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Abstract: This paper explores the application of principal component analysis (PCA) to the monitoring of within-lot 

and between-lot plasma variations that occur in a plasma etching chamber used in semiconductor 

manufacturing, as observed through Optical Emission Spectroscopy (OES) analysis of the chamber exhaust. 

Using PCA, patterns that are difficult to identify in the 2048-dimension OES data are condensed into a 

small number of principle components (PCs). It is shown, with the aid of experimental data, that by simply 

tracking changes in the directions of these PCs both inter-lot and intra-lot patterns can be identified. 

1 INTRODUCTION 

Modern day semiconductor manufacturing is a 

highly competitive business in which companies are 

required to produce vast quantities of reliable high 

performance integrated circuits (ICs) at low cost.  As 

such, close monitoring and tight control of hundreds 

of complex process steps are needed to maintain 

production standards and high product throughput.  

In this context we focus on plasma etching of 

semiconductor wafers, an important process step in 

the manufacture of many ICs (Sugawara, 1998). A 

typical reaction ion etching (RIE) chamber is 

illustrated in Fig. 1. Gas is pumped into the chamber 

under vacuum and ionised using a high power 

Microwave (MF) source to create a plasma. A radio 

frequency (RF) electromagnetic field accelerates the 

resulting ionised species towards the electrode, 

where they interact both chemically and physically 

with the wafer, etching away the exposed surface. 

The etch rate and profile obtained are determined in 

a complex and nonlinear fashion by the plasma 

chemistry and energy as well as several process 

variables including gas flow rates and RF power. 

Monitoring the chemistry of the plasma in the 

chamber can be achieved using Optical Emission 

Spectroscopy (OES) (Splichal et al., 1987). In the 

plasma chamber considered in this study the OES 

data is collected for the exhaust plasma leaving the 

chamber using a 2048 wavelength OES sensor 

(170nm to 875nm) with a sampling interval of 0.75s. 

Using this setup OES data was collected for 17 lots 

of 24 wafers, with each waver undergoing a two step 

etch process lasting 45s. A sample OES data set for 

a single wafer is shown in Fig. 2. 
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Figure 1: Diagram of a plasma etching chamber. 

With the OES footprint of each wafer having 

dimensions of 60  2048, direct visualisation and 

monitoring of variations in the plasma chemistry 

across wafers and across lots is impractical. 

Fortunately, optical emission spectra are inherently 

highly redundant making it possible to achieve 

substantial data compression using Principle 

Component Analysis (PCA) techniques without 

loosing valuable information on plasma changes. In 

this paper we show that simply  monitoring  changes 
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Figure 2: A plasma etch OES data set for a single wafer.  

in the directions of the principle component loading 

vectors, computed on either a wafer-by-wafer or lot-

by-lot basis, is sufficient to detect valuable 

information on process trends that are not 

immediately apparent when looking at the OES data 

as a whole. 

2 PRINCIPAL COMPONENT 

ANALYSIS 

Principal component analysis (PCA) is a linear 

multivariate data projection technique widely used 

for data compression and analysis (Jackson, 1991). It 

provides a means of generating low dimension 

representations of high dimension datasets while 

retaining the maximum amount of information.  

2.1 Definition 

PCA is a method of writing a matrix X of rank r as 

a sum of r matrices of rank 1, where the rank 1 

matrices are expressed as outer products of two 

vectors, a score it  and a loading ip  (Jackson, 1991) 

r

i

ii

1

T
ptX (1) 

      The loading vectors, ip , are eigenvectors of the 

matrix XX
T , that is 

iii ppXX )( T (2) 

where i is the eigenvalue associated with the ith

eigenvector ip . The loading vectors ip  describe the 

principal directions of variation in X, are orthogonal 

to each other: 

jiji ,pp 0T
(3) 

and have unit length, while the eigenvalues indicate  

the amount of variance represented by each 

direction. For a given X  and ip , the corresponding 

score vector it  is given by:

ii Xpt (4) 

A principle component (PC) model of X  is then 

obtained by selecting the components ),( ii tp  with 

the largest eigenvalues to represent it. When data 

redundancy is high two or three PCs are often 

sufficient to obtain a good model. 

Essentially, PCA projects a high dimensional 

data space onto a lower dimensional sub-space 

where the axes are the PC loading vectors and the 

coordinates of the data the PC score vectors. 

Singular Value Decomposition (SVD) can be 

used to calculate all r principal components in one 

step. Alternatively, the nonlinear iterative partial 

least squares (NIPALS) algorithm (Geladi, 1986) 

can be used to calculate them one at a time in order 

of significance. 

2.2 Multi-way PCA (MPCA) 

Since batch process data is usually arranged in a 3-

way matrix (batch-variable-time), it must be 

unfolded into a 2-way matrix in order to apply PCA. 

This is known as Multi-way Principal Component 

Analysis (MPCA) and was first introduced by Wold 

et al. (1987). There are several ways to unfold a 3-

way matrix. In this paper, we choose to unfold the 

data along wavelength direction (Fig. 3), because we 

are interested in tracking process changes over time. 
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Figure 3: Unfolding of the 3-way OES data blocks. Each 

block corresponds to a lot of 24 wafers.  
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2.3 Monitoring PC-loadings  

If PCA is performed on the OES data as a whole 

process trends can only be observed by monitoring 

the time evolution of the scores. However, if PCA is 

applied on a wafer-by-wafer or lot-by-lot basis very 

effective monitoring of process variation can be 

achieved by tracking the changes in the directions of 

the PC loadings. Changes can be expressed either in 

terms the angle between loadings or the magnitude 

of the vector difference between them as illustrated 

in Fig. 4. The angle  (in radians) is given by 

)
vv

vv
(

21

T
21arccos (5) 

while the magnitude of the vector difference  is 

simply defined as  

21 vvv . (6) 

Since, by definition, loading vectors are unit length 
it follows that for small  the two measures are 
approximately equivalent, i.e. .

Figure 4: Measuring changes in loading vector directions.  

3 OES DATA ANALYSIS 

3.1 Data Pre-processing  

Data pre-processing is an essential first step in PCA 

analysis. Variables need to be appropriately scaled 

and irrelevant or corrupted measurements removed 

if valid and interpretable results are to be obtained.  

In this study the following pre-processing step were 

performed on the OES data: (1) Data segments 

corresponding to non-etch periods at the start and 

end of each etch cycle were removed; (2) Saturated 

wavelengths were omitted and; (3) Wavelength 

intensities were scaled to have zero mean. 

3.2 Lot-by-lot Analysis 

Having unfolded the OES data as indicated in Fig. 3, 

analysis by PCA can be performed by treating each 

lot of 24 wafers as a single data matrix. We will 

refer to the resulting PCs as lot-PCs, consisting of 

lot-PC loadings and lot-PC scores. The variance 

explained by the first three lot-PCs is plotted as a 

function of lot number in Fig. 5. This shows that 

across all lots the first three principal components 

can explain over 99% of the plasma variation 

captured by the OES data. In fact the first PC 

captures over 85% of the data variation observed 

across all 2048 wavelengths.  

Figure 5: Accumulated variance explained by the first 

three lot PCs.  

A closer look at Fig. 5 shows that a jump occurs 

in the variance explained by lot-PC1 at lot 13.  

Analysis of the variation in the direction of lot-PC1

across lots (Fig. 6) reveals that this is linked to a 

significant change in the orientation of lot-PC1 from 

lot 13 onwards.  Following investigation it was 

determined that the plasma change was as a result of 

a small drift in the flow rate of a cooling gas applied 

to the backside of the wafers during etching, a 

change that was not detected by the existing plasma 

chamber process monitoring schemes.  

Figure 6: Variation in lot-PC1 (loading) direction across 

lots (with respect to lot 1).  
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3.3 Wafer-by-wafer Analysis 

Here, we simply perform PCA analysis on 

individual wafer OES data sets and compare the 

patterns across wafers. This allows us to explore the 

variation that takes place within lots. 

Fig. 7 shows the variation in wafer-PC1 direction 

over all the wafers with lot-PC1 from lot 1 taken as a 

reference. The plasma change at lot 12 observed in 

the lot-PC analysis is clearly present in this data as 

well, as is a small offset during the first lot.  

 Large spikes are evident throughout Fig. 7. 

These occur at the first wafer in each lot. This is 

highlighted in Fig. 8 which shows a zoomed in view 

of Fig. 7 covering two lots. These sharp changes 

were attributed to changes in the absorption 

characteristics of the plasma chamber wall as a 

result of a cleaning cycle that is performed between 

lots. While a dummy etch cycle is performed 

following each clean cycle to counter this affect, it is 

clear from Fig. 8 that cleaning still has a significant 

impact on plasma characteristics for the first (and to 

a lesser extent) the second wafer etch of each lot.  

Figure 7: Variation in wafer-PC1 direction across all 

wafers (using lot-PC1 from lot 1 as a reference).  

Figure 8: Variation in wafer-PC1 direction over two lots.  

3.4 Score Patterns 

As an illustration of the data compression and 

pattern visualisation capabilities of PCA the score 

patterns generated by the OES data for all the wafers 

in lot 9 are plotted in Fig. 9. Here, the first three lot-

PC loadings from lot 8 were used as a reference PC 

model and the PC-scores for each wafer calculated 

according to Eq. (4). It is easy to see that the 

evolution of the OES data for the first and second 

wafers is substantially different from the remaining 

wafers, as predicted by the wafer-PC loading 

analysis.

Figure 9: The first three scores of all the wafers in lot 9. 

4 CONCLUSIONS 

In this paper we have demonstrated how monitoring 

changes in PC directions can be a useful tool in 

revealing patterns contained in the high dimensional 

data sets generated from OES analysis of wafer etch 

plasma chambers. 
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