
 
 
  
                 

                 
                 Generalised Translation of Indirect Utility Functions 
 
 
                                            DENIS  CONNIFFE 
 
                                       National University of Ireland  Maynooth  
 
 
 
 
 
 
 
 
 
 
                            
Abstract 
This paper considers the derivation of new demand systems from existing ones through replacing an 

indirect utility function by , where p is a vector of prices and y 

is income.  This is a generalisation of Gorman translation 

),( yU p })/(,{ jypyyU jj
p

,( yU )jj pp  and will be shown to be 

effective in terms of producing  new demand systems with both good regularity and flexibility 
properties.   
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                                                        I   INTRODUCTION     

 
Gorman (1975) introduced the “translation” device to incorporate extra parameters into utility  
 
functions and demand equations.  If  is the original indirect utility function, where p is a  ),( yU p
 
vector of prices and y is income,  the translated utility function is 
 

                                               ),( jj pyU p ,                                                           (1) 

 

where the j are the subsistence quantities, y is assumed  jj p and summation is over n  

 

commodities.  Gorman showed that if were the original demand equations, the translated  ),( yqi p
 
equations are                                                                

                                                   ijji pyq   ),(p .                                                  (2) 

                  
 For example, if is the simple homothetic utility function y/P, where P is a weighted  ),( yU p
 

geometric mean of prices, )log(log jj pP  ,  the demand equations   iii pyq /   

 
are translated to the famous Stone-Geary linear expenditure system (LES)   
 

                                        )( jj
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The idea of this paper is to replace (1) by the more general translation of to ),( yU p
 

                                  




















 

j

y

p
yyU j

j



,p .                                                                  (3) 

                                                                          

This reduces to (1) if all 1j .   The condition jj py   is replaced by  

 

                                     .                                                                             (4)            jj ypy jj
 1

  

which will hold for positive j if y is not too small.  If a i  is negative, i  must also be negative.  

 
     This paper is particularly concerned with how generalised translation can produce demand systems  
 
with both good regularity and flexibility properties.  Regularity means that, given appropriate ranges  
 
for the parameters, the indirect utility function complies with the constraints implied by rational  
 
economic behaviour.1  Ideally, this should be possible for all prices and incomes (global regularity), 
but  

                                                           
1   That is, a con aximises direct utility under a budget constraint.  This implies the indire
utility function ),( yU p  should be homogeneous of degree zero in income y and prices p, non-

sumer m ct 
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should at least hold for all values of these variables relevant to the situation under study.  Flexibility is  
 
also required in that the corresponding demand system, while satisfying regularity, should be able to  
 
model a reasonably comprehensive spectrum of consumer behaviour - so the possible values of income  
 
and price elasticities, which are functions of parameter values,  should not be seriously restricted2.  The  
 
influential ‘flexible functional forms’ approach, employing Taylor series approximations to general  
 
utilitity (or cost) functions, sought systems embodying flexibility and hoped for regularity, but it seems  
 
that often their flexibility depends on their parameters being allowed to take values that contradict  
 
regularity3.  Such models generally cannot test if observed consumption patterns do or do not accord  
 
with economic theory.  The approach in this paper will be to start from globally  regular systems and to  
 
improve their flexibility by generalised translation4. 
     
       Properties of the general translated utility (3) are examined in section 2 and the corresponding  
 
demand system derived.  Income and price elasticities are obtained and presented in terms of the  
 
elasticities of the parent system and the  parameters of the generalised translation.  Section 3 illustrates  
 
these results by  considering a particular case, fairly parsimonious in parameters, that is interesting in  
 
its own right.  Section 4 applies generalised translation to more parameter rich, though still globally  
 
regular, utility functions.   In section 5 the possible application of generalised translation to non- 
 
globally regular utilities is discussed.  Finally, in section 6, connections between generalised translation  
 
and Houthakker’s (1960) indirect addilog system are explored5.  
 
      
              II. TRANSLATED DEMAND EQUATIONS AND ELASTICITIES 
  
 
Let 

                                                                                                                                                                      
decreasing in y, non-increasing in p, and convex or quasi-convex in p.  These constraints imply 
corresponding conditions (aggregation, homogeneity, Slutsky symmetry and negativity) on the demand 
equations.   
2 More formal definitions of flexibility exist, differing in detail.  See, for example, Diewert (1974).  
3 Caves and Christiansen (1980), Barnett and Lee (1985) and Cooper and McLaren  (1992) have 
discussed the difficulty of reconciling flexibility and regularity for such systems. 
4 Of course, there are other approaches to improving regularity properties.  Barnett (1983), Barnett and 
Lee (1985) and Chalfant (1986) reported wider regularity regions resulting from approximations based 
on Laurent, Muntz-Satz and Fourier expansions rather than Taylor series.  Lewbel (1987) and Cooper 
and McLaren (1996) have also proposed systems.    
5  Lewbel  (1985) has already used the term  generalised translation in a paper on incorporating 
demographic effects into demand equations, which was a theme of considerable interest to Gorman.  
But the generalised translation of this paper is so obviously a generalisation of Gorman’s that it seems 
inappropriate to call it anything else. 
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 show that above so s will be  

gular.  This corresponds to the situation with Gorman translation.  For example, the simple  
 

omothetic utility function y/P, 


 
So assuming the original utility is non-increasing in prices, the translated utility is also.  Proofs of the 
 
convexity of translated utilities are  more complicated and depend on the forms of the original 
 
They are provided in Appendix 1 and me income level the translated system
 
re

)log(log jj pP h , is globally convex in prices, while   

 

ypy jj /)(  , which gives the LES, is convex  if   
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s  

nds to increase with time.  The term ‘effective global regularity’ has been applied to regularity  
 

 

 222 2)( ppy    iijji

                          
So although Gorman translation increases flexibility by introducing extra parameters, it may invalidate  
 
regularity at very low incomes.  This has not been seen as a difficulty, because, at least for analyse
 
with time series data, interest focuses on inferences valid for recent or current time periods and income  
 
te
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everywhere except  at low incomes6.  Generalisations of (7) for generalised translation can be deduced  

ater sections.   

   From Roy’s lemma the demand equations are  
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and ),( ywit p is the budget share of the translated system as a function of p and y, and ),( zwio p is  

 
the budget share of the original system as a function of p and z.  The income, own-price and ce  
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6 The term seems due to Cooper and McLaren (1996). 
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     III  GENERALISE SLATION OF THE CONSTANT BUDGET SHARE MODEL 
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7
    This system has been examined in greater detail in Conniffe (2002a), but was not then understood as 

a case of generalised translation. 
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11 This is actually the homothetic case of the generalised Leontief utility function.  
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    Appe dix 1 shows that for functions of the form Py / , with P  concave in prices,  effective glob

 
ularity holds fo e generalised ranslation  if 
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here  
 

  is  the smallest eigenvalue of  minus the Hessian of log P.  This is the same as (10) with  w
 

 2
ipreplacing i / .   Although  is a function of prices and changes with the observations, it  

ill be non-zero  if  P is strictly concave.  Then, as before, 

 

 and 1iiw  are all that is  

 

0  i 1required.  An   of zero could be compatible with (11) if .  

 
There are, of course, globally regular utility functions that are not of the form  and that can  

                      

 Py /    

 
nvolve even more parameters.  The best known is probably the generalised Leontief i
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which is globally regular if all n(n+3)/2 parameters are positive.  The demand equations are  
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nnot represent some behaviourally plausible consumption patterns unless  

ntief  

arameters positive and translating to achieve flexibility is preferable.  Appendix 1 shows that the  

LLY REGULAR UTILITIES 
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However, as various authors (Caves and Christiansen, 1980; Diewert and Wales, 1987) have    

 
r
 
emarked, these equations ca

some parameters are permitted to become negative.   This destroys regularity and  so retaining Leo
 
p
 
g
 

eneralised translation of  (12) is effectively globally regular and the corresponding demand equations  

f
 
ollow from (8) and  (13).   

 
V  GENERALISED TRANSLATION OF  NON GLOBA
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Although the main theme of this paper commences from globally regular utilities and uses translation   

larity at low income for flexibility and regularity at h er income  considering  

slation.   

   A probably favourable case is generalised translation of ,  with 

 
to trade regu igh s, it is worth
 
the impact of generalised translation on  non globally regular original utilities. Some cases are clear  
 
enough, either in favour or against generalised tran
 

  Py / P   a translog  price index       

, with 

 

            
j

j kj
j k

jkj pppP loglogloglog    kjjk   . 

 
This, the ho al translog of  C  Jorgenson amothetic case of the gener hristensen, nd Lau (1975), seems the  
 

atural extension of the geometric mean index, jj plogn and its generalised translation nests both  

e model of section III and the LES.   However,  cannot be a globally regular utility function.   

quires 

 
Py /th

 
Homogeneity re
 

                 ,1 j     0 jk , for all k, and 
j j

 0
k

jk for all j,    

 

so  some  jk   must be   negative.  But then                    

 

                         
iiii

ii S
p

P
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1log  jij pppp


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must become negative for some price combinations and  
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

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 log

 
 2

ecome positive12.   However, perhaps the ‘real world’ prices occurring in the data, and the price  

nges of particular interest for inference, are quite disjoint from these price combinations.  Caves and  
 

 (1980) reported that regularity of the homothetic translog faile only at high relative price  

tios.  At least for fairly broad commodity definitions, perhaps price ratios may not reach such levels.   

e 

 
b
 
ra

Christiansen d 
 
ra
 

Appendix 1 shows that if the are positiv and the matrix iS   of estimated coefficients jk  is  

 
n
 

egative semi-definite, regularity requires 
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again the same as (10), with iS replacing i , and the previous conditions applying to the   and  

                                                          

 

 
12 Convexity of U with respect to prices would also fail. 
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 parameters..  From (8) the translated demand equations are  
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1
,                     (14) 

 price elasticities, it is clear there is mu ice  
 

t of  n(n-1)/2 extra parameters. 

ems cannot be improved y generalised translation. The AIDS model  

on and Muellbauer (1980a)  

                        

 
and even without examining ch more scope for cross-pr

effects than with the system (9), although at the cos
 
     Some non globally regular syst  b
 
of Deat
 

 
*

loglog
P

y
bpcaw i

j
jijii                     ,                                        

here P* is a price index13, has the utility function 
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                  jpbBlog 0  ,     0 jb , jb log
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j k
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j

j ppcp loglogg    kjjk cc    0 
k
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j

jk cc . , 

                              
 wThis cannot be regular unless y is small, because B must decrease (and U increase) for prices ith 

 

the negative bj implied by 0 jb .  Furthermore, convexity in prices demands that 

 

                                   

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Bpp iiiii
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log)21(
22

 
 yU 12

2

becomes negative as y increases, particularly rapidly if  is  

reasing  

come, the translated utility will also do so.  Similar difficulties arise for some other demand systems,  

r example, Cooper and McLarens’ (1992) MAIDS model15 and for various ‘rank 3’ systems such as  

at of Ryan and Wales (1999).      

                                                          

 

e positive for all i, but it obviously ibb

 
substantially negative 14.   Clearly, if the original utility function loses its regularity with inc
 
in
 
fo
 
th
 
 

 

13 Strictly, kj
j k

jkj
j

jo ppcpaaPP loglog
2

1
logloglog *   , but to retain 

linearity for estimation simplicity, this is often approximated by j
j

j pwP loglog *  . 

14 These are not original comments (see, for example, Cooper and McLaren , 1992). 
15 This modification of AIDS maintains regularity longer as income increases, but eventually loses it. 
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VI    GENERALISED TRANSLATION AND THE INDIRECT ADDILOG SYSTEM 

 
ere is another way of looking at generalised translation that can also commence from Gorman 

rman translation, can be thought of as producing weighted averages of interpretable  

 the constant budget share model it gave the LES 
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ton & Muellbauer, 1980b, p.145) o terpret as giving a consumer’s  

budget shares as a weighted average of a “rich person’s”  (constant budget share model) and  a “poor  

erson’s” (Leontief, or constant ratios of quantities model) budget shares.  Similarly, the generalised  

translation of the constant budget share model in section III gave 
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is the budget share of Houthakker’s (1960) indirect addilog system.  So iw  can be seen as a weigh

 
verage of a ‘rich’ person’s and an ‘IAD’ person’s budget shares, since   a
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This way of viewing things helps explain of why generalised translation can give such a range of  

el curves, even when applied to a constant budget shares model , because Somermayer  
 

lone. 

ore generally, (8)  

 
shapes of Eng

and Langhout (1972) demonstrated the great range of  Engel curves arising from the IAD a
 
M
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),(p

is a weighted average of the original system’s budget share  and the IAD budget share16.   
 
 

       In Gorman translation ),( jj pyU p     the j are sometimes interpreted as subsistence  

 

quantities and jj p  a me.  While the translation parameters js subsistence inco  do not have to be  

 
nderstood in this way, the  interpretation is sometimes attractive and useful.  With generalised  

anslation the analogue of subsistence income 

u
 

tr jj p  is  
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                          ,                                                                                                                                

eq  with  

come and assuming at least one

 
which r uires a wider interpretation than just subsistence income.  For one thing it can change
 

 in is less than unity,  it increases to infinity as , with  

ominant term 

                                   

y
 
d

   ysps
ss  , 

1

 

s is the smallest of the iwhere .  But perhaps it can, at least sometimes, be interpreted as  

mmi  inco
 

o tted’ me with the terms in the summation corresponding to a variety of types of  ‘c
 

commitment.  For i = 1 say, the ith component of   is pii , so i co

ssential quantity purchased at price irrespective of income. For 

uld be taken as a minimum  

 

ip k = 0 say, the kth component of   e

 

is yk , so k could be understood as a minimum pr rtion of income to be s ent on commodity k  opo p

                                                           
16 The IAD is a generalisation of the (simple) Leontief, to which it reduces if all 1j .  The IAD 

utility can itself be generalised to the generalised addilog:  
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This suggests an even more general translation than (4), via  yWyU ,p .   But unlike the Leontief 

or IAD, there are difficulties with the regularity of the generalised addilog, which would feed into the 
translated system, which could also be over parameterised.   
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irrespective of price.   Intermediate interpretations are possible for a  between zero and one.   A    

 
greater than one, wh re the commodity fades out of  committed income as income increases, coulde  be  

   
 
interpreted as a less drastic option than the exclusion at all incomes that setting the corresponding
 

0  would imply.  It is true the case of a negative  and its corresponding  seems incompatible  

me notion, but that situation also arises with subsistence income in Gorman  

lation  when a 

 
 this committed  incowith

 
rans t is negative.   These interpretations (and others) of committed income are all 

rpretations of coefficients of the IAD  

h is unsu at mitted income is the product of y and the IAD 

direct utility function.  

 slations 

    The  derivative of with respect to  is 

                                                  

 
deducible from the Somermayer and Langhout (1972) inte
 
demand system, whic rprising given th  com
 
in
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he Case 

lify considerably when the original utility is income divided by a function of prices (which  
 
needs to be concave in prices if U is to be convex).  Then  
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18 The conditions on the j and j correspond to those for the regularity of the utility function of  the 

indirect addilog system.  The validity conditions of the IAD have been debated in the literature more 
than once, as the exchanges between Gamelatos (1973, 1974) and Somermayer (1974), and between 
Akin and Stewart (1979) and Murty (1982) testify. 
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although is now a function of income, as well as prices.  The convexity of the original utility with  

respect to prices must imply that that is concave in prices and therefore  is also.   
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As already said, minus the Hessian matrix of , multiplied by , is positive definite in  

rices and it is easily seen to be of order 

*log P  */ Pz
 

z  or y . p  So the same arguments as previously will  

 of income and own price elasticities of  translated systems 

 
nvenience of n , the dependence of quantities on prices and income will not be indicated  

 
xplicitly except for z, the translated income. 

 The income elasticity  is 

 
emonstrate effective global regularity.               d

                                        
 
 Appendix 2:   Derivation
 

For co otation

e
 



 23

=
yq

y

it 
  



































1
1

i

y

p
zq

V
i

iiio



 . 
y

q

q

y
E  it

it
it 


        

 

= 
V

1  




























1
)1( i

y

p

yy

z

z

zq iiiiio




y

V

V

qit




 . 
y

qit




        

 
 that 

 

          

Noting

   and  

j

y

p

yy

V j
jjj



 










  )1(

1
   V

y

z





      

this is 
 

       
  ii

y

p

yV
q

y

p

yVz

zq
  i

ijjit
iiiiio

























 


)1(
1)1(

1

. 

 
o 

  

S

 itE
  iipq iiiiio


 


1)1(

1

  
y

p

VyVqz

z

q

y i
ijj

itit



 














  )1( . 

     

    

Using             

   )((
1

zw
y

z
VwzqVq

y

p

y

p

y

p

y
i

ii 



p

ioitioit
ii

ii
i

ii
















 , 

e the  and re the budget shares, and that  

 

 

itw )(zwio awher

z

zq

zq

z
zEio )(                     io

io 
 )(

)(
 

 becomes 

  

it

 

E

  








  jjoi
it

io
jjtiio

it

io zw
yw

zw

yV

z
wzE

w

zw
 )()1(

)(

)(
1)(

)(
.   

 
The o ricwn-p e elasticity is 
 

=
iit

i

pq

p


  



















i

it

it

i
iit p

q

q

p




e         


 















1
1

i

y

p
zq

V
i

iiio



 . 

     
V

1  
































2

)1()( i

y

p

yp

z

z

zq

p

zq iiii

i

io

i

io




i

it

p

V

V

q




 .  
i

it

p

q




=   

 
Noting that 

              

1

)1(
1
















i

i
iii

i y

p

yp

V


 ,   

1









  

pi

 i

y

pz i
ii



    and  



 24

this is 
 

 
y

V

zq
qq

V

zq
q

pV

zq
q

z

zq

p

zq

V

io
itiit

io
it

i

iio
it

io

i

io
}

)(
){1(

}
)(

{
)1(

}
)(

{
)(1 






 









 

. 

 

o  equals 



 iiteS







 






 




ze
zqio )(
)(

                 
V

zq
q

y

p

q
zE

zq

zqp

Vq
io

it
ii

it

i
io

it

ioi
iio

it

)()1()1(
)(

)( 
, 

or 

  









yV

z

w

zw
zEzwzewzee

it

io
ioioiioitiiioiit

)(
1)()()()1)(1()(  .   

 
 
Th
 

e cross-price elasticity is 

 
 




















k

io

k

io

it

k

p

z

z

zq

p

zq

Vq

p )(

k

k

p

V

V

p




  




k

it

it

k
ikt p

q

q

p
e

     
















  zE

zq
ze

Vq io
it

iko
it

)()(



Vq

zq

y

qpzqqpzq

kt

koktk
k

ioktkio )(
1)1(

)()(
            =

or 

  







 

yVww
zEzwzewzee

kt

ko

it

kt
ioioikoktkikoikt 1)()()()1()(  . 

 zzww )(


                             
 
 
                                                    REFERENCES 
 
Akin, J. S. and Stewart, J. F., 1979. Theoretical Restrictions on the Parameters of Indirect  

oney Supply and the Flexible Laurent Demand System.    

he Minflex Laurent ,  

n, D., 1972. The S-branch Utility Tree:  A Generalisation of the Linear  

 and Christensen, L. R., 1980. Global properties of flexible functional forms.  

 Business 

ogarithmic  

002.  A New System of Demand Equations, Working paper, Economics Department  

2. Sums and Products of Utility Functions, Economic and Social Review, 33, 285- 

ically Oriented Demand System with  

 R., 1996. A System of Demand Equations satisfying Effectively Global  

deal Demand System.  American Economic Review  

   Addilog Demand Equations.  Econometrica 47,  779-780. 
Barnett, W. A., 1983.  New Indices of M
  Journal of Business and Economic Statistics 1,  7-23. 
Barnett, W. A. and Lee, Y. W., 1985. The Global Properties of t
   Generalised Leontief and Translog Functional Forms.  Econometrica  53,  1421-1438. 
Brown M. and Heie
   Expenditure System.  Econometrica 40,  737-747. 
Caves, D.
     American Economic Review 70, 422-432. 
Chalfant, J. A., 1987. A Globally Flexible, Almost Ideal Demand System.  Journal of
   and Economic Statistics 5,  233-242. 
Christensen, L. R., Jorgenson, D. W. and Lau, L. J., 1975. Transcendental L
   Utility Functions. American Economic Review 65,  367-383. 
Conniffe, D. , 2
    NUI Maynooth 
Conniffe, D. , 200
    295. 
Cooper, R. J., McLaren, K. R., 1992. An Empir
    Improved  Regularity  Properties.  Canadian Journal of Economics 25, 653-668. 
Cooper, R. J., McLaren, K.
   Regularity Conditions,   Review of Economic and Statistics 68, 359-364. 
 Deaton, A.and Muellbauer, J., 1980a. An Almost I



 25

ics and Consumer Behaviour.  Cambridge University  

. D, Kendrick, D. A. 

penditure  

s, M. J., Nobay, A. R.  (Eds.)  

0. Additive Preferences.  Econometrica 28,  244-256. 
ches, Z., Intriligator, M. D.  

hic or Other Effects into Demand  

dditive Utility Functions and Linear Engel Curves. Review of Economic  

yan, D. L. and Wales, T. J. 1999. Flexible and Semiflexible Consumer Demands with Quadratic  
   Engel Curves, Review of Economics and Statistics, 81, 277-287. 
Samuelson, P. A., 1965. Using Full Duality to show that Simultaneously Additive Direct and  
  Indirect Utilities Implies Unitary Price Elasticities of Demand. Econometrica 33,  781-796. 
Somermayer, W. H. and Langhout, A., 1972. Shapes of Engel Curves and Demand Curves:    
  Implications of the Expenditure Allocation Model, applied to Dutch data. European Economic  
  Review 3, 351-386. 
Somermayer, W. H., 1974. Comment: Further analyses of cross-country comparisons of  
     consumer expenditure patterns. European Economic Review 5, 303-306. 
 

   70, 312-316. 
Deaton, A. and Muellbauer, J., 1980b.  Econom
  Press,  London. 
Diewert, W. E., 1974.  Applications of duality theory.  In: Intriligator, M
  (Eds.). North-Holland, Amsterdam. 106-171. 
Diewert, W. E.and Wales, T. J., 1987.  Flexible functional forms and global curvature conditions.   
  Econometrica 55, 43-68. 
Gamaletos, T., 1973. Further analyses of cross-country comparisons of consumer expenditure  
    Patterns.  European Economic Review 4, 1-20. 
Gamaletos, T., 1974. Reply: Further analyses of cross-country comparisons of consumer ex
   patterns.  European Economic Review 5, 3. 
Gorman, W. M., 1975. Tricks with utility functions.  In: Arti
   Essays in Economic Analysis. Cambridge University Press, London. 
Houthakker, H. S., 196
Lau, L. J., 1986. Functional forms in econometric model building.  In: Grili
  (Eds.). Handbook of Econometrics Vol. 3. North-Holland, Amsterdam. 
Lewbel, A.,  1985. A Unified Approach to Incorporating Demograp
     Systems, The Review of Economic Studies 52, 1-18. 
Lewbel, A.,  1987. Fractional Demand Systems, Journal of Econometricss 36, 311-337. 
Murty, K. N., 1982. Theoretical Restrictions on the Parameters of Indirect Addilog Demand  
   Equations – A Comment.  Econometrica 50, 225-227. 
Pollak, R. A., 1971. A
  Studies 38, 401-413. 
Pollak, R. A.,  1972. Generalised Separability. Econometrica 40, 431-453. 
R


	     III  GENERALISED TRANSLATION OF THE CONSTANT BUDGET SHARE MODEL
	natural extension of the geometric mean index, and its generalised translation nests both 
	the model of section III and the LES.   However,  cannot be a globally regular utility function.  
	Homogeneity requires
	Convexity with concave in prices
	Convexity with a Generalised Leontief utility
	                                                    REFERENCES

