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a b s t r a c t 

Privacy attacks targeting machine learning models are evolving. One of the primary goals of 

such attacks is to infer information about the training data used to construct the models. 

“Integral Privacy” focuses on machine learning and statistical models which explain how we 

can utilize intruder’s uncertainty to provide a privacy guarantee against model comparison 

attacks. 

Through experimental results, we show how the distribution of models can be used to 

achieve integral privacy. Here, we observe two categories of machine learning models based 

on their frequency of occurrence in the model space. Then we explain the privacy impli- 

cations of selecting each of them based on a new attack model and empirical results. Also, 

we provide recommendations for private model selection based on the accuracy and stabil- 

ity of the models along with the diversity of training data that can be used to generate the 

models. 

© 2019 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Most of the real world data are “dynamic” and thus subject to
be updated on a regular basis. This impacts the conformity of
the aggregations and inferences extracted unless they are up-
dated consequently. For example, a machine learning model
built on a dynamic data source needs to be updated, so that
the model will be in agreement with the data source. Mod-
ifications to training data could cause the machine learning
models to transform into different ones. An intruder who has
access to some auxiliary information can try to infer the cause
for such transformation with respect to the set of modifica-
tions. Integral privacy ( Torra and Navarro-Arribas, 2016 ) dis-
cusses how model transformation could intrinsically bring up
disclosure risk to the underlying training data and the set of
∗ Corresponding author. 
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modifications applied to the training data. The privacy model
further discusses desirable characteristics a machine learning
model should have in order to avoid such disclosures. The ba-
sic idea is that an intruder should not be able to learn about
the training data or the set of modifications by comparing ma-
chine learning models generated before and after a particular
modification. 

In this paper, our primary focus is to provide recommen-
dations for machine learning model selection so that the se-
lected models are compliant with the integral privacy. For
model selection, predictive accuracy is used as the princi-
pal criterion. However, with the increased usage of sensitive
data, and the need for collaborative data analysis (i.e., multi-
party computations), the degree of “privacy” a model provides
over its underlying training data has become an important
factor. With the evolution of attacks targeting the machine
nc.torra@mu.ie (V. Torra). 
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earning models, in order to infer information about the train- 
ng data and their properties, privacy has become an in- 
vitable requirement. 

In our work, we explain a potential attack model against 
ntegral privacy which we term as model comparison attack.
hen we study the “space of models” to understand the re- 

ationship between models and their training data, with the 
ntention of exploiting it in order to achieve integral privacy 
gainst model comparison. Based on our observations of the 
odel space, we identify two categories of models based on 

heir frequency of occurrence. Then, privacy implications of 
dopting each type of models are discussed in detail. 

We generate an empirical distribution for models and then 

xperimentally show how feasible this approach is. In litera- 
ure, we have not come across any previous attempts to un- 
erstand the distribution of models or use it to attain privacy.
ost of the existing privacy models use perturbation tech- 
iques to gain privacy. And this results in poor model util- 

ty (low predictive accuracy) which is undesirable. We pro- 
ide recommendations for model selection that can be used 

o minimize this adversarial impact. The recommended mod- 
ls are already (naturally) available in the model space and 

ased on our empirical results we show the accuracy levels of 
hose models also remain high. Hence we propose this as a 
avourable approach for model selection. 

Our experiments are based on decision trees; due to their 
ntuitive representation, it is easy to understand and compare 
he models when building the model space. CART 

1 algorithm 

 Breiman, 1984 ) available on R is used for the experiments. 
The paper is organized as follows. In Section 2 we review 

ome relevant background knowledge we use in this paper. In 

ection 3 we introduce model comparison attacks. Section 4 is 
esigned to present our methodology along with the empirical 
esults with reference to the machine learning model space. In 

ection 5 we focus on recommendations for model selection 

ased on integral privacy, whereas Section 6 is reserved for 
iscussing related work. Finally, we conclude the paper with 

ection 7 discussing the conclusions, limitations and future 
ork. 

. Background 

.1. Integral privacy 

ntegral privacy ( Torra and Navarro-Arribas, 2016 ) is a privacy 
odel that focuses on machine learning and statistical mod- 

ls and about the inferences we can make from them. The 
oal is to maximize the uncertainty of the intruders with re- 
pect to the original data or modifications of the data once 
hey have access to the models. More specifically the privacy 

odel assumes that the intruder has access to two machine 
earning models, the algorithm used to generate those mod- 
ls and some background information about the training data.
e review the formal definition of integral privacy below. 
Consider two data sets X and X 

′ . X is the original data set 
nd X 

′ is the resulting dataset when some modifications μ are 
1 https://CRAN.R-project.org/package=rpart . 

t
m
b

pplied to X. Let us denote this by X 

′ = X � μ. Using a ma-
hine learning algorithm A, on X and X 

′ two models G and 

 

′ are generated as G = A (X) and G 

′ = A (X 

′ ) . If the machine
earning algorithm A satisfies integral privacy, then the set of 

odifications M an intruder can infer from G and G 

′ should be 
arge and in addition ∩ m ∈ M 

m is empty. In this work, we only
onsider record addition and suppressions as possible modi- 
cations. 

In order to formalize integral privacy, we first need to for- 
alize the set of modifications. Let us consider a reference set 

 (in our case it corresponds to a set of records). Then let p + 

enote the elements of the set P prefixed with a “+” and p −

enote the elements of the set P prefixed with “-”. That is for
 ∈ P , + p denotes an addition of p , while −p denotes a deletion.
et P̄ = p + ∪ p − the set of possible modifications. Using this no- 
ation we can define the operation S i �μ for any S i ⊆P and μ ⊆ P̄ 
s follows: 

 i � μ = { p | p ∈ S i ∧ −p / ∈ μ} ∪ { p | + p ∈ μ} 

imilarly, we can define for any pair ( S i , S z ) ⊆P 

 i � S z = {−p | p ∈ S i ∧ p / ∈ S z } ∪ { + p | p ∈ S z ∧ p / ∈ S i } 

Then given the assumption that intruder has access to G,
 

′ , S ⊆X (partial knowledge about the data used to build G ), and
nowledge about the machine learning algorithm A j the pri- 
acy model is about avoiding inferences on μ, X , and X 

′ . For-
ally, the set of possible modifications μ is the set defined by,
 = 

⋃ 

g∈ Gen, g∈ Gen ′ { g ′ � g} where, 

en = { S G | S ⊆ S G ⊆ P, A (S G ) = G } 

nd, 

en ′ = { S ′ G | S ′ G ⊆ P, A (S ′ G ) = G 

′ } . 

k -Anonymous integral privacy is when the set M contains 
t least k minimal elements. The rationale of this definition 

s, by using some background knowledge an intruder should 

ot be able to determine with high confidence, what modifica- 
ions ( μ) are carried out on training data in order to generate 
 given machine learning model. The larger the size of M , the
ore difficult is to determine what set of modifications led to 

 particular model. 

.2. Approximating the model space 

n order to build integral privacy compliant machine learn- 
ng models, it is essential to understand the distribution of 

odels in the model space. The first step towards this is to 
onstruct the model space for a given dataset. However, the 
iggest challenge is that the model space is vast and there ex- 

sts an exponential number of training sets that can be used to 
enerate the models. Due to the complexity of explicitly find- 
ng the model space M C we will try to approximate it by em-
irically obtaining M E . To understand the true distribution of 
he model space, we would have to generate machine learning 

odels for all possible training sets. If we consider the num- 
er of observations in a datafile as n (or the population), there 

https://CRAN.R-project.org/package=rpart
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Fig. 1 – Problem notation for repetitively updating machine 
learning models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exist 2 n − 1 possible training sets. Given the large size of the
space of training sets, exploring the entire space is impossi-
ble. To address this issue, we use a sampling method inspired
by “subsampling” which can be used to approximate the dis-
tribution using smaller subsets of data. The method is espe-
cially suited when the original population is either infinite or
finite but very large to make any assumptions about the dis-
tribution. This idea was first introduced by Politis et al. (1999,
2001) . This non-parametric sampling method does not make
any prior assumptions about the sampling distribution. 

In this section, we review several approaches that can be
used to build the model space, including Politis et al.’s sub-
sampling method and “stratified subsampling” method which
we use to construct the empirical model space ( M E ) for a given
dataset in order to understand its probability distribution. 

1. Constructing the entire model space ( M C ) - This approach
extracts all possible subsamples of data records from P
and then builds the model space from that. Number of to-
tal combinations (samples) can be obtained using unique
combinations ( nCr ) with varying r sizes from 2 - n . E.g.
nC 2+nC 3+ . . . +nC n−1+nC n . The minimum subsample size
is selected as 2, assuming that there should be at least two
different data records which belong to two different classes
in order to build a valid decision tree. If this approach is
taken the entire model space M C , will be created. The num-
ber of unique models created will be less than the number
of different samples because a) Some samples would result
into invalid models (e.g., all the selected records belong to
the same class) and b) some different samples can result
into the same model. As mentioned above this approach is
computationally expensive. 

2. “Subsampling”- This is used for approximating the sam-
pling distribution based on sample size b , which is smaller
than the original dataset size n . In total N subsamples are
supposed to be extracted from original dataset without re-
placement. A data subsample is a subset chosen from the
original distribution. Subsample size b is much less than n:
b 	 n . 
The sampling method we use in this paper is inspired by
subsampling. But instead of having a fixed size for b , we
vary it randomly. If empirical model space ( M E ) is to be con-
structed by using Politis et al.’s method, deciding on an op-
timal subsample size ( b ) will be challenging. Because the
selected subsample size should be able to partition a given
dataset into blocks, in a way every block of data contribute
towards building a valid machine learning model and also
it should be able to build the model space ( M E ) to have a
sufficient representation over the complete model space
( M C ). 

3. “Stratified subsampling” - We use a subsampling method
based on stratified sampling to extract a k number of
unique samples with varying sizes. Sampling is stratified
with respect to the sizes. We approximately obtain the
same number of subsamples for each size between 2 to
| n |−1 . Value k is the size of the empirical sample space and
its definition is left to the user. The higher this value, the
more representative the empirical model space M E in rela-
tion to M C . Determining subsample sizes and extraction of
subsamples are both random operations. The uniqueness
of subsamples is maintained at two stages. First, when
generating subsamples data items are drawn without re-
placement to ensure no duplicate records are included.
Then, each subsample is verified to be unique in the em-
pirical sample space. This method is computationally ef-
ficient compared to building M C . Also, it shows the influ-
ence of each data record towards constructing a specific
model. This helps us to understand the relationship be-
tween data and the resulting machine learning models in
terms of model fitting. We term this method as “stratified
subsampling”. 

3. Model comparison attacks 

In this section, we investigate the risks of not adopting inte-
gral privacy for model selection. The privacy risks would be
such that, the intruder is able to attain knowledge on the un-
derlying training data of a machine learning model or deter-
mine the set of modifications that cause a machine learning
model transformation. We have formulated the attack model
here along with the intruder’s goal and the approach. 

3.1. Framework 

Consider a set of labelled data X , sampled from a database
P , which is used to build a machine learning model G using
algorithm A . Assume this is set up as a classification prob-
lem and A is an algorithm to build decision trees. Eventually, P
gets updated into P ′ as a result of executing erasure requests.
This raises the requirement to regenerate the decision trees
to match the updated database, P ′ . For model regeneration, a
new data sample X 

′ is obtained from P ′ . Then a new machine
learning model G 

′ is constructed using algorithm A. Note that
machine learning models mentioned above are decision trees.
Fig. 1 illustrates this scenario. Also, we assume that the in-
truder has access to the following information about the data
and the machine learning models. 

• G - Decision tree extracted from the original database
( X ⊂ P ) 
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Fig. 2 – An example of generating decision trees models M 1 . . . M n from each of the data subsample S 1 , . . . , S n ⊆ P using 
machine learning algorithm A. 
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Fig. 3 – Decision tree model space - An example of decision 

tree models and their respective generators. m 1 , m 2 , . . . , m ν

refer to the extracted decision rules while generators S m 1 , 

S m 2 , . . . , S m ν refer to the different data subsamples that can 

create the same decision tree. 
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• G 

′ - Decision tree extracted from the modified database ( X 

′ 

⊂ P ′ ). 
• One time access to database P before any modifications are 

applied. The point to emphasize here is that the intruder 
has no knowledge on the exact training data used to build 

the ML models. 
• Knowledge of the machine learning algorithm A . 

Also, it is assumed that the input format of data which is 
sed to build the machine learning models ( X, X 

′ ) are the same
s in database P . 

.2. Intruder’s goal 

aving access to the above information, intruder’s goal is to 
cquire knowledge on, 

• Training dataset X , which is used to build the original ma- 
chine learning model G , 

• Training dataset X 

′ which is used to build the modified ma- 
chine learning model G 

′ , 
• Set of modifications μ, carried out on original dataset X ,

which transformed G to G 

′ , 

Determining the data records used in the training dataset 
f a given machine learning model is referred to as “member- 
hip inference attacks” in the literature ( Shokri et al., 2017 ).
e introduce the term “model comparison attacks” for deriv- 

ng the set of possible modifications μ, by making use of the 
espective machine learning models generated before and af- 
er the modifications are applied to its training data. 

.3. Modelling intruder’s attack 

ntruder draws blocks of random subsamples S = { S 1 , . . . , S n }
here S i ⊆P . Each of these subsamples S i contains a set of 

ecords r i , . . . , r k ∈ P. Extracted data subsamples have vary- 
ng sizes ( y ) which are randomly decided. Each subsample is a 
nique “set” of data with respect to the records included (i.e.,
 i � = S j ∀ i � = j ). Then decision trees are trained for each S i using
lgorithm A. That is, M i = A (S i ) . This is illustrated in Fig. 2 . In
his way, the intruder can obtain a subspace M E of the space 
f models M C and an approximation of the probability distri- 
ution on the model space for decision trees generated by al- 
orithm A. Representativeness of the model space M E in rela- 
ion to M C , depends on the number of subsamples extracted.
or subsampling P , the intruder can use stratified subsampling 
escribed in Section 2.2 . 

It is important to note that while all the subsamples ( S i )
re different from each other this is not the case for all mod-
ls ( M i ). Therefore, we need to reduce the models into a set
f unique models, which corresponds to the empirical model 
pace M E . To compare the decision trees, we use the deci- 
ion rules extracted from the decision tree traversing the trees 
rom root to leaf nodes following the same order from left to 
ight. After this comparison we have reduced the collection 

f models M 1 , . . . , M n into a set of different models m 1 , . . . , m ν

ith ν ≤ n . This set of models is a subset of the model space
 E = { m 1 , . . . , m ν} ⊆ M C . The association between machine

earning models (decision trees) and the set of generators can 

e formally expressed as S m i 
= { S j∈ S | A (S j ) = m i } . Each of

hese generators comprise sets of records drawn from P . E.g.,
 1 = { R 1 , R 2 , R 3 } as mentioned in the Fig. 2 . An example of
odel space is shown in Fig. 3 , with a set of unique decision

ree models and their respective generators. 
The machine learning model space M E is then used by the 

ttacker to obtain useful information such as the underlying 
raining data or the set of modifications. Below, we discuss 
hree types of attacks an intruder can carry out. 

.3.1. Membership inference by intersection analysis 
ssume the intruder has built the complete model space M C ,
onsidering all possible sets of generators. Therefore M C con- 
ains G , the original decision tree generated using X , and all
he generators of this model. By using this information, the 
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Table 1 – Training and testing datasets as a % of original 
datafile. 

Dataset Number of 
records 

Train 

set (%) 
Test 
set (%) 

Iris dataset 147 69.4 30.6 
Wine dataset 172 81.4 18.6 
Glass identification dataset 198 77.3 23.2 
Balance scale dataset 179 78.8 21.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

intruder can derive the dominant records that result in a par-
ticular decision tree. Dominant records stand for data records,
which are a necessity to generate a given decision tree. To de-
rive the set of dominant records we compute the intersection
of all the generators, that is, D ( G ) = 

⋂ 

S j ∈ S m i 
S j . 

In case the intruder has built M C considering all possible
sets of generators from P , the dominant record/s are known
with 100% confidence. This implies that D ( G ) is a subset of
the actual training dataset used to generate the given decision
tree G . I.e., we have a successful membership attack. 

3.3.2. Membership inference by probabilistic analysis 
Determining the set of dominant records become challenging
when the intersection of generators becomes empty or/and
the Intruder has built only a subspace of the model space. I.e.,
M E � = M C . 

In this case, the intruder can use a probabilistic approach.
A probability value can be estimated for each record in P based
on the number of times it occurs in the list of generators. E.g.,
assume there exists three generators, | S G | = 3 , that result in
a particular decision tree G , and record r 1 appears on two of
them. Then we estimate the probability of r 1 generating G by
p(r 1 ) = 0 . 66 . Once the probabilities are calculated for all the
records available in generators, the items with highest proba-
bilities can be considered as a subset of the training data used
to generate a particular decision tree, with reasonable and es-
timated confidence. Formally, for any record r i ∈ P and a given
model G , this can be defined as 

P G (r i ) = 

| { S | r i ∈ S ∧ S ∈ S G } | 
| S G | 

3.3.3. Model comparison for detecting the set of modifications
By using the above approach the intruder can get an idea
about the training data set used to generate decision tree mod-
els G (decision tree built on X ) and G 

′ (decision tree built on
modified data X 

′ ). The samples that generate G and G 

′ can be
used to define the set of modifications. In particular, any trans-
formation from S i ∈ S G to S i ∈ S ′ G is a possible transformation
of the original dataset X to X 

′ . Therefore we can denote that, 

μE = { s i � S i | s i ∈ S G and s j ∈ S G ′ } 

where, � is the operation defined in Section 2.1 . 

4. Evaluation 

This section is focused on testing the privacy risks of “model
comparison” by deploying the intruder’s approach described
in Section 3.3 . We gather some empirical results in different
settings to show the validity of the concept. Also, we extend
the experiments to evaluate the relationship between data
and the respective machine learning models using data sub-
sampling. 

4.1. Data 

Four datasets obtained from the UCI machine learning repos-
itory ( Dua and Karra Taniskidou 2017 ) are used for the exper-
iments. Stratified sampling is used to partition the training
and test datasets after removing any duplicate records. Table 1
shows the datasets and the size of the training and test sets
as a percentage of the selected population. 

Iris dataset - This is one of the best known datasets used
in pattern recognition. Dataset is divided into three different
classes and comprises 150 records with 4 attributes. 

Wine dataset - The dataset contains a total of 178 records
with 13 attributes. It is categorized into 3 different classes. The
idea here is to use chemical analysis data of wines to catego-
rize them into 3 classes based on the cultivars. 

Glass identification dataset - This dataset contains differ-
ent glass type classification. 214 records are included in the
dataset with 10 different attributes. Glasses are categorized
into six different classes based on their oxide content. 

Balance scale dataset - Dataset contains 625 records with 4
attributes related to scale balancing. For the testing purpose,
we use 180 randomly selected records. There are three classes
L, R and B and each includes 49, 49 and 41 records respectively
in the training dataset. 

4.2. Experimental setup 

Dataset D is divided into two parts as training set D t and
test set D h using stratified subsampling to ensure fair rep-
resentation of all the classes. First, we use the entire train-
ing dataset D t to construct a decision tree ( G ), which is used
as the benchmark model. Then, the stratified subsampling
technique is used for extracting k number of unique subsam-
ples from D , with sizes in the interval [ 2 , | D t | − 1 ]. For each
randomly selected subsample S 1 , S 2 , . . . , S k , a decision tree is
trained and then the decision rules are extracted. Next, the
extracted decision rules are compared with each other to fig-
ure out the unique decision trees in the empirical distribution
and their respective generators (data subsamples that gen-
erate the same decision tree). This can also be explained as
building the empirical model space M E for machine learning
models (in this case decision trees). As M E is constructed em-
pirically, it is a subspace of the complete model space M C . 

We consider two scenarios to build the empirical model
space M E . The first approach is when the constructed decision
trees are fully over-fitted to its training data and the second
approach is when the effect of over-fitting is removed by prun-
ing the decision trees. Each decision tree model obtained from
different data subsamples is associated with its frequency of
occurrence in M E . For each dataset, we then build the model
space M E with varying number of subsamples. The size of the
subsample space is directly proportional to the size of the
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riginal dataset. Therefore, the different subsample sizes we 
ave selected is based on the size of D t . 

For the Iris dataset, we choose 100,000;150,000; and 300,000 
ubsamples. Wine and Glass Identification datasets are tested 

or 150,000; and 300,000 number of subsamples. Whereas,
he Balance dataset is tested with 100,000; and 150,000 and 

00,000 number of subsamples. 
The given subsample sizes are selected to approximate the 

odel space. As there is no optimal way of deciding the exact 
ize of the model space with respect to a given dataset, we 
ave used the above values to set the size of the model space.
owever, when selecting the subsamples sizes the way to pro- 
eed is to start with a small number and to gradually increase 
ill the recurrent models start to appear in the approximated 

odel space. The idea is that the model space we generate in 

ach case would be large enough to represent the full model 
pace while containing the recurrent models. 

The main criteria for selecting the initial subsample size 
s the size of the original dataset. A multiple of the original 
atabase size can be selected first and then examined for 
he availability of integrally private models in the generated 

odel space. As mentioned above the subsample size can be 
mproved if the initial model space does not contain the recur- 
ent models with high accuracy. Based on the user’s computa- 
ional resource constraints a maximum size can be set for the 
umber of subsamples. In some cases, the model space built 
ith the maximum number of subsamples might not have the 

ntegrally private ML models. The solution to that will be ei- 
her to modify the original dataset and to re-try or not to select 
 ML model at the given instance. We have selected a different 
umber of subsamples in the experiments to check how dif- 

erent sizes affect the distribution of empirical model space.
oreover, the sizes were selected to have a large but compu- 

ationally tractable sample space. 

.3. Visualizing the empirical model space ( M E ) 

ig. 4 shows the frequency of different machine learning 
odels with and without model over-fitting towards its train- 

ng data. The same subsamples of data are used in both cases.
n each plot, the abscissa represents different models, and the 
rdinate shows how many subsets of data have resulted in 

he specific model (i.e., the number of generators). In all the 
ases illustrated, it is noted that the probability inferred on 

he model space ( M E ) does not follow a uniform distribution,
nstead it shapes as an exponential distribution. Based on the 
bservations it is prominent that in the model space there ex- 

st two extreme cases. 

.3.1. Frequent machine learning models 
hese are the models with a recurrent characteristic. These 
odels appear with a very high frequency, and it implies that 

hey can be built with many different generators. The relation- 
hip between a machine learning model and its generators 
an be explained as 1:N. We can state that the frequent (re- 
urrent) models have high representability over subsamples 
f training data. 
.3.2. Infrequent machine learning models 
he other category of machine learning models maintains a 
:1 relationship between the model and the set of generators.
his indicates that such a model can only be built with a sin-
le, specific generator. 

In order to verify the above behaviour of machine learning 
odels, we generated the entire model space M C for a small 

oy dataset available on UCI machine learning repository. We 
sed Balloon dataset which only contains 16 instances, thus 
he number of possible training sets limit to 2 16 − 1 = 65,535.
his experiment confirms the existence of frequent models 
nd infrequent models in the model space. 

Also, it is noted that the number of unique machine learn- 
ng models in the empirical model space ( M E ) have reduced 

s we move from over-fitted models to non over-fitted models 
i.e., pruning). This has also caused an increment in the fre- 
uency of occurrence for models based on Iris, Balance and 

lass-classification datasets. In other words, non over-fitted 

achine learning models are more generalized towards its 
raining data compared to over-fitted models. Thus, relatively 
mall number of models can be used to represent different 
ubsamples of data. However, in both cases presence of fre- 
uent machine learning models were noted. 

.4. Analysis of frequent (recurrent) and infrequent 
odels 

ased on the model frequency we made a distinction between 

requent (recurrent) and infrequent models. As the next step 

e further analyse the above mentioned model types based on 

heir (a) accuracy (b) sample size and (c) complexity. The inten- 
ion of the analysis is to show that the probability of choosing 
n infrequent model is high. For the analysis, we select deci- 
ion trees with the following characteristics. 

• Frequent (recurrent) models - Decision trees with 100 or 
more generators. 

• Infrequent models - Decision trees with a single generator.

Experiments are carried out for all four datasets with dif- 
ering number of subsamples. And for the comparisons, we 
ave only used non over-fitted trees (i.e., pruned). 

.4.1. Accuracy 
 comparison of predictive accuracies for both frequent and 

nfrequent models are shown in Fig. 5 . Fig. 5 a which refers to
he recurrent models shows that Iris and Wine datasets show 

n accuracy ≈ 0.9, whereas the accuracy levels for Glass and 

alance datasets reside in the range of 0 . 6 − 0 . 7 and 0 . 4 − 0 . 5 ,
espectively. Fig. 5 a illustrates the infrequent models. 

The figures show that the predictive accuracy levels of the 
wo types of machine learning model are similar. If the only 
ocus of model selection is accuracy, it is possible that infre- 
uent models with high accuracy levels could be selected as a 
esult. 

.4.2. Sample size 
ext, we compare the frequent and infrequent models in 

erms of the training data subsample sizes (size of the gen- 
rators); refer Fig. 6 . For the frequent models, we obtain the 
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Fig. 4 – Decision tree models and their frequency - Each marker represents a unique decision tree model and its frequency 

of occurrence in the empirical sample space generated by subsampling D t . The frequency of a given model is the number of 
generators (different subsamples) that can generate a given decision tree. 
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Fig. 5 – Predictive accuracy comparison for frequent and infrequent models. The box-plots represent four datasets (Iris, 
Wine, Glass classification and Balance) with different subsample sizes (e.g., 100 k, 150 k, 300 k). The black marker in each 

box-plot indicates the mean accuracy value for the specific dataset) 

Fig. 6 – Data subsample sizes for frequent and infrequent models - The box-plots represent four datasets (Iris, Wine, Glass 
classification and Balance) with different training data subsample sizes (e.g., 100 k, 150 k, 300 k). The black marker in each 

box-plot indicates the mean) 
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verage size of the generators, given A (S i, ... ,n ) = m i , average 

ample size = 

∑ n 
i =1 | S 1 , ... ,n | 

| S m i | 
, where S m i 

is the number of genera- 

ors. Since infrequent models have only one generator we use 
he exact size of the generator (subsample size). 

The analysis shows that, except for the Balance dataset, the 
verage subsample size of frequent models are larger than in- 
requent models. For infrequent models, the average subsam- 
le sizes are ∼ 20 for Iris, 38 for Wine, 48 for Glass and 57 for
alance. This indicates that infrequent models are not always 
 product of very small subsample sizes. The outliers marked 

n Fig. 6 b with reference to the Iris dataset, also confirms this.
he objective of this experiment is to show that, the infre- 
uent models can also be generated with considerably large 
ubsample sizes. For example in a real world scenario, data 
eletion can result in an infrequent model, even though the 
xisting training dataset contains a majority of records. 

.4.3. Complexity 
Large” decision trees with a high number of nodes could be 
n indication of over-fitting where the “noise” presented in 

raining data are taken into consideration while building the 
odel. Whereas “small” trees could be very simple models 

hus they are unable to learn the general concept from given 

ata. However, both of these cases can cause poor predictive 
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Table 2 – Average complexity of models based on the 
number of nodes in decision trees. 

Dataset Infrequent 
models (with 

single generator) 

Frequent models 
(with more than 

100 generators) 

Iris 100 k 6 5.09 
Iris 150 k 6.1 5.08 
Iris 300 k 6.4 4.97 
Wine 150 k 7.9 7.7 
Wine 300 k 8.04 7.3 
Glass 150 k 21.4 9.3 
Glass 300 k 21.8 10.93 
Balance 100 k 47.2 12.2 
Balance 150 k 47.6 9.48 
Balance 300 k 48.2 9.49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accuracy. Here, our focus is to understand how model com-
plexity differs between frequent and infrequent models. 

The CART algorithm we used for experiments generates bi-
nary trees. And the decision trees used here for the complexity
observations are pruned. 

We derive the complexity of the decision tree models
from a very simple measure which is the number of nodes.
Table 2 contains a comparison between infrequent and fre-
quent models. Based on the observations it can be seen that
the average complexity of infrequent models is higher than
the frequent models. Which means that a large tree can be an
indication of an infrequent model. For example, following a
data deletion if the dataset generates a much larger tree that
could be an infrequent model. On the other hand, in terms of
addition, this behaviour could also be a result of representing
the newly added data. 

4.5. Privacy implications of infrequent and frequent 
models 

The experimental results explained above show that there
is a reasonable chance that a model constructed on a given
dataset is an infrequent model. In this case, an intruder who
performs a model comparison attack can determine the un-
derlying training data of a given model and also the set of
modifications ( μ), with high certainty. In other words, infre-
quent models are not compliant with integral privacy. 

In contrast to this, frequent models are privacy friendly.
Since multiple numbers of generators can construct the same
model, intruder’s uncertainty in determining the exact set of
training data and modifications ( μ) increases. Therefore, in
terms of privacy selecting a frequent model is preferable. 

4.6. Accuracy of recurrent models 

Based on the empirical results we recommend to select fre-
quent (recurrent) models over infrequent ones. As the main
criterion for model selection is predictive accuracy, in this
section we present an accuracy analysis done on the empir-
ical model space ( M E ), with the objective of comparing ac-
curacy levels of recurrent models over the others. Mainly we
compare recurrent models with the benchmark model which
is selected by the machine learning algorithm (decision tree
algorithm - CART). The Benchmark model is constructed by
using the entire training set D t . Other models are trained on
different data subsamples S i obtained from empirical training
set space which is based on D t . Fig. 7 depicts the association
between frequency of models and their accuracy levels. Here
we have illustrated both training and test data accuracies. 

By examining the Fig. 7 a–d, related to Iris and Wine
datasets we can see that the recurrent machine learning mod-
els sustain the same or much closer accuracy level as the
benchmark model. Recurrent models are clustered around the
benchmark model for the above datasets with test and train-
ing data accuracy ≈ 0.9. The same pattern is observed for both
over-fitted and non over-fitted models. The above analysis is
carried out for 150,000 subsamples. 

These observations slightly change for Glass-classification
and Balance datasets. Fig. 7 e shows the over-fitted benchmark
model for Glass-classification dataset shows poor accuracy for
both training and test data which is in 0.4–0.45 range. This
phenomenon can be explained in three ways, (a) the sam-
ple complexity of the selected benchmark model is high thus
there is a requirement for more training data (b) the selected
machine learning algorithm is not capable of modelling the
given problem c) poor parameter set-up of the learning al-
gorithm. Fig. 7 e shows that there exist many other models
(including recurrent models) that report better accuracy com-
pared to the benchmark model. Since our focus is on compar-
ing the predictive accuracy of recurrent models with that of
the benchmark model we are not planning to investigate this
behaviour further. When the benchmark model is not over-
fitted, the accuracy values have increased up to ≈ 0.65-0.75
range with respect to both test and training data. This is illus-
trated in Fig. 7 e. 

When the decision trees are over-fitted, there exist a signif-
icant difference for the Balance dataset between training and
test data accuracy levels in relation to the benchmark model.
Fig. 7 h illustrates the accuracy levels for non over-fitted mod-
els. It is noted that the benchmark model accuracies for both
train and test data have dropped to ≈ 0.50 compared to the
accuracies of the over-fitted version where training data ac-
curacy and test data accuracy are reported to be ≈ 1 and ≈
0.60, respectively. 

Based on the observations we can see that more often the
accuracy of benchmark models and recurrent model are the
same or very close to each other. In other words, a recurrent
model is a sign that it is more generalized towards its training
data thus provides a better accuracy on testing data. Also, as
discussed above the recurrent models provide an integral pri-
vacy guarantee as the determination of the exact set of gener-
ators is difficult when multiple generators exist for a specific
model. This shows that considering the rate of recurrence of
models is a valid criterion to achieve privacy. Unlike other pri-
vacy models, this does not compromise the predictive power
of the model to ensure privacy. 

4.7. Intersection and probability analysis for membership 

inference 

As explained in Section 3 , intersection and probability anal-
ysis of the set of generators can be used to determine the
underlying training data of a given machine learning model,
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Fig. 7 – Training data and test data accuracy of each decision tree model included in the empirical sample space generated 

by subsampling D t - Each marker represents a unique decision tree model with respect to its frequency and accuracy. The 
blue markers show the accuracy of training data and the red markers show the accuracy of test data. Blue and red vertical 
lines in the plots indicate the training and test data accuracy on the benchmark model, G which is created by using the 
entire dataset D t . Other models are trained on data subsamples of D t . 
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once the model space is built. Fig. 8 contains box-plot repre-
sentations of the top 5 recurrent models for each dataset in
terms of their generators. Each shows the probability distri-
bution of different data records in a given generator. 

As recurrent models noted in a small model space would
still be recurrent in a much larger model space, only one sub-
sample size (i.e., 150k) is used for the experiments here. 

In the box-plot figures, the points that show a probability
of 1 are the elements that can be obtained by applying the
intersection operation to all the generators of a given model.
In other words, these are dominant records. If we have built
the entire model space, we can conclude that these domi-
nant records are a must existence to build a particular model.
However, with the empirical model distribution, the records
included in the intersection can be considered as dominant
records with a high likelihood but not with 100% assurance.
The plots also show that higher the frequency of the models,
the majority of the records have a high probability. In order
to deduce knowledge on training data by analysing the prob-
ability distribution of the records, we can introduce a proba-
bility range. If a given data record has a probability ≥ 0.8 ide-
ally that element can be considered as part of the underlying
training set with fair confidence. When considering the Bal-
ance dataset, the probabilities of the items are much lower
than the others. Since the Balance data set has a high num-
ber of records the sample space of training data is large. And
therefore, the number of subsamples we have selected could
be inadequate for a proper representation of M C . This could be
the reason for the above observation. 

5. Integrally private model selection 

The empirical results show that the same decision tree
(model) can be created by different subsamples of data (gen-
erators). Different data subsamples that maximize the infor-
mation gain (IG) for the same splitting conditions result in the
same decision tree. Due to the higher representability of re-
current models, they are less sensitive towards perturbation
done to input training data. If we have already deployed a re-
current model, there would be fewer chances that the model
needs to be replaced into a completely new one in response
to training data modifications (this is in contrast to deploying
an infrequent model). This very idea can also be explained in
relation to “algorithmic stability”. 

Stability of learning algorithms is defined in Turney (1995) ,
as the degree to which it generates repeatable results, given
different batches of data generated from the same process.
Stability of learning algorithms is more focused on maintain-
ing the robustness of the predictions. Whereas, we are inter-
ested in the robustness of the model itself. In other words the
extent to which, a model can accommodate the changes in-
troduced to its training data without causing a model trans-
formation or compromising accuracy. 

In Sections 4.4 and 4.6 we have shown experimental results
to confirm the statements below, 

• Infrequent models pose a privacy risk and yet there is a
possibility that this kind of models can get picked in model
selection. 
• Frequent (recurrent) models often have a high accuracy
which is almost the same or sometimes even better than
the benchmark models. 

This implies that opting for a recurrent model would pro-
vide a fair trade-off between privacy and predictive accuracy.
As explained in “integral privacy”, recurrent models can be
used to ensure a privacy gain. The privacy model ensures that,
the uncertainty of the intruder is high on the membership
of training data and the set of modifications ( μ) if a partic-
ular machine learning model has many generators. We have
described “model comparison attacks” based on this concept
and validated it using empirical results. 

To recap what we did, consider a machine learning model
m x that has many generators ( S 1 , S 2 , . . . , S k ). Due to some mod-
ification/s ( μ) that took place on the training data of m x , the
model has transformed into m y . m y has t number of multi-
ple generators ( S ′ 1 , S 

′ 
2 , . . . , S 

′ 
t ). In this scenario, even if the in-

truder has the entire model space ( M C ) generated, it would be
with a probability of 1/ t that he can infer the generator that
has been used to build m y . So, the intruder has uncertainty in
determining exactly what generator resulted in the particular
model at a given instance. Similarly, when trying to determine
the set of modifications ( μ) carried out on the training data, it
becomes increasingly difficult to narrow it down as both ma-
chine learning models have multiple generators with equal
chances of being the generator of a particular model. Instead,
if m y is an infrequent model with a single generator, an in-
truder can exactly determine what training data has used to
build the model and also what modifications ( μ) on training
has caused the model transformation. 

Therefore, it is obvious how selecting a machine learning
model with 1 or a few numbers of generators can pose a pri-
vacy risk. The empirical results show three classes of machine
learning models based on their recurrence rate. 

• A single machine learning model with very high recurrence
rate that maintains a 1:N relationship with the model and
the set of generators. 

• A set of machine learning models with average recurrence
rate that maintains a 1:n relationship with the model and
the set of generators (where n 	 N ). 

• A set of machine learning models with very low recurrence
rate. These models are isolated in the model space and
maintain a 1:1 relationship (or very low frequency) with the
model and the set of generators. 

Based on the above mentioned facts we discuss the need to
select recurrent models generated with a diversity of genera-
tors and that have good accuracy. We close this section with a
summary of procedure for integrally private model selection. 

5.1. Recurrence 

First criterion for integrally private model selection is the
frequency of a given machine learning model. This can be
extracted from the derived empirical distribution. In other
words, a machine learning model has to be recurrent. The next
step is to define the term “recurrent”. In integral privacy, this
is addressed in the definition of k -anonymous integral privacy
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Fig. 8 – Probability of different records included in the generators resulting the top 5 recurrent models - M1,M2,M3,M4 and 

M5 in the x -axis refer to a recurrent machine learning model ordered from lowest to the highest in terms of frequency of the 
given models. 
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Algorithm 1: Integrally private model selection proce- 
dure. For a given dataset D t the algorithm either returns a 
list of integrally private ML models or an empty model 
list; when there is no integrally private models for the 
given dataset that matches with the user defined set of 
parameters. 

Data : D t : Data set; 
A: Decision tree algorithm; 
n: number of samples; 
acc m 

: Accuracy threshold for ML models; 
k : frequency threshold for ML models; 
prob r : Maximum item probability in generators; 

Result: An integrally private ML model/s 
1 M E ← l ist () ; C and id ateMod elsList ← 

l ist () ; Dist ribut ionO fModels ← list() ; 
2 for i = 1 to n do 
3 S i := sample( D t ) ; 
4 m i := A (S i ) � Generate a ML model for given S i 
5 M E := add˜( m i , S i , accuracy ) � Update the empirical 

model space 
6 end 

7 for each unique m i ∈ M E do 
8 F requency i := frequency (m i ) ; 
9 � Derive the distribution of models from M E 

10 Dist ribut ionO fModels := add ( M E i , F requency i ); 

11 end 

12 for each m i ∈ Dist ribut ionO fModels do 
13 if accuracy( m i ) ≥ acc m 

∧ frequency( m i ) ≥ k ∧ 

el ement _ probabil it y (S i ) ≤ prob r then 

14 C and id ateMod elsList := add˜( m i ) ; 
15 end 

16 end 

17 return C and id ateMod elsList ; 
where the set of modifications M , needs to have at least k -
minimal elements. With respect to recurrent models, we in-
troduce a parameter k , which will be the number of generators
for a specific machine learning model. k Is adjustable based on
the privacy preference of the user. This results in a k -integrally
private model. 

To find these k -integrally private model we have to sweep
the machine learning model space with a significant amount
of subsamples. The computation cost of this process is ex-
tremely high if the size of the database is large. In practice, we
can only obtain an empirical distribution for the model space
M E , as the subsample space grows exponentially with the size
of the database. This implies that our most recurrent model
can be superseded by another one. In this case, however fre-
quencies of models can only increase when we add additional
subsamples into our set of samples. For an actual figure on
the sample size, we recommend starting with a sample size
which is ≥ 100 times the size of the database D t . If this does
not provide enough recurrent models, then users will have to
gradually increase the number of subsamples constrained by
a given maximum value. The above given value is just to set a
direction in selecting a sample size. Based on the user’s com-
putational resources this value can be changed. 

5.2. Accuracy 

The selected machine learning model ( m i ), with at least k gen-
erators, should provide an accuracy level closer or higher than
the benchmark model. Our empirical results show that the
benchmark model is not always the “best” with respect to the
number of generators and the accuracy of the model. In gen-
eral, we have these four categories. 

• Models with high accuracy and a high number of genera-
tors. 

• Models with high accuracy but with a low number of gen-
erators. 

• Models with low accuracy but with a high number of gen-
erators. 

• Models with low accuracy and a low number of generators.

The first category is highly acceptable as they provide the
best accuracy and privacy guarantee. The latter is unaccept-
able as it is poor in both accuracy and privacy. Apart from that,
the other two categories are acceptable, because they could be
in line with user’s privacy requirement. For example, someone
with high privacy preference may be ready to compromise ac-
curacy. Thus, ending up selecting a model which has lower
accuracy than others but with a higher number of generators.
Similarly, someone might select the second category of mod-
els, where the number of generators are low but still larger
than a given k , if the model accuracy is high. 

5.3. Diversity 

When different models satisfy the requirement of having at
least k generators, a distinction can be made based on the dis-
tribution of elements in the set of generators. In other words, if
we consider all the elements included in the set of generators
(derived for a specific model) and the probability of each item
in the generator is low, that implies diversity in the set of gen-
erators. Higher the diversity among the generators the more
stable the model becomes with respect to record removal. This
has been discussed in Section 4.7 in relation to Fig. 8 . A diverse
model would comprise elements with low probabilities and a
minimal set of items or no items at all satisfying the intersec-
tion operation (i.e., probability = 1). 

5.4. Model selection procedure 

Algorithm 1 summarizes the process of integrally private
model selection including, (a) building the empirical model
space ( M E ), (b) deriving the distribution of models ( Distribu-
tionOfModels ) and (c) model selection based on accuracy, re-
currence and diversity ( CandidateModelsList ). The users can
define threshold values for the accuracy, recurrence and di-
versity. Based on those parameters there could be more than
one eligible ML models to select from. User’s preferences on
accuracy, recurrence and diversity can be used to determine
the final model. Also, with respect to a given set of parameters
and a dataset there might not be any integrally private models
available in the space of models, thus making the Candidate-
ModelsList empty. In this case, either a parameter modification
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r dataset modification is required to select integrally private 
L models. Otherwise, a ML model complies with integral pri- 

acy cannot be selected for the specific instance. 
In summary, integrally privacy ensures a good trade-off be- 

ween prediction accuracy and privacy. Based on the above 
iscussion we define a machine learning model to be “Inte- 
rally Private” if it is a recurrent model with at least k number 
f generators, assumes an accuracy level close to the bench- 
ark model and the diversity of items in the set of generators 

s high. 

. Related work 

he goal of privacy preserving data analysis is to ensure that 
he privacy of individual records in a dataset is protected from 

dversarial attacks. However, this matter becomes more com- 
lex when machine learning comes to play either as the tool 
or data analysis or as the tool for launching privacy attacks.
achine learning models are vulnerable to privacy attacks in 

erms of leaking the sensitive information about their train- 
ng data. Membership inference is one of the most critical pri- 
acy attacks against a given machine learning model ( Shokri 
t al., 2017 ). The attack model explains; given a data record and 

lack-box access to a model, the goal of membership inference 
s to determine if the record is a part of the model’s training 
ataset or not. Ateniese et al. (2015) present another genre 
f attacks where meaningful information can be inferred 

bout the training data by constructing a meta-classifier to 
ack the target models. Statistical and demographic infor- 
ation about training data that the machine learning mod- 

ls have preserved in training can be obtained through this 
pproach. 

Existing research on privacy preserving machine learning 
as its main focus on collaborative learning. That is when 

ultiple parties come together to utilize their information in 

rder to train machine learning models, without sharing sen- 
itive information with each other ( Lindell and Pinkas, 2009 ).
he objective here is to minimize information leakage dur- 

ng the training phase. However, this does not provide any 
rotection against the above mentioned attacks targeting the 
achine learning models. In literature, different data pertur- 

ation techniques (i.e., data masking, k-anonymity) and pri- 
acy models (i.e., differential privacy) are used to address 
his issue. The biggest challenge of adopting the above meth- 
ds is managing the trade-off between privacy and model 
tility. 

Differential privacy ( Dwork, 2006 ) has contributed towards 
rivacy preserving machine learning through different ap- 
roaches such as the implementation of differentially private 
achine learning algorithms, output perturbation and objec- 

ive perturbation to name a few ( Ji et al., 2014 ). The intu-
tion of differential privacy is that the probability of a given 

utcome is essentially unchanged as a result of modifying 
 single data instance. The definition itself implies that the 
istribution of outputs does not depend too much on any data 

nstance. Therefore, theoretically differential privacy provides 
 strong stability guarantee ( Ateniese et al., 2015 ). However,
ifferential privacy has its focus on neighbouring datasets 
hat differ from each other at most 1 record. But with a dy- 
amic database, where changes take place regularly, main- 
aining this level of stability can be very costly for model util- 
ty. The approach we consider in this paper has its focus on se-
ecting recurrent models, but this does not require the genera- 
ors of these models to be neighbours in the sense of differen- 
ial privacy. Integral privacy ( Torra and Navarro-Arribas, 2016 ) 
efines a degree of privacy based on the number of unique 
enerators for a given model. This can also be explained as 
he stability of the models. 

Stability of learning algorithms or the concept of algorith- 
ic stability has been extensively studied in the machine 

earning literature, in relation to learnability, generalization 

 Bousquet and Elisseeff, 2002; Breiman, 1996; Breiman et al.,
996; Elisseeff et al., 2005; Kearns and Ron, 1999; Mukherjee 
t al., 2003; Shalev-Shwartz et al., 2010; Turney, 1995; Xu and 

annor, 2012 ) and privacy ( Dwork, 2011; Dwork et al., 2014; 
ang et al., 2016 ). A learning algorithm is defined to be stable 

f small perturbations done on training data do not imply sig- 
ificant changes in the output of the algorithm. To determine 

he stability of learning algorithms the literature has mainly 
ocused on deriving theoretical bounds for the generalization 

rror based on techniques such as cross-validation ( Kale et al.,
011 ) and leave-one-out error ( Elisseeff et al., 2003; Evgeniou 

t al., 2004; Kearns and Ron, 1999; Mukherjee et al., 2003 ).
odel stability can be explained as a result of strong algorith- 
ic stability. Highly generalized models produce a low gen- 

ralization error while generalizability can also lead towards 
ultiple generators per model. However, to achieve integral 

rivacy, we are focused on recurrent models so that the se- 
ected model remains the same with a high probability despite 
he modifications done to training data. In the standard def- 
nition of algorithmic stability, the “perturbation” is expected 

o be “small” on both training data and the outcome. But in 

ur approach, we are not concerned about the extent of the 
erturbation done on training data; large or small. For model 
tability, the requirement is such that, models remain identi- 
al irrespective of the degree of change carried out on training 
ata. 

The notion of stability is studied with reference to differ- 
ntial privacy ( Dwork, 2011 ). This has introduced two stability 
elated concepts namely, subsampling stability and perturba- 
ion stability. 

• Subsampling stability - f is said to be q -subsampling stable 
on dataset x , if f (x ) = f (x ′ ) with a probability at least 3/4
when x ′ is randomly subsampled from x , which includes 
each entry independently with a probability q . 

• Perturbation stability - f is said to be stable on x , if f takes
the value f ( x ) on all neighbours of x (and unstable other-
wise). 

In this paper, we try to explain recurrent models by working 
long the lines of “subsampling stability”. 

We recommend users to select recurrent models, which 

re naturally available in the model space (with high repre- 
entability). This ensures a high model utility while provid- 
ng a privacy assurance against integral privacy attacks. And 

lso in our work, we have shown how these recurrent models 
an increase intruder’s uncertainty with regarding member- 
hip inference attacks. 
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7. Conclusion 

The work carried out in this paper is based on the privacy
model “Integral Privacy”. In our work, we have shown the sig-
nificance of integral privacy by referring to a newly introduced
attack model which is based on machine learning model com-
parison. Using experimental results, we have shown how the
distribution of models can be used as a mitigation strategy
against model comparison. Based on our observations of the
empirical model space, two categories of machine learning
models are identified as frequent (recurrent) and infrequent
models. We have explained in detail how frequent models can
be used to achieve integral privacy with minimum compro-
mise of model utility. Finally, we have provided recommenda-
tions for integrally private model selection. 

The method we have used in this paper for constructing
the empirical model space can be inefficient for large datasets.
Therefore, going forward we can experiment with different re-
sampling techniques to find an efficient method. We have only
considered decision trees in this work for building the model
space. This can also be tested with other machine learning
algorithms. Additionally, we can analyse the similarity of the
datasets that results in the same models in order to under-
stand the relationship between data and their models further.
As proposed in the original paper ( Torra and Navarro-Arribas,
2016 ), we can carry out the same experiments with different
data protection methods (micro-aggregation, differential pri-
vacy etc.) to understand its affect towards integral privacy. 
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