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hexagon, and 60-gon) as a function of the driving voltage position
(i.e., MM zone number). Note that the coupling coefficients for the
respective geometries are almost identically the same. The top curve
represents the values for the triangular loop. The lowest curve (solid)
is the value for the 60-gon (circular) loop. The other polygonal loops
fall in between these values uniformly as a function of the number of
sides in the polygon. Obviously, the specific number of sides of the
regular polygonal loop has very little effect on the coupling coeffi-
cients for the fundamental (first harmonic) natural modes. However,
at higher harmonic frequencies, significant differences in the coupling
coefficients for the various shapes can be seen. It is apparent from
these plots, that driving a polygonal loop antenna at certain specific
positions (i.e., MM zone position #15, #30, and #45) on the loop
periphery produces current distributions which may be completely
devoid of certain modal distributions. Likewise, driving the loop at
other specific positions, allows the designer to choose just how much
of each of the fundamental (orthogonal) modes of a certain frequency
he may desire for adjusting the loop antenna resonant frequency or
the input impedance.

IV. ConcLusion

A singularity expansion method analysis has been carried out on
planar, thin-wire, regular polygonal loop antennas. Specifically, the
SEM parameters: natural frequencies, natural modes, and coupling
coefficients, have been determined numerically for the equilateral
triangle, the square, the pentagon, the hexagon, and the 60-gon (cir-
cle). Particular attention was focused on determining the specific
conditions which produce “splitting” of the otherwise degenerate
natural frequencies associated with the rotationally orthogonal natu-
ral modes. Enhanced coupling to these loop antennas results when
the driving excitation is positioned specifically to excite the mode
(or modes) associated with one (or more) of these ““split” natural
frequencies. The results obtained and presented offer new insights
into the fundamental electromagnetic nature of thin-wire polygonal
loop antennas.

While it is apparent that the authors have probably generated a sig-
nificant number of questions that have not been answered completely
by the data and associated discussion presented here, it is believed
that other interested investigators, if made aware of these findings,
might be stimulated by these ruminations to consider other antenna
and scattering problems from this interesting perspective.
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Phase Centers of Horn Antennas Using Gaussian Beam
Mode Analysis

JOHN A. MURPHY, MEMBER, IEEE, AND
RACHAEL PADMAN, MEMBER, IEEE

Abstract—The power of Gaussian beam mode analysis to describe
accurately the propagation of electromagnetic beams and the location
of a horn antenna phase-center is illustrated. By way of example, the
case of a comp ted pyramidal horn fitted with fins to produce a less
abruptly tapered E-plane field distribution is discussed and the results
obtained are compared with those from an alternative method published
in the literature. Excellent agreement is found.

I. INTRODUCTION

This work arose from the need to know the phase center position
of the centimeter-wave horn antennas used as feeds on the Cassegrain
reflector dishes of the Mullard Radio Astronomy Observatory 5 km-
aperture synthesis telescope [1]. The telescope is in the process of
being upgraded; as part of the process we are reexamining the cou-
pling of the feed horns to the individual dishes. An accurate descrip-
tion of the feed beam patterns and location of the phase centers is
necessary to ensure correct positioning of the feeds.

The telescope operates at frequencies of 2.7, 5, and 15 GHz. The
subreflector is in the near field of the feed at 2.7 GHz, while it is
in the far field at 15 GHz. One of the advantages of the Gaussian
mode beam analysis is that it is equivalent to the Fresnel description
of diffraction, and so gives an accurate beam amplitude and phase
profile in both the near field and the far field, for systems with
moderate focal ratios (F > 2) [2].

The phase center of the horn can be defined as the center of cur-
vature of the intersection of the far-field equiphase surface with a
plane containing the horn axis [3). However, there is nothing special
about the far-field (Fraunhofer) region, and it is often important to
consider the near-field Fresnel region as well [4], [5]. This is be-
cause the phase center position depends on the distance from the
horn aperture of the plane perpendicular to the axis across which
one measures the phase [5]. In the case of a long horn with a focal
ratio F' > 2, for example, the phase center measured on a plane near
the horn aperture appears to be at the horn apex (since the radius
of curvature of the phase front in the aperture is given by the slant
length of the horn), while in the far field the phase center appears to
be near the horn aperture.

Analytical approaches to determining the phase center positions
have been applied to some horn configurations, for example [3]-[5].
These usually involve integration of the fields over the horn aperture
to determine the near-field or far-field phase behavior of the radiation
fields. If one can express the equiphase surface directly in terms of
the off-axis angle, then the phase center can be determined by using
some method to calculate the radius of curvature of the phase front
[3], [5). Another approach, which is similar to the method described
in this communication, involves plotting the phase in the far field [6].

An alternative to aperture integration for calculating the amplitude
and phase evolution of a propagating beam of radiation uses Gaussian
beam mode analysis. In this approach the field at the aperture of
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the horn is decomposed into a sum of beam modes [7]. All these
constituent beam modes have identical equiphase radii of curvature
[8]. However, as the beam from the horn propagates, the relative
phases of the modes also shift (according to a simple relationship),
which results in the introduction of residual phase distortion in the
horn beam with respect to the spherical phase front defined by the
individual modes [9]. Thus, the position of the horn beam phase
center will be determined by a combination of both phase curvature
introduced by the residual phase distortion and the common radius
of curvature for the individual propagating beam modes

The details of the Gaussian beam mode analysis approach are de-
scribed in Sections IT and II for the example case of the compensated
pyramidal horns referred to above. Results exist in the literature [3]
for this type of horn and we compare our results with those.

II. HermiTe-GaussiaNn Beam Mobpe ExpansioN

The relevant dimensions of the horns are shown in Fig. 1. They are
referred to as amplitude compensated horns [10], and have nonuni-
form aperture illumination along the E-plane, unlike the standard
single-moded pyramidal horn. The field incident on the fin structure
from the fundamentally moded rectangular waveguide will have the
usual TE,, amplitude distribution. Because of its geometry, the fin
structure affects the E-plane, but not the H-plane, amplitude distri-
bution at the horn aperture. Since power must be conserved in the
beam as it propagates in each of the three regions defined by the fins,
the amplitudes of the fields at the horn mouths will be determined
by the ratio of relative areas there compared to those at the other end
of the fin structure. Thus, in this case, the amplitude of the E-field
at the horn aperture will be uniform, but lower, in the outer two
regions (1 and 3) than in the inner region 2 (see Fig. 2), giving a
reduced far field sidelobe level in the E-plane.

The field at the horn aperture is given by [3]

E(x, y) = Eq - cos(mx/a) - exp(—jmx?/NL, — jmy*/A\L,) (1)

where Ey = Eg; < Ep; (the subscripts refer to the region) and L,
and L, are the slant lengths in the x and y directions, respectively.
The H-plane width of the horn aperture is @ and N is the wave-
length of the radiation. These fields can be expanded as a sum of
Hermite-Gaussian beam modes [11]:

E(Xa y) = Z ZAmn(W\'v W’y) “l’mn(x/va y/Wy)
m=0 n=0

cexp(—mj/N-(x* /R +¥*/R))) (2)

where ¢mn(x/Wxa y/Wy) = (Wx 'Wy)_l/z Hm(ﬂx/wx)
"Huy(V2y/W,) - exp(—x2 /W2 — y* JW2). H,(p) is the Hermite
polynomial of order m in p.

The choice of W, and W, and R, and R, is arbitrary; however,
in order to match the phase fronts at the horn aperture we set R, =
Ly, and R, = L, which then implies that the A,,, are real. Thus,
the equiphase radii of curvature are the same for the horn aperture
fields as for each of the beam modes in the sum (with the center of
curvature at the horn apex).

The values of W, and W, usually are chosen to maximize the
power in the fundamental (0,0) mode [7]. This fixes the positions
of an E-plane and an H-plane “virtual waist” inside the horn, from
which the individual beam mode components of the field appear to
emanate. Ideally, the waist positions and radii should coincide for
the two orthogonal planes, but this is true only in special cases [12].
The distance from the horn aperture to the virtual waist position is
given by

A yWiy) = Liy /(1 + (NLs,, [aW3 V). 3
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Fig. 2. E-field amplitudes at horn aperture.

As the beam propagates, W, , and R, , for the component Gaussian
modes are functions of distance from the virtual waists, as described
in [8] and [13]. A mode-number dependent phase slippage term Dy,
also appears in the expansion of the fields. If we assume the beam
propagates along the positive z axis, with z = 0 at the horn aperture,
the expansion for E(x, y) at z is given by

m=0C n=0oC

EG, 0= Y An(W(0), W, (0)

m=0 n=0

. ¢nln (X/WJ (2), )’/W(Z))
x exp(—mj /N - (x? /R (2)

+ 2 /R, (D) + j(Pmn(2)))- (4a)
The phase slippage term is given by
1 i
<pmn(Z) = <m + 5) “pox(2) + (I‘l + 5) : L)%,v(z) (4b)
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where
Pox (2) = [tan™" (aW2(2) /AR, (2)) — tan~" (xW2(0)/AL)]
¥oy(2) = ltan™" (xW3(2) /AR y(2)) — tan™" (xW2(0)/AL)].

W (0) and W (0) refer to values chosen at the horn aperture. One
can easily show that the radii of curvature R, , (as a function of z)
are given by

Rey(@) =@+ Ag ) + WLy, /aW2 (00 (A2, /(z + By ,)).
€]

Thus, in the Fresnel region the center of curvature does no¢ coincide
with the waist position.

At any point along the propagation axis, the phase front radii of
curvature Ry , are the same for all the modes in the expansion.
Nevertheless these R,,, may not be the best fit phase radii of cur-
vature for the sum of the beam modes: relative to R, , there may
be some residual phase deviation due to the effect of the ©Omn terms.
If this residual phase has a quadratic component in x (or »), then R,
(or Ry) is not equal to the best fit radius of curvature. The actual
determination of this best fit radius is discussed in the next section.

III. LocaTiNG THE Puase CENTERS

As already noted, at the aperture of the horn the choice of values
for W, (0) and W ,,(0) is arbitrary. If we allow W, (0) (or W, (0)) to
vary, then there are three interesting consequences:

1) The position of the virtual waist shifts according to (3),

2) the radius of curvature R, (z) or R, (z) for the beam modes
change according to (5), and

3) the curvature of the residual phase deviation changes since
the A,,, and @, are functions of the W,(0) and W, (0) as
in (4a).

This provides a method for determining the position of the x- and y-
plane phase centers. If we vary the values of W (0) and W ,(0) until
the residual phases (after subtracting the calculated curvatures R, V),
in the plane z = constant, each have zero curvature, then the corre-
sponding R,(z) and R, (z) are equal to the best approximations to
the phase curvatures on axis. To find the center of curvature relative
to the horn, we estimate the distance A behind the aperture of the
new virtual waist in each plane. The phase center is then located a
distance d,, behind the horn aperture and is given by

dp(W(0) = [(z + L)/(z + A(W(0))] - AW (0)) (6)

where the x, y suffixes are implied and A is the virtual waist dis-
placement behind the horn aperture for W (0), as given in (3). Thus,
determining the phase center location can be regarded as a process
in which we adjust the virtual waist position to set the curvature of
the residual phase (as defined above) to zero.

An example of the effect on the E-plane phase of changing W(0)
for the 15 GHz horn is shown in Figs. 3(a) and 3(b). In Fig. 3(a)
the deviation of the phase from a wavefront with radius of curvature
R is evaluated at a distance of 1600 mm from the horn aperture for
various values of W(0), the approximate position of the subreflector.
At such a distance from the horn a 10 dB edge taper corresponds to
a subreflector of radius 400 mm. The value of W (0) that gives the
most uniform average phase over the relevant region is chosen by
inspection— for this case it is in the range of 26-28 mm (see Fig.
3(a)). For a larger diameter subreflector a larger value for the opti-
mum W (0) will be found, as is clear from Fig. 3(a). This procedure
could clearly be automated if so desired.

However, the phase center is usually defined such that the residual
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Fig. 3. (a) Effect of changing W(0) at horn aperture on the residual phase
for subreflector-horn separation of 1600 mm (far-field case). (b) Effect of
changing W(0) at horn aperture on residual phase for subreflector-horn
separation of 160 mm (near-field case).

phase deviation has zero curvature on the horn axis. In that case
a value of W(0) ~24 mm yields the least on-axis curvature at a
distance z of 1600 mm (almost in the far field). For this value of
W (0), the distance of the phase center behind the horn aperture d,,
given by (6), is 24 mm. For the true far-field case, it is again found
that W(0) ~ 24 mm; however, because R > A, d » decreases to 20
mm. We also consider the hypothetical near-field example case of a
subreflector 160 mm from the horn aperture. As can be seen in Fig.
3(b), W(0) ~ 30 mm yields least phase distortion, corresponding to
ad, of 57 mm.

Results are published in the literature [3] for the far-field case of
a compensated horn where the amplitude ratio along the E-plane is
1:2:1, and where by = b/2 (b and b, as defined in Fig. 1). For
such an amplitude compensated horn of slant length 368.4 mm and b
of 73 mm, the predicted value for d,, from [3, Fig. 4] equals 19 mm.
The Gaussian beam analysis approach yields a value for d,, in the far
field of 18.5 mm, which, especially given that A\ = 20 mm, agrees
well. To compare the Gaussian beam analysis approach with that
presented in [3] over a wider range of horn apertures and lengths, we
examined some specific examples: b/\ = 8,//\ =70, and b/\ =5,
/X = 10, both of which correspond to a d, = 5.5\ using [3, Fig. 4].
The results produced by the Gaussian analysis approach for these two
cases are: d, = (6.1 £ 1.0)\ and d, = (5.9 £ L.O)A, respectively,
where =+ 1.ON represents the phase depth of field. Clearly, there is
excellent agreement between the two approaches.

If we wanted to optimize the aperture efficiency, we would then
need to evaluate the coupling integral between the horn beam pat-
tern at the subreflector and the illumination pattern due to a distant
point source on the antenna boresight for various horn/subreflector
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on calculated phase variation in the E-plane for a fixed value of W at horn 'orma l?m conveniently allows one to reconstruct the feed pa ?m
aperture (5 GHz horn with W(0) = 92 mm, optimized for maximum power in amplitude and phase exactly at the antenna, and thus determine
in the fundamental mode.) the horn “‘phase center” for such a system [2].

6) The Gaussian beam analysis approach is extremely efficient.
separations. The calculated amplitude distribution is independent of Calculation of the (real) modal coefficients just involves a straight-
W (0) if sufficiently many modes are included in the sum: the E-plane forward equiphase surface integration at the horn apertuwi2 (no
distribution (using 40 modes) is shown in Fig. 4. phase variation need be taken into account). The beam phase vari-

We also show, in Fig. 5, the effect on the residual phase in the case ation can then be readily reconstructed anywhere in the near field,
of the 5 GHz horn for horn/subreflector separations of 1.6 and 10.0 as well as in the far field, using the already calculated mode co-
m, where W(0) = 92 mm (beam width optimised for maximum efficients.
power in the fundamental mode). The beam E-plane profiles are
shown in Fig. 6. The effects of diffraction between the near- and ACKNOWLEDGMENT
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A Systolic Array Architecture for the
Applebaum-Howells Array

MOTOHARU UENO, MEMBER, IEee, K. KAWABATA, MEMBER, IEEE,
AND TASUKU MOROOKA, MEMBER, IEEE

Abstract— A systolic array architecture for the Applebaum-Howells
array is derived. A problem to be solved is to eliminate the global signal
feedback loop in the conventional Applebaum-Howells array processor.
The procedure involved in deriving the architecture consists of two steps:
orthogonalization of the input and eli ion of the
feedback loop. In the first step, the input element signals are orthogo-
nalized with regard to each other by using the Gram-Schmidt processor,
placed ahead of the Applebaum-Howells processor. It has been shown,
in the second step, that the orthogonality in the Gram-Schmidt pro-
cessor output signals can remove the global signal feedback loop and
that the Applebaum-Howells array can be implemented effectively by
using the systolic array with regular structure and local communication.
Simulation results also show that the proposed processor features desir-
able characteristics for the radiation pattern with the low sidelobe level
[, to the Applebaum-Howells array.

1 1 i 1

I. INTRODUCTION

Recent sophisticated very large-scale integration (VLSI) technol-
ogy has led to a new concept in adaptive array antennas, known as
the digital beamforming (DBF) concept [1]. In the adaptive array
exploiting the DBF concept, array element RF signals are converted
into digital video signals and these converted signals are combined
in a DBF processor to produce the final array output signal, maxi-
mizing a certain operation criterion, such as, for example, the output
signal-to-noise ratio. While there are various configurations for the
DBF processors, a processor with a regular structure and localized
signal transmission paths is required for high-speed operation and
easy hardware implementation. A processor architecture, referred to
as the systolic array architecture [2}, has been developed to satisfy
such a requirement. The systolic array architecture consists of unit
processors (cells) and has only a unidirectional signal transmission
path to the nearest neighbor cells. Consequently, using a DBF pro-
cessor with a systolic array architecture is considered as the most
feasible approach to implement adaptive array processors by using
VLSI technology.
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The Gram-Schmidt processor has been investigated for use as a
DBF adaptive array processor, and its systolic array structure is well
established [3], [4]. A systolic array implementation for adaptive
arrays, based on the Q — R decomposition algorithm, has also re-
ceived attention from many researchers [5], [6]. Although various
kinds of systolic array implementation for the adaptive arrays have
been proposed, the adaptive arrays having been considered can be es-
sentially categorized into a class of the sidelobe canceller. However,
the Applebaum-Howells array [7], a generalized and most important
adaptive array, has not been implemented by using the systolic ar-
ray architecture. This is because the Applebaum-Howells array has a
global signal feedback loop configuration where array weight updates
are obtained from the correlation between the summed output from
the array and signals received by each array element. The difficulty
in the hardware configuration for the feedback loop and the resulting
time delay due to the loop prevents the array from being used in the
systolic array implementation. Indeed, the systolic array implemen-
tation problem for the Applebaum-Howells array is a fundamental
one to be solved in the adaptive array field.

This communication derives a new systolic array architecture for
the Appelbaum-Howells array. The procedure involved in deriving
the architecture consists of two steps: orthogonalization of the input
element signals and elimination of the feedback loop needed in the
conventional Applebaum-Howells array. In the first step, the input
element signals are orthogonalized with regard to each other, using
the Gram-Schmidt processor placed ahead of the Applebaum-
Howells processor. It will be shown, in the second step, that
the orthogonality among the Gram-Schmidt processor output sig-
nals can remove the global signal feedback loop and that the
Applebaum-Howells array can be implemented effectively by using
the systolic array architecture.

II. InruT ELEMENT SiGNALS ORTHOGONALIZATION

The procedure in the first step is to orthogonalize the input element
signals. The preprocessor technique [7] was used for this purpose.
Fig. 1(a) shows a typical Applebaum-Howells array, using a prepro-
cessor placed ahead of the Applebaum-Howells processor. In this
figure, the Gram-Schmidt processor is assumed to be the preproces-
sor.

The Gram-Schmidt processor transforms the original signals from
the array elements into a new set of signals, which is the signal input
to the Applebaum-Howells processor. The input and output rela-
tion for the Gram-Schmidt processor is represented by the following
matrix notation:

v = Qu,

where u and v are the input (the original signals from the array ele-
ments) and the output (the new set of signals) signal column vectors
in the form

T
U= (U, Uz, UN)

v=@v2un),

respectively, and Q is the matrix transforming u into v; superscript
T denotes the matrix transpose and N denotes the number of array
elements.

As shown in Fig. 1(a), the Gram-Schmidt processor consists of
N — 1 rows of the unit processors (cells) in the form of a triangle.
In the first row of cells, the input signal ¢,, letting £, = u only
for technical reasons, is transformed into the signal ¢,. Letting the
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