/f,)

wavelength of radiation

(=U*w)

phase increment for mnth element of array

-

SMmPR << Cr U Mo QT U A THE o

=]
=
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Section II! and Appendix 3:

o

ZE R oIS b

0,y

effective area of telescope aperture
horn dimensions

spacing between image horns

telescope diameter

telescope focal ratio

telescope focal length

reduction in total time to map source
power coupling horn field with signal field
number of array elements in x direction
number of array elements in y direction
number of horns in aperture plane array
number of horns in focal plane array
fraction of phased array beams

fraction of the power in lobe n
undersampling factor

total observing time aperture plane array
total observing time focal plane array
antenna temperature

source temperature

system noise temperature
(=n/%(a9x,b9y))

(=rt/AF)

aperture efficiency

main beam efficiency

spill-over efficiency

(wavelength)

(=9x,6y) direction in sky

source’ extent

phase increment in (x,y) directions
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Section 1V and Appendices 4 and 3:

[e1=T7]

~u‘mﬁ»hm~nﬁmmmbgbuﬁc‘m >

]

3 %FU'-»O..Q - BN

DOV MR TR =

area of the subreflector

radius of subreflector

radius of blockage at secondary
astigmatism coefficient

diameter of primary

curvature of field coefficient
subreflector horn distance
distortion coefficient

source field at subreflector

field due to horn at subreflector
coma coefficient

telescope focal ratio

effective focal length of telescope
focal length of primary
(=p.expp/[1-expp ])

distance of array element off-axis
modified Bessel function of order zero
(=2r/})

coupling efficiency

point off-axis

(=H/wo)

point on exit pupil

(=(D/2a).r)

Petzval surface radius of curvature
1/e in amplitude beam radius

W at the horn phase centre

(=h/1f)

(=y(hk/32F3)(h/a)(W/a)?

off-axis beam displacement on subreflector
(=(1/%)?)

angle of source off-axis

aberration function
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APPENDIX 2  Foc lane and rture plane arra
Foc lane arravs

Fourier optics can be used to examine the effect of diffraction and
vignetting on the radiation from the sky at the focal plane. Suppose the
fields - due to radio sources in the sky - at the aperture plane of a
telescope are given by Ez(uw), where u is some point on the plane
defined by the telescope aperture and the origin is taken to lie on the
telescope axis (see fig.2). We can write the aperture fields in terms of
a sum of incident plane waves with appropriate phase terms, the
relative amplitude of the wave in the direction O being eg(0). Thus we
get:

Ea(u) = | dAg eg(0) exp{-2mju.6) (2.1)

To simplify the algebra u been made dimensionless by expressing the
distance in wavelengths. The sky brightness (the intensity of the
radiation from the @ direction) is given by B(8) o 1e4(0)12.

Assuming that the effective focal length of the telescope is much
greater than its aperture diameter, the signal fields at the aperture and
focal planes of the telescope are a Fourier pair, so that we have:

focal plane e(t) = [dAy E;(u) W(u) exp{-2mjr.u}
(2.2)
aperture plane Ey(u)W(u) = IdAr e{r) exp{2xnjr.u}

Wi(u), the telescope. aperture weighting function, represents the truncation
of the incident beam at the telescope aperture, and w(r) is its Fourier
transform. In fact, w(r) is the intrinsic field pattern of the telescope, or
the far field pattern produced by the uniformly illuminated aperture. e(r)
is the field due to the source at the telescope focal plane.

Note that r is the distance from the axis divided by f; (thus, r is
dimensionless) and we define the forward Fourier transform (along the
propagation axis z) such that the argument of the exponential is
negative; the reverse transform therefore has a positive sign.

We consider an array of hormns placed on a part of telescope focal
plane where there is an undistorted diffraction limited image of the sky.
For the ith horn we write the virtual fields (those which would exist if
the fields in the aperture of the hom were propagated back to its phase
centre in free space) as hj(r). If all the homs are identical then: hy(r) =

h(r-r;). Thus, the voltage output available at the terminals of hom "i
will be:
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vi = | dAhI(1) e(r) (2.3)

"o

and so the power coupled to horn "i" is:
Pj = <ivil %

where angle brackets denote time average. This is equivalent to the
response of the antenna to a celestial source and is given by the
convolution of the antenna power pattern with the source infensity
distribution, i.e.:

= | B(B) G(8;-1) dA (2.4)

where G(r) = |FT{(H(-u).W(-w)}12 and H(u) is the far field pattem of
a hom with "phase centre" fields h(r). G(r) has the same functional
form as the intensity or power pattern of the hom on the sky (ie is
the squared modulus of the far fields of the truncated hom beam at the
telescope aperture). A particular point r in the focal plane is related to
a particular direction ® = -r on the sky.

A re plane arr
(i) Phased array

Consider a regular array of MxN hom-fed mixer elements in the
aperture plane of the telescope; the (dimensionless) distance between the
elements in the uy direction is s = dy/A and in the uy direction is t =

d /)» The outputs of the array are added together, a5 shown in fig.3,
w1th a linear phase delay 6 (= (GIX,G )) applied in the uy and u
directions so that for the (m,n)th element at position Uy, = (ms,nt) the
phase with respect to a fictitious (0,0) point can be represented as:

Omn(0;) = 2n(uy,.0;) (2.5)

Then the output voltage from the array due to the signal fields E, at
the telescope aperture is given by:

M N
v(8;) = m§1 nszdAu.hmn(u).W(u).E;(u))exp(—2njumn.ei) (2.6)

where (.fdAu hmn(u).W(u).E;(u)) represents the coupling of the fields
of the image detector antenna hy,,(u) to the signal field Ey(uw) in the
plane of the aperture. W(u) is the telescope aperture weighting function
as before. If the image array of homs is of physical extent less than
the telescope aperture then W(u) is uniform over the array and can be
ignored. Outside this region, W(u) is zero and so represents the
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truncation of the image array by the finite extent of the telescope
aperture.

For an array of identical elements, where the virtual fields at the
element phase centres are hyn(W=h(v-uy,), (2.6) can be written:

M N * .
Y Y JdAy h(u-ugy).Ej(u) .W(uyp) .exp(-2njuy, . 0;)

v(8;)
m=1 n=1

JdAy.JdAy> h(u-w’) [Ig q 8Cu’-uppn) W(upy)]
x Ej(u).exp(-2mju’.0;)

[dAy> [ Zp.n 8Cu -upy) ].exp(-2wju’.0;)
x JdAy» h(u-u’).Ej(w) (2.7)

By the convolution theorem we can write v(6) as the convolution of
the Fourier transforms of fdAu’h(u-u’).E;(u) and Zp3(u-upn).- Wign),
the latter which we shall denote by II(6;).

The Fourier transform of JdAu’ h(u-u’).E*(u) is the product of the far
field pattern of the image hom H(@) and the incident signal field from
the direction 0, eg(0), yielding

v(8;i) = [dAg T1(8°-8;) .H(8).e4(0) (2.8)

Squaring and taking the time average using a procedure similar to that
applied to the focal plane array, we find that the total power P() is
given by:

P(0;) = [dAg B(®) 1H(8)12.1G(8-0;)12 (2.9)
where B(8) = 1eg(@)i2 and G(®) = (]I(6)12 is the source field.

G is the fourier transform of Xy ,8(u-uy).W(uyy,) and so can be
written as a convolution of U(B), the Fourier transform of a
2-dimensional array of &-functions and w(@), the Fourier transform of
W(0) - the truncation function for the array. U(6) has the form of the
far field of a phased array of isotropic radiators.
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(ii) Synthesis array.

The telescope is pointed at some point 6, in the source field. We
define the baseline by = Ay = w,-y,, to be the spacing (in the
aperture plane) of the images of the two elements of the interferometer
(which is physically located at the image of the aperture plane as in
fig.1). Then, if O is the position of the source and assuming 6,.b = 0,
the output from the correlator is given by:

V(b;) = | dAg B(0) IH(8)12.Wy(b;).exp(2njb;.0) (2.10)

where H(0) is the far field pattern of the image of the horn as before.
The factor Wp(b) = Wp[buj,.ui,)] = W(;,).W(u;,) ensures that the
interferometer pair does not contribute to the final signal if gither image
element lies outside the physical aperture of the telescope.

Noting that V(-b)=V*(b), we can then write the visibility-plane
distribution in terms of the samples Vj as:

V(b) = ; [Vi8(b-bj) + Vis(b+b;) ] (2.11)

The original brightness distribution, B(0), is often estimated from WV(b)
by taking the inverse Fourier Transform. Then (ignoring subtleties such
as gridding) we have:

B(0) = [dAp.V(b).exp{-2njb.0) (2.12)
Substituting V(b) and V; using (2.10) and (2.11) we find that:

B(8) = [dAg-B(8°)1H(6")12%;Wy(bj).cos[2mb;.(0-8") ]
or (2.13)
B(0) = {B(8) IH(B)I2}x{LiWp(bj).cos[2nb;.0]).

That is, the true source distribution B(8) has been multiplied by the
primary beam power pattem [H;()12 and convolved with the
synthesised beam. We can rewrite this in terms of the array-plane
quantity p and the magnification factor y=-f, /f; as:

B(0) = {B(0)1H(8)12)x{TiW(Vpj,) . W(¥Pj,) .cos[2r(pj - pl»f) 0]
14

}
)
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APPENDIX Derivations of foward coupling and time to map a

source

1F 1 IT:

Coupling Efficiency

In a focal plane array one normally optimises the aperture efficiency
for each hom of the array (the coupling between the hom and a point
source situated along the optic axis for that horn). In this case it is
easiest to perform the coupling integral (between the fields radiated by
thehorn and the incoming field from a point source) at the
hom mouth. A point source at infinity produces a top-hat distribution at
the square aperture of the antenna which produces a sinc-like
distribution in both the E and H directions in the focal plane. The
coupling K is given by:

[ [/gdA’cos(mx’/a)sinc(ox’)sinc(ay’) J?

= (3.1)
[[]g dA’cos2(nx’/a) J[ [[+2dA’ sinc2(ox’)sinc2(ay’) ]

where o = =AF, dA’ = dx’dy’ and [lg = [*#2/*pjz. This can be
rewritten as:

2a2ab

K= E

”%Rd\psinc(abwlrt) , ?“‘Md\y.cosw. sinc(oay/n) ] 2(3.2)
0 0

K has a maximum when oa/r = 1.88 and ob/r = 1.36, giving a ratio
for a/b of 1.38 with a coupling K given as 0.745. Since o depends on
the focal ratio only, a and b are thus fixed by F:

1.88\F
1.36AF

o/t
ab/r

1.88 gives a = 1.88m/a
1.36 gives b = 1.36m/a

The Nyquist sampling rate is 3FA, so that for a physically realizable
array the undersampling factor U is given by:

Ug » 4ab/(FA)?2 (3.3)
In this case the undersampling factors are 2.72 along the y-axis

(E-plane) and 3.76 along the x-axis (H-plane) giving an overall
undersampling factor of 10.2
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Spillover

At the telescope the beams are truncated at the edge of the
square aperture. Along the E-plane the distribution is sinY/Y where Y =
nby/Af. The fraction of the power lost to spill-over is then:

1 - jg.sa?’c (sinY/Y)2 dY/ jog (sinY/Y)? dY (3.4)

Similarly along the H-plane the distribution is cosX/[ 1-(X/4m)2 ] where
X = may/Af. The spillover efficiency is therefore given by:

cos2X sin?Y
2 - X2]2 ’ VE ] (3.5)

where (Xpp.Ym) = wA4FA(ab). X is truncated at X=094n and Y at
Y=0.68% corresponding to an edge taper of -8.1dB in both planes. The
total spill-over efficiency therefore is mg=0.831.

= _ 8 (Xmgy [Ym
ng = —5. [ max JO dy [ e

The extent of the image of the source in the telescope focal plane is
given by fOoxfbg. Therefore, the number of homs nf in the focal plane
array is given by:

£26%/ab
£202/1.36x1.88. (F2A2)
(1/2.55).83/(A/D)? (3.6)

nf

[T |

If the focal plane were fully sampled, ignoring the penalty in aperture
efficiency, than the total number of homs required would be 4.62/(A/D).

Time to map a source

For Ug = 4ab/(FA)?, the time to map a source t is given by:

t e« Ug/ng = nzmem.H)édejZde [ [(COSZX sin?Y l ]_2

In)? - xz]2' Y2 317

where (X, Ym) = 7/A4FA.(ab) as before. The minimum mapping time
is achieved for homs having a = 1305FA and b = 0.96FA
(corresponding to an undersampling factor of 5.0) with a decrease in
aperture efficiency to 0.820 times the maximum aperture efficiency. This
minimum time is 0720 times that using the maximum aperture
efficiency criterion. It might be argued that we should be using m,
rather than mg in the above expression, in order to maximise the
transfer functions for source variation on a scale equal to the telescope
resolution. The calculation proceeds along similar lines; however, it is
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easy to see that as we reduce the size of the hom m, asymptotically
approaches mg, so we could expect the optimum values of a and b to0
be very similar.

3.2 Aperture-plane array,
Coupling_efficiency

We consider an aperture plane array consisting of an array of
NxM elements. The phase increments per half element ("phase slopes™)
in the x and y directions are @y = macosbjx/A and = mbcosiy/A,
respectively - see equation (2.5). Then the field produced by the array
is of the form:

cosX.sinY H sin(M(X-(px)).sin(N(Y-(py))

[T-X/in) 2 1Y sin(X-cpx).sin(Y-(py)
(3.8)

E(X,Y:9) = C.

where (X,Y) = m/h.(acosOy,bcosBy). Thus, the direction cosines in the H
and E planes in the far field are (cosBy.cosOy), respectively.

We can separate this expression into E-plane and H-plane components.
First we treat the E-plane component:

E « [sinY/Y].[sin(M(Y-gy))/sin(Y-gy) ]. (3.9)

Assuming M is large then sinY/Y does not vary over an individual
lobe of [sin(M(Y-(py))/sin(Y- )] and it is possible to calculate the
power in the nth ‘grating lobe as approximately the square of the
primary beam amplitude at each point where the grating lobe occurs,
multiplied by the normalised power of each grating lobe - ie., after
some tedious manipulation:

P, = (sin(nn+gy)/nm+gx)? ¥, (sinMY’/Y’)2dY’ (3.10)

The fraction of the total power in the zero order lobe is then given by:
(Po/ZPRr)E = sinc?@y. Similarly along the H-plane the fraction of the
total power in the zero order mode is given by: (Po/ZPp)H =
(8/m2).cos2¢px/(1-2pg/m)?)2. Combining these two results we find that
the fraction of the power in the main (zero-order) lobe is given by:

8 sin 2 cos 2
Mp(ex0y) = —3 | ¢y¢V I sy | (3.11)
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Np has a maximum value given by NMpmax = 8/r2 = 0.8106.

In order that there are no aliasing effects when a source is being
mapped none of the higher order lobes should intersect the source. For
a square source of angular extent 6¢xfg, this implies a maximum gy
and @y of irm, (see fig4). At the comer of the source where @y =
@y = i%, Mp takes on its minimum value given by Npmin = 0.2026.

No of homs in the array.

The required beam spacing is given by (A/2D)2 and the total number
of beams to map the Ogx@ source is 4.03/(A/D)2. The number of
horns in an aperture plane array is set by the fact that the maximum
allowed phase slopes to avoid aliasing (see previous paragraph) are ¢
= @y = Limw giving the source extent in the x and y directions of Oy
= l./);, By = Mb; 6 = A2/ab = MNA2/D? (since @g = maby/h, @y =
nbey/?» and D = Ma = Nb). Thus, the total number of homs in”the
aperture plane = 63/(A/D)?2

Time to map_a source

If use a fracton pxp of the array of beams, then Npmip (the minimum
sensitivity for the subset of beams now being used) is given by
Np(pin.pin) and the undersampling factor is 1/p?. The relative time it
would take to map the source would then be given (from equation (22)
by: t o undersampling factor X 1/Mppip?). The total time to map the
source is reduced by a factor g, where:

g = [ npi(l - p?) }4

2sinpn (3.12)

It turns out that this has a minimum when p = 0.605 which gives g =
0.4490 (thus a map can be made to the same signal to noise over
twice as fast as if we map with all the beams). There is however no
tesselation of the unit square into squares of side 0.605, so the solution
is of academic interest only; if we assume instead a value of p=0.5 we
find that g = 0.4865, which is still a saving of over 50% in the time
to make a map.



700 Murphy and Padman

APPENDIX 4 Derivation of the aberration function

In fig.6 the deviation in phase from a spherical wave front at Q for
the wave impinging on P’, a distance h from the telescope axis is
equal to k®P(Q). D(Q), the aberration function, can be written as an
expansion in terms of the coordinates of Q and o = h/f, where f is
the focal length of the system. For a Cassegrain telescope (i.e. no
spherical aberration) with a primary diameter of D and a subreflector
radius of a, ® is given in the usual notation by:

®(a, ) = -C.a2f2cos?9 - 4D.a2%2 + E.a2fcosq + F.af3cosg
4.1)

where t = (Df2a)r, r being the distance from the centre of the
exit pupil of the optical system (the subreflector), and ¢ the angle r
makes with the plane determined by the object and the axis of the
optical system [15](see fig.5).

The first term (in C) is the "astigmatism"” term

The second (in D) is the "curvature of field" term.

The third term (in E) is the "distortion" term and can be neglected
for small values of o

The fourth term (in F) is the "coma" term.

For a Cassegrain where the effective telescope focal length f is
much greater than fp, the primary focal length C, D and F are given
by [19]:

C = -yd/2fdg, D = -dy?/2dg and F = -1/4f2 (4.2)
where Yy = f/fp, d is the distance between the primary and the
subreflector and dg is the distance between the subreflector and the
Cassegrain focus. For large values of vy, D » C and so only coma and
curvature of field need be considered. Thus,

O(x,r) = [vh2/32F3al(r/a)? - [h/32F3](r/a)%.cosQ (4.3)
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APPENDIX Efficiency of an off-axis Gaussian feed

The efficiency with which the (off-axis) Gaussian feed pattern Eg
couples to the incoming wave with fields E is given by:

1] EgEg dA1?
K = 5.1
ItEslsz flEgl 2da

where the integration is performed over the plane defined by the
subreflector. Thus,

L A’ exp(-(r2+2h’rCOS(p-h’ 2)/W2)exp (jB(r/W)2 ) rdrde | 2
W2 . A

(5.2)

where B = y(kh/32F3)(h/a)(W/a)2, ie. Prz/W2 = kd(1), and A is the
arca of the subreflector.

The integration is performed at the subreflector for values of r from r

= b to r = a, where b is the radius of the image of the blocked

central region of the primary. First integrating with respect to ¢ gives:

127]5>1o(21h/W2)exp(-(r2-h"2)/W2)exp(jB(r/W)2 ] rdri?
W2 . A

(5.3
where I is the modified Bessel function of order zero.

If the loss in K is to be small we must have both YW € 1 and 8 «
1. In this case we can write:

Io(2rh/W2) . exp(-(h/W)2) =1 + (h/W)2.[(r/W)2 - 1]
and exp(jB(r/W)2) = 1 + jB(r/W)2z - iB2(r/W)2 (5.4)

A change of variable to p = (I/W)? gives:

K = <nw2/A){|Iexp(-p).Eu(h/W)%p-l)-%B?pz]dpu2
+1iPpexp(-p)dpt 2} (5.5)

where the limits of integration are at p = (b/W)? and (a/W)2. After
some algebra and assuming b/W ¢ 1 we find that

K@) = (1- 28007 - [Lgpro ] OBED P00
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where g = p.exp(-p)/[1 - exp(-p) ] with p = (a/W)2.

For a feed with an on-axis nominal taper of 10dB, p = 1.15, and
2=0.5328, so:

K(h) « 1 - 1.05(h/a)? - 0.1929[y(2a)/16AF2]2(h/a)* (5.7)

We express this in terms of the dimensionless parameter q = h/W,
where W, is the 1/ beam radius in amplitude of illuminating feed
beam at the phase centre (on the telescope focal plane), using (for a
10dB edge taper) Wo=(Adg/mW)=(0.683FA), dg is the subreflector-focus
distance. Thus:

K(h) = 1 - 1.95[F\/2a2]2.q2 - 2.6x10-3.[ YA/F(2a) J2.q% (5.8)

The term that depends on g2 is due to the offset, h, of the beam from
the feed at the subreflector: the term in g? is due to the curvature of
field.
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