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Analysis of Diagonal Horns Through
Gaussian—-Hermite Modes

Stafford Withington and J. Anthony Murphy

Abstract—The radiation characteristics of diagonal horns are
investigated by means of Gaussian-Hermite modes. It is shown
that, for reasonably long horns, the beamwidths in the principal
and 45° planes are equal to within 10%, and all sidelobes are
below —15 dB. It is also demonstrated that the phase center of
a diffraction-limited horn is close to the aperture, whereas the
phase center of a constant-beamwidth horn is behind the throat.
The maximum coupling to the lowest order co-polar Gaussian
mode is 84%, and the total amount of power coupled into the
cross-polarized lobes is 9.5%. More significantly, the aperture
efficiency of a Cassegrain antenna fed by a diagonal horn has a
maximum value of 81%, which compares with 87% for a
corrugated horn. The maximum efficiency is achieved when the
aperture of a diffraction-limited horn is placed at a confocal
tertiary focus, although a secondary focus gives an aperture
efficiency that is only 10% lower, suggesting that diagonal horns
are suitable for focal-plane arrays.

1. INTRODUCTION

HE rapid development of high-performance corrugated
horns [1] has meant that the diagonal horn has received
very little attention since it was first described by Love in
1962 [2]. There are situations, however, in which the diffi-
culty or expense of manufacturing a corrugated horn pre-
cludes its use, and in these situations the diagonal horn is an
attractive alternative. For example, at long millimeter wave-
lengths, suspended E-plane circuits are often manufactured
by machining a rectangular waveguide into a split block.
Obviously, corrugated and conical horns cannot be manufac-
tured in this way, and even pyramidal horns, which have
relatively poor radiation characteristics, are awkward to pro-
duce. A diagonal horn, on the other hand, can be milled into
the block in a single operation and has good radiation charac-
teristics; in fact, its beam efficiency in the E- and H-planes
is as good as that of a Potter horn [3] and is significantly
better than that of a conical or pyramidal horn. In addition to
being an inexpensive way of producing circularly symmetric
beams at millimeter wavelengths, the diagonal horn is also
attractive for submillimeter wavelengths where it becomes
exceptionally difficult to electroform and interface conven-
tional horns. In principle, it should be possible to manufac-
ture compact arrays of diagonal horns for frequencies ap-
proaching 1 THz.
In his original paper, Love calculated the far-field radiation
pattern of an infinitely long horn. That is to say he consid-
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ered, through diffraction integral techniques, the radiation
characteristics of an open-ended diagonal waveguide. In this
paper, we calculate the radiation characteristics of horns
having finite lengths and therefore spherical phase fronts in
their apertures. We analyze the horns by decomposing the
aperture field into a number of Gauss—Hermite modes [4],
each of which can be propagated in a simple manner into the
Fresnel or Fraunhofer regions to reconstruct complex field
patterns [5], [6]. Gaussian-mode analysis is, of course, a
well-established technique for studying the behavior of long-
focal-length millimeter- and submillimeter-wave systems [7].
It has the advantage over direct integration that one can
propagate a diffracting beam through a complicated system of
lenses, stops, and off-axis mirrors, and one can readily
calculate the image that is formed across any surface within
the system. In fact, in multimode Gaussian optics, diagonal
horns of all lengths are characterized by one set of mode
coefficients; the length of a given horn simply determines the
amount by which the modes slip with respect to each other as
the beam propagates. Love considered the radiation from a
flat field in a diagonal aperture, and he therefore implied that
the far-field phase center is in the plane of the aperture.
Here, we calculate the position of the phase center directly by
considering the phase perturbation caused by phase slippage
between the modes.

The ability of a horn to produce low-order Gaussian modes
is not in itself particularly interesting; usually one is more
interested in the ability of a horn to illuminate, through
suitable optics, a reflecting antenna. We therefore use the
techniques of Lamb [8] and Padman [9] to study the aperture
efficiency of a generic system comprising a diagonal horn, a
quasi-optical beam-waveguide, and a Cassegrain antenna. A
brief assessment of the horn’s sensitivity to manufacturing
tolerances is also made.

II. GAUSSIAN-MODE ANALYSIS

The aperture and Fraunhofer field distributions of a
diffracted beam are related through a Fourier transform, and
therefore the basis functions of a beam waveguide must be
closely related to eigenfunctions of the Fourier transform.
For noncircularly symmetric beams with tapering edges and
reasonable focal lengths, the field can be expanded in terms
of Gaussian-Hermite modes. Gaussian modes are only ap-
proximate solutions to the wave equation, but they are valid
whenever the field propagates as a nearly plane wave. In
practice, this restriction requires the focal length of the beam
to be greater than about 2 as is usually the case for submil-
limeter-wave systems. When analyzing a horn through
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Gaussian modes, one essentially represents the radiated field
in terms of the modes that would be radiated by a flat field in
a virtual aperture. That is to say, the fields appear to be
radiated by a virtual aperture that is some way behind the
physical aperture, and the fields across the virtual aperture
are, in contrast to those across the actual aperture, always
flat. The problem is therefore one of determining the position
and scale size of the virtual aperture and its effective field
distribution.

In this paper, we consider a diagonal horn to be a section
of gently tapering square waveguide supporting fully coher-
ent spherically expanding TE,, and TE,, waveguide modes.
We ignore mode conversion at the throat and along the length
of the horn, and we assume that the modes are excited in
phase. The field in the aperture of the horn has the basic form

E,(x,y,2) =iEy + jE, (1)
or
T TX x
E,(x,»,2) = (iExcos 7y +jJE, cos —)H(_, 1)
a a a z
e | -ig ( +7)| @)
N
where
1 1
H(x,y):{l’ 1f|x|.and|y|s§ (3)
0, otherwise

and, as shown in Fig. 1, the coordinate frame is centered on
the virtual aperture. The field has a form that is very similar
to that of the TE; mode of a conical horn; however, because
the E-plane is more tapered one would expect the beam to be
more nearly circular. In fact, the field around the edge of a
diagonal aperture is zero on the principal planes and maxi-
mum on the 45° planes, and therefore the longest axes have
the most taper and the beam is nearly circular.

The field can also be expanded in terms of co-polar and
cross-polar components, with respect to the diagonal, giving

Ey(x,y,2) = vE*+ hE~ (4)

where

E Ty E TX x y
X cos — + —ycos—)H(—, —)
a a

™
; 2 2
exp|—J—(x" + 5
p[ ig(x*+y )] (5)
and the original coordinate frame has been retained because
its boundary conditions are particularly simple. The field
radiated by the diagonal horn can be written as a sum of
free-space Gaussian-Hermite modes; more specifically,
w(z)
E,x,y,2) =
ST
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Fig. 1. The coordinate system used to analyze the radiation characteristics

of diagonal horns.
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AR(z)
* exp [J(m +n+ 1)tan™! zi] exp [ jd,mn

C ©)

where the dilution factor w(z’)/w(z) is referenced to the
field in the aperture, and for the moment we have taken
advantage of the rotational symmetry of the TE,, and TE,,
fields by setting E, = E,. The basis functions

'CXP[—J' (x2+y2)]

H,,(u) exp[—u—z}

2
(Va2mm!)

hm(u) = 172 (7)

are orthonormal in the sense that

+ o
[ (w)du =3, (®)
where H,(u) is the Hermite polynomial of order m in u.
The beam scale size and the equiphase radius of curvature are
common to all modes, and they are given by

1+ (_zz_C)Z] 9)

respectively. The beam scale size w(z) is simply the radial
distance between the axis of propagation and the position at
which the field of the lowest order Gaussian mode has fallen
to 1/e of its on-axis value. The beam scale size is a function
of position and it has a minimum value of w(0) at the beam

w(z) = w(O)[l + (;)Tz and

R(z) =1z
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waist. The radius of curvature at the beam waist is infinite
and therefore the beam waist acts as a virtual aperture from
which the radiated fields diffract. Also,

. s WW}EO) (10)

is the confocal distance, which essentially marks the bound-
ary between the near and far fields, tan~' z/z, is the phase
slippage per mode, and ¢,,, is an arbitrary mode-dependent
phase constant. The phase slippage term is particularly inter-
esting. As the name suggests, it describes the fact that a
phase difference develops between modes as they propagate;
in effect the modes “‘slip>” with respect to each other. To the
negative-z side of a waist the phase front is retarded, whereas
to the positive-z side of a waist the phase front is advanced.
The total phase slippage as one moves through a waist is,
according to the Gouy effect, =, and the maximum phase
slippage between the waist and the far field is = /2. It is
straightforward to show that a phase slippage of = /2 gener-
ates the angular Fourier transform of the field distribution at
the waist. Now, as a beam propagates through a number
quadratic focusing elements, such as thin lenses and long-fo-
cal-length off-axis mirrors, a phase slippage larger than 7 /2
accumulates. The microscopic structure of the modified field
is then determined by the total phase slippage, and the
macroscopic structure is determined by the new beam waist
and radius of curvature.

In Gaussian-Hermite modes and associated-Laguerre
modes, as distinct from ordinary Laguerre modes, a phase
slippage of 7 corresponds to a real inverted image. This
image may of course exist on a spherical surface as deter-
mined by the common radius of curvature. The inversion is
easy to understand because two-dimensional transverse modes
having (m + n) odd have one-fold rotational symmetry and
are negated, whereas modes having (m + n) even have, in
general, two-fold rotational symmetry and are unchanged.
The net effect is to rotate the image by . It should be noted
that although the field in the aperture of a diagonal horn is
not circularly symmetric it is invariant to rotation by =, and
therefore phase slippages of 0 and 7 are equivalent.

It is convenient to perform the overlap integral over an
equiphase surface at the aperture, giving

k, 12 1/V/2k
A ={— / h
m (\/5) h,(u)du

11
v, (11)

and

2 k,u
B, = (V2k l/z/l/ﬂkh cos(r d )h w)du (12
(7" 0 cos [Ty 12

where &k, & w(z) /a. The x and y dependencies have been

factored, and the coefficients have been normalized to make
the total generalized power in each waveguide mode unity:

; Z (A, B,) =1. (13)

I

Furthermore, the mode coefficients are made real by choos-
ing

2z
-(m+n+1)tan” ' —. (14)
K

c

R(z)=1 and ¢,,=

There is a complete set of orthonormal modes associated with
each value of k,, and therefore we can choose k, in any
manner we wish. For example, it can be chosen to optimize
the power in the lowest order mode [6], it can be chosen to
optimize the total amount of power contained in finite number
of modes [5], or it can be chosen to minimize the contribu-
tion of phase slippage to the far-field radius of curvature
[10]. The coupling of the lowest order one-dimensional
Gaussian mode to a truncated uniform field has its maximum
value when k, = 0.51 and to a cosine field when k, = 0.35.
The coupling of the lowest order two-dimensional Gaussian
mode, with the beam waists in each of the coordinates equal,
to a square TE,, waveguide field has its maximum value
when &, = 0.43. In the latter case, 84% of the power is
contained in the beam, which compares with 98% for the
HE,; mode of a corrugated horn.

As mentioned in the introduction, the coupling of a horn to
the lowest order Gaussian mode is not in itself particularly
interesting; usually, one is more interested in how efficiently

“a horn can be coupled to the diffraction-limited forward-lobe

of a reflecting antenna, and this calculation requires higher
order modes to be considered. For example, when k, =
0.43,97.9% of the power is contained in the first 25 nonzero
modes, and 99.7% of the power is contained in the first 1000
modes. This slow increase in efficiency is due mainly to the
difficulty of representing the sharp edges of the top-hat field
distribution. However, if k, is reduced below its optimum
value to 0.25, then 98.8% of the power is contained in the
first 25 modes, and 99.7% of the power is contained in the
first 500 modes.

It should be emphasized that the mode coefficients do not
depend upon the dimensions of the horn. The far-field power
pattern of an individual horn is distinguished by the phase
slippage between the modes at the aperture. For a narrow-
band or diffraction-limited horn, the physical aperture is in
the near field of the virtual aperture, whereas for a wide-band
or constant-beamwidth horn [11], the physical aperture is in
the far field of the virtual aperture, or equivalently the waist
of the mode set being used.

Once k, and R(z’) are fixed, the position and scale size of
the virtual aperture are also fixed through

z’ 1
! 1 2
L+ |5
4k,2,21rs)
and
k,a

= 57 1/2 (15)
[1+ (4k327s)]]

respectively, where 27 s is the total phase delay across the

aperture, or

2

a
N

>

N

(16)

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 26,2021 at 17:43:43 UTC from IEEE Xplore. Restrictions apply.



WITHINGTON AND MURPHY: ANALYSIS OF DIAGONAL HORNS

Also note that the phase constant becomes
Gpn=—(m+n+1)tan""4k27s.

(17)

The aperture field can now be written as

E,(x,7,2) = %%; ; (vCr.+ hC,,)
ENES
"w(z) | "\ w(z)

* exp [j(m +n+ 1)tan”! zi] exp [ jdmn)

T )

where the co-polar and cross-polar mode coefficients are
given by

., VQA4,B,+B,A,
" V2(Q +1)
and we have introduced the power balance factor

2
E
Q&= .

y

(19)

(20)

The co-polar and cross-polar mode coefficients have been
normalized to make the total generalized power unity

P o R A T )

III. FAR-FIELD RADIATION PATTERNS

The power-density—expressed in directional coordinates
in the original coordinate frame—across a far-field surface is
given by

P*(x,y,2) =

V2 7 w(0) a x)

a Az

2

™
-exp [j(m + n)(—2— — tan™! 4k,2,27rs)]

(22)

Usually one is only interested in the power density relative to
the forward direction, and therefore the dilution factor can be
ignored. The E- and H-plane co-polar power patterns of
various diagonal horns are shown in Fig. 2. The power
patterns in the principal planes are equal and they have no
cross-polar component. Similarly, the co-polar and cross-
polar power patterns of the 45° planes are shown in Fig. 3.
For reasonably long horns, the beamwidths at — 15 db in the
principal and 45° planes are equal to within 10%, and all
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Fig. 2. The co-polar radiation pattern of a diagonal horn in the 0° and 90°
planes for parametric values of the phase delay 2 = s across the aperture. The
points show the measured characteristic of the submillimeter-wave horn
described in the text; in this case, s = 0.16.
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sidelobes are below — 15 dB. By contrast, a pyramidal horn
has an H-plane half-power beamwidth that is 35% wider
than the E-plane beamwidth. In Fig. 4, we show the effects
of changing the power balance factor Q to 0.6. The diagram
gives an indication of the horn’s sensitivity to misalignments
between the throat and the exciting rectangular waveguide. It
can be seen that even when the power ratio between the
waveguide modes is as high as 0.6, the radiation patterns are
almost unchanged. The main effect is to induce a central
cross-polarized lobe of around — 18 dB.

On Fig. 2 we have plotted the measured E-plane radiation
pattern of a 345 GHz diagonal horn having a sidelength of
4.5 mm and a length of 18 mm. The horn was manufactured
from tellurium copper by first routing 350 X 700 pm wave-
guide into each half of a split block. We found that it is
possible to make an excellent quality waveguide by grinding
a shaping tool with clearance angles of around 1.5°. The
horn was machined by mounting the block at the flare angle
of the horn tan~!(a/v2!) and tipping the head of the
milling machine over at 45°. An ordinary end-mill can then
be used to cut a V-shaped groove into the block. The
rectangular to diagonal waveguide transition formed in this
way is far from ideal, but we have found that for long horns
the performance is not significantly affected by mode conver-
sion. We have made horns for various frequencies and
excellent quality and accuracy have been achieved. It should
be possible to manufacture horns for very short submillimeter
wavelengths by using this technique.

Another factor of interest when designing horns is the
position of the phase center. In this paper, we understand the
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Fig. 3. The (a) co-polar and (b) cross-polar radiation patterns of a diagonal
horn in the 45° and 135° planes for parametric values of the phase delay
27s across the aperture.

phase center to be the center of curvature of an equiphase
surface on boresight. The position of the phase center de-
pends, of course, on the distance of the measurement plane
from the aperture. For example, the far-field phase center of
a diffraction limited horn is at the aperture, whereas the
aperture phase center is at the apex. It is important to
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Fig. 4. The effect of TE;, and TE,; mode imbalance on the (a) co-polar
and (b) cross-polar radiation patterns of a diffraction-limited diagonal horn.
The various characteristics are as follows: The solid lines are for the 45° and
135° planes with the power balance factor € equal to unity; the short-dashed
and long-dashed lines are for the 45° and 135° planes with @ = 0.6; and the
double-dot line is for the 0° and 90° planes with Q@ = 0.6. The co-polar
radiation patterns in the 0° and 90° planes are not affected by mode
imbalance and are not shown.
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appreciate that in general there is only one value of k, for
which the position of the far-field phase center is coincident
with the position of the waist.

The position of the far-field phase center can be deter-
mined directly by expressing the phase of the radiated field in
terms of a direction-dependent phase perturbation 86 super-
imposed on a distance-dependent spherical phase front:

cB,(x,2.2) = exp [0 2.2 )]
)\R7Ez)

-exp[—j (x2+y2)]. (23)
Consequently, the position of the phase center is determined
by a combination of the phase introduced by mode slippage
and that due to the common, or reference, radius of curva-
ture. The perturbation is simply the phase error between two
spherical surfaces and it indicates that the phase center is not
at the same position as the waist. We can equate the above
equation to an augmented quadratic phase term to get

(33 ()5

where 6z is the distance between the far-field phase center
and the position of the waist, and 7 is the transverse distance
r? = x? + y2. The second derivative of the phase perturba-
tion is thus a measure of sphericity, and the normalized
distance between the phase center and the waist is given by

(24)

5z 4s 3% 66 (25)
T x ary
Nz

Fig. 5 shows the normalized distance between the princi-
pal-plane phase center and the aperture as a function of the
phase delay across the aperture. For comparison, the position
of the waist is also shown; however, the position of the waist
depends on the value of k, chosen. In the present case we
have chosen k, = 0.43 to maximize the coupling to the
lowest order Gaussian mode. For low values of s the horn is
diffraction limited, and the waist and phase center are at the
aperture; as s increases the waist moves towards the vertex
and the phase center moves behind the horn. The point at
which the waist and phase center are coincident corresponds
to the point at which mode slippage makes no contribution to
the far-field phase. Also shown are a number of points
carefully taken from the nomogram published by Muehldorf
[12].

IV. CoupLING EFFICIENCIES

Before investigating aperture efficiency it is informative to
consider the co-polar and cross-polar coupling efficiencies:

E*|%d.
A /s' |~ ds 1 8 Ve
nT= = - % 5.
J 1B+ 1 Bl2ds 27 7 (@ 1)
(26)
T T
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Fig. 5. The dotted line shows the normalized distance between the beam
waist and the aperture, for k, = 0.43, as a function of the phase delay 2 75
across the aperture. The solid line shows the normalized distance between
the phase center and the aperture as a function of the phase delay 2 s across
the aperture. The points are taken from the nomogram published by
Muehldorf [11].

The efficiencies are shown as a function of the power balance
factor in Fig. 6. Clearly, the amount of power coupled into
the cross-polarized field is insensitive to mode imbalance.
This characteristic further suggests that manufacturing toler-
ances are not critical, and that it should be possible to make
good antennas at submillimeter wavelengths. The minimum
amount of power coupled into the cross-polarized field is
around 9.5%, which is about the same as that of a conical
horn.

Assessing the suitability of a horn for illuminating a
Cassegrain antenna by measuring the ‘‘Gaussicity’” of the
far-field power pattern is clearly very unsatisfactory. Such an
approach ignores structure in the phase of the fields—for
example, it does not take into account focusing—and it also
ignores power in higher order modes—the ideal horn has a
top-hat field distribution in its aperture and therefore very
high sidelobe levels. Instead, it is more meaningful to calcu-
late the coupling integral between the field radiated by the
horn and the field transmitted by the Cassegrain antenna
illuminated by a point source at infinity. For a large, long-fo-
cal-length unblocked antenna, and ignoring diffraction by the
subreflector, this problem is equivalent to considering the
coupling of the horn to a top-hat field distribution of the form

r ™
E(x,»,2") = vE,H(Z)exp[-—jer] (27)
where f is the focal length of an equivalent phase transform-
ing surface located at z”. The aperture efficiency can be
calculated by expanding the aperture field in terms of a set of
Gaussian-Hermite modes similar to those used to expand the
field associated with the horn. More specifically,

MZ Z quhp(—\{—f—{)hq(
P q w(z)

V2
B(x.,2) = —y)

w(z)

- ex ~'————r2]
"[ \R(2)

. 1 < .
~exp|j(p+ g+ 1)tan . exp [J6,,]-

T
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factor Q.

To make the mode coeflicients real one can choose

z”
R(z")y=f and 0,,= —(p+q+1)tan ' — (29)

Ze

and then

21\? 1/v2k, [27
T, = (;) k’/o vz /0 h,(u cos 0) h,(u sin 0)u du db
(30)

where k, 2 w(z”)/ b. Once again the mode coefficients have

been normalized to make the total power unity
YT, =1, (31)
Pq

With k, = 0.43, which is close to that required for maximiz-

ing the coupling to the lowest order mode, only 96% of the

power is contained in the first 400 nonzero modes. A large

number of modes are therefore required in order to calculate

aperture efficiencies accurately. A large number of coherent

modes does not, of course, necessarily imply that the field is

distributed over a large region of space.

Defining the aperture efficiency as

2
A
1=

/ E,E* ds (32)
s

leads to

2

n =|Z Z Cr:nTmn exp[_jamn] (33)
m n

where the coupling integral has been evaluated over the
aperture of the horn. We have set the waist of the horn
modes and the waist of the telescope modes at the aperture of
the horn equal:

wi(2) = w,(2). (34)

Furthermore, we have set the radius of curvature of the

telescope modes at the aperture of the horn equal to the
length of the horn:

R,(z) =1 (35)
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The mode-dependent phase slippage between the antenna and
the aperture of the horn is then
8un = (m + n) tan"z— —tan“z— (36)
Ze 2
where the confocal distance is that of the antenna.

Fig. 7 shows contour plots of the aperture efficiency of an
ideal Cassegrain antenna, having zero blockage, as a function
of the normalized aperture size k, and the phase slippage per
mode between the horn aperture and the antenna aperture.
The first three plots are for parametric values of the antenna
size (k,), and the last plot is for a power balance factor of
0.6. The aperture efficiency is greatest for a diffraction-limited
horn with its aperture at a confocal tertiary focus, although a
secondary focus gives an efficiency that is only 10% lower.
The plots show that the maximum attainable efficiency is
around 81%, which compares favorably with 87% for a
corrugated horn and 82% for a Gaussian beam. Although,
strictly speaking, the value of 81% is correct only to within a
few percent due to the power lost in the decomposition, it is
straightforward to show analytically that the maximum aper-
ture efficiency is given by J2(w/2)8/w or 82%, which is
about the same as that of a conical horn. Considering the
relatively high polarization loss, 9.5%, the aperture effi-
ciency compares favorably with that of a corrugated horn.
The sharp edges of the aperture distribution therefore partly
compensate for the power lost in the cross-polar coupling. It
should be noted that shaped optics will be less effective at
improving the aperture efficiency of a diagonal horn than that
of a corrugated horn. Somewhat conveniently, the aperture
efficiency of a diagonal horn is greatest when the diameter of
the image is equal to the side length of the horn.

Let us now consider the above analysis in more detail. For
an antenna with a given focal ratio F, the value of k, fixes
the mode set in terms of which the antenna and horn fields
are expanded. The waist size is then given by

\F

wk,

where we have assumed that the antenna is in the far field of
its focus. Once the size of the waist is fixed, the radius of
curvature across any surface is also fixed, and because we
require the length of the horn to be equal to the radius of
curvature, a horn of a given length can only be placed in one
of two positions (assuming that the length of the horn is
greater than twice the confocal distance). As the length of the
horn is increased, one solution tends to a diffraction-limited
horn with its aperture at a confocal secondary focus, whereas
the other solution tends to a horn with its aperture at a
confocal tertiary focus. In short, as far as analysis is con-
cerned, one is limited as to where one can place a horn of a
given length. If, however, one can vary k,, then one can
decouple the length of the horn and its position relative to the

w(0) = (37)

. antenna. Once the horn has been positioned, changing &,

changes the antenna to horn size ratio. Notice that, for a
diffraction-limited horn at a confocal tertiary focus, k, at
maximum efficiency is proportional to k,, whereas for a
diffraction-limited horn at a secondary focus, they are in-
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Fig. 7. The aperture efficiency of a Cassegrain antenna illuminated by a diagonal horn as a function of the horn-aperture size &,
and the phase slippage per mode 8¢, between the horn aperture and the antenna aperture. The first three plots are for parametric
values of the antennas size k,, and the last plot is for a TEy, and TE,, power balance factor @ of 0.6. The interval between the
contour levels is 0.02, and the regions of maximum aperture efficiency n = 0.8 are shaded.

versely proportional. This effect is a simple consequence of
the Fourier relationship between the images.

The above analysis of aperture efficiency is somewhat
artificial because it does not take into account the physical
sizes of the components involved. In a real system, a
Cassegrain antenna is usually combined with a number of
focusing elements to make a theoretical design realizable.
Nevertheless, the conclusions of the above analysis remain
valid. If the focusing elements are confocal —that is to say, if
the elements are separated by a distance equal to the sum of
their focal lengths—then the images as determined by the
accumulated phase slippage are plane. The image at a confo-
cal secondary is a diffraction-limited image of the sky, or
equivalently the Fourier transform of the aperture, whereas
the image at a confocal tertiary is a scaled image of the
aperture. In the latter case, the fields are frequency-indepen-
dent and have limited spatial extent, and they are therefore
ideal for coupling to the aperture of a diffraction-limited
horn. In general, it is not easy to fabricate a horn having zero
phase error across its aperture. One solution is to use a
profiled design, but this approach is not appropriate for
diagonal horns. An alternative solution is to recognize that if
the focusing elements of the antenna system are nonconfocal,
then the images, as determined by the phase slippage, are
curved [13]. Indeed Padman [9] has shown that it is possible
to use a single nonconfocal tertiary element to compensate
for the phase error caused by the horn’s finite length.

Finally, two practical comments are worthwhile. The diag-
onal horn achieves a respectable aperture efficiency by hav-
ing sharp edges on its aperture distribution. Although a large
number of modes are required in order to represent the

distribution, the modes are coherent and they add to give
frequency-independent top-hat type fields at tertiary focii and
sin(x)/x type fields at secondary focii. Clearly, if there are
unavoidable stops in a system, they should be positioned at
tertiary focii. For example, if the horn is in a cryostat, then,
ideally, two focusing elements should be placed in the cryo-
stat to ensure that the window does not affect the aperture
efficiency. A further issue is that diagonal horns have a 9.5%
cross-polar coupling loss, and in a real system one would
probably use a polarizing grid to terminate this loss in a
well-defined way.

V. CONCLUSION

In this paper, we have used Gaussian-Hermite modes to
study the radiation characteristics of finite-length diagonal
horns. It has been shown that the coupling to a Gaussian
beam is greatest when the waist-to-aperture size ratio is 0.43,
and that the optimum beam carries 84% of the total radiated
power. The radiation pattern of a diagonal horn has almost
perfect circular symmetry even when the amplitudes of the
TE,, and TE;, waveguide modes are very different. For
reasonably long horns, the beamwidths in the principal and
45° planes are equal to within 10%, and all sidelobes are
below — 15 dB. Mode imbalance leads mainly to the genera-
tion of a central cross-polarized lobe. We have presented a
graph, calculated through considering mode slippage, show-
ing the position of the far-field phase center as a function of
the phase delay across the aperture. For long diffraction-
limited horns, the phase center lies in the aperture, whereas
for short constant-beamwidth horns, the phase center lies
behind the throat.

T
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The coupling efficiency to the cross-polarized field has a
minimum value of 9.5%, and the maximum aperture effi-
ciency of a system comprising a diagonal horn, a beam
waveguide, and a Cassegrain antenna is 82%, which com-
pares with 87% for a corrugated horn. The aperture effi-
ciency is greatest, and frequency independent, for a diffrac-
tion-limited horn with its aperture at a tertiary focus; a
secondary focus gives an efficiency that is only 10% lower
suggesting that diagonal horns are suitable for focal-plane
imaging arrays.

In conclusion, diagonal horns offer an inexpensive way of
producing circularly symmetric beams at millimeter and cen-
timeter wavelengths. Their ease of manufacture and compati-
bility with E-plane circuits means that they are also attractive
for submillimeter wavelengths where it is exceptionally dif-
ficult to manufacture and interface conventional horns.
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