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Abstract— We introduce a moment-based framework to de-
sign robust energy-maximising optimal controllers for Wave
Energy Converters (WECs). The technique explicitly allows
model uncertainty in the computation of the optimal control
input, by defining a suitable uncertainty polytope. The resulting
robust optimisation is formulated as a minimax problem which
has to be solved only at a small number of points of this
uncertainty set. The objective function under the proposed
strategy is shown to be of quadratic-type and the optimal
solution is proven to be unique, providing a computationally
efficient robust optimal control framework for WECs. The
performance of the proposed controller is demonstrated by
means of an application case, which considers a heaving point
absorber WEC with imprecisely known model parameters.

I. INTRODUCTION

The energy-maximising control objective for WECs can be
achieved by designing an optimal controller that maximises
the time-averaged power extracted from ocean waves, while
simultaneously ensuring that the intrinsic physical limitations
of both the device and the Power-Take Off (PTO) system
(actuator) are respected consistently. In summary, this control
objective aims at successfully securing maximum power ab-
sorption with minimum risk of component damage. Several
studies address this energy-maximising objective using a
variety of techniques, as discussed, for example, in [1].

Though the number of control techniques proposed in the
literature has increased considerably in recent years, only
few studies (some cases reviewed in the next paragraph)
address the robust design of energy-maximising controllers;
the optimal control input is mostly computed based only on
a nominal model, without considering possible dynamical
deviations (uncertainties) [1]. By way of example, some
parameters of the WEC hydrodynamic model, such as the
viscous drag coefficient [2], can vary significantly due to the
change in the relative motion of the device.

Recent studies that address the optimal control problem
for WECs in a robust sense can be found in [3] and
[4]. To briefly summarise, [3] takes into account possible
deviations from the design model by proposing a nominal
model predictive control strategy with an additional correc-
tion term in the exerted PTO force, as a function of the
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(defined) uncertainty. The study performed in [4] utilises
a spectral direct transcription technique and formulates the
WEC control problem using a robust optimisation approach,
based on key publications on this subject, such as [5].

Recently, an energy-maximising optimal control frame-
work for WECs has been presented in [6], [7]. The math-
ematical formalism behind this strategy is based on the
concept of moment (discussed herein in Section II), which
maps the original optimal control problem into a concave
Quadratic Program (QP), taking also into account motion
(state and input) constraints. As a consequence, the con-
strained energy-maximising optimal control law can be ob-
tained in a computationally efficient way using state-of-the-
art QP solvers, such as those described in [8].

In this study we propose an extension of the energy-
maximising moment-based framework proposed in [6] which
explicitly considers model uncertainty in the computation
of the optimal control law, while systematically respect-
ing motion (state and input) constraints. In particular, we
consider structured (parametric) uncertainty in the WEC
design model, by defining a suitable convex polytope for
the uncertainty set. To this end, we combine the concept of
moment with the robust optimisation principles considered
in [4], by proposing a Worst-Case Performance (WCP)
approach (discussed in Section IV). The performance of the
proposed controller is analysed by means of an application
case considering a heaving point absorber WEC.

The remainder of this paper is organised as follows. Sec-
tion II discusses key theoretical concepts behind the moment-
based framework. Section III describes and formalises the
energy-maximising problem for WECs, while Section IV
details the proposed robust moment-based strategy. Finally,
Section V discusses the application of the strategy for a
spherical heaving point absorber WEC, whilst Section VI
encompasses the main conclusions of this study.

A. Notation and Preliminaries

Standard notation is used throughout this study. R+ (R−)
denotes the set of non-negative (non-positive) real numbers.
C0 denotes the set of pure-imaginary complex numbers and
C<0 denotes the set of complex numbers with negative real
part. The symbol 0 stands for any zero element, dimensioned
according to the context. The notation Nq indicates the set of
all positive natural numbers up to q, i.e. Nq = {1, 2, . . . , q}.
The symbol In denotes the identity matrix of dimension
n× n, while the notation 1n×m is used to denote a n×m
Hadamard identity matrix (i.e. a n ×m matrix with all its
entries equal to 1). The spectrum of a matrix A ∈ Rn×n, i.e.
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the set of its eigenvalues, is denoted as λ(A). The symbol⊕
denotes the direct sum of n matrices, i.e.

⊕n
i=1Ai =

diag(A1, A2, . . . , An). The vectorisation of A ∈ Cn×m is
written as vec{A}. The Kronecker product between two
matrices M1 ∈ Rn×m and M2 ∈ Rp×q is denoted by
M1 ⊗ M2 ∈ Rnp×mq . The Kronecker sum between two
matrices P1 and P2, with P1 ∈ Rn×n and P2 ∈ Rk×k,
is denoted as P1⊕̂P2. The convex hull of a set of points
X = {x1, . . . , xn} ⊂ X , where X is a finite dimensional
Euclidean space, is denoted as conv{X}. The convolution
between two functions f and g over the finite range [0, t],
i.e.

∫ t
0
f(τ)g(t − τ)dτ , is denoted as f ∗ g. The symbol

eqij ∈ Rq×q denote a matrix with 1 in the ij entry and 0
elsewhere. Likewise, eqi ∈ Rq denotes a vector with 1 in
the i entry and 0 elsewhere. Finally, the symbol εn ∈ Rn×1

denotes a vector with odd entries equal to 1 and even entries
equal to 0.

II. MOMENT-BASED THEORY

This section briefly recalls key concepts behind the
moment-based framework, as developed in [9]. Consider
a finite-dimensional, single-input, single-output, continuous-
time system described, for t ∈ R+, by the state-space model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn
and C ∈ R1×n, and assume that (1) is minimal.

Lemma 1. [9] Consider system (1) and the autonomous
signal generator

ξ̇(t) = S ξ(t), u(t) = Lξ(t), (2)

with ξ(t) ∈ Rν , S ∈ Rν×ν , L ∈ R1×ν and ξ(0) ∈ Rν .
Assume that the triple (L, S, ξ(0)) is minimal, λ(A) ⊂ C<0,
λ(S) ⊂ C0 and the eigenvalues of S are simple. Then there
is a unique matrix Π ∈ Rn×ν which solves the Sylvester
equation

AΠ +BL = ΠS, (3)

and the steady-state response of the output of the intercon-
nected system (1)-(2) is yss(t) = CΠξ(t).

Remark 1. The minimality of the triple (L, S, ξ(0)) implies
the observability of (L, S) and the excitability1 of (S, ξ(0)).

Definition 1. The matrix CΠ, with Π solution of the
Sylvester equation (3), is the moment of system (1) at the
signal generator (2).

Remark 2. From now on, we refer to the matrix Y = CΠ
as the moment-domain equivalent of y(t).

III. ENERGY-MAXIMISING CONTROL OF WECS:
PRELIMINARIES

As discussed in [1], [6], the energy-maximising control
criterion for WECs can be generally posed in terms of an

1We refer the reader to [9] for the definition of excitability.

objective function J , which takes into account the useful
energy converted by the PTO in the time interval [0, T ], i.e.

J =
1

T

∫ T

0

u(τ)ẋ(τ)dτ, (4)

where u and ẋ denote the velocity of the device and the PTO
control force, respectively. The calculation of the control law
optimising (4) is non-trivial, mainly due to the irregularity of
the poly-chromatic input, i.e. the wave excitation force (see
Section III-A), to the system (see, for example, [1]).

A. WEC dynamics

The linearised equation of motion for a 1 degree-of-
freedom device can be expressed as follows:

mẍ(t) = Fr(t) + Fh(t) + Fv(t) + Fe(t)− u(t), (5)

where m is the mass of the buoy, x the device excursion,
Fe the wave excitation force, Fh the hydrostatic restoring
force, Fv the viscous drag force, Fr the radiation force, and
u the control (PTO) force. The linearised hydrostatic force
can be written as Fh(t) = −shx(t), where sh > 0 denotes
the hydrostatic stiffness. The radiation force Fr is modelled
based on linear potential theory and, using the well-known
Cummins’ equation [10], can be written as

Fr(t) = −µ∞ẍ(t)−
∫ +∞

0

k(τ)ẋ(t− τ)dτ, (6)

where µ∞ = limω→+∞ Ã(ω), µ∞ > 0, with Ã(ω) the
radiation added mass2, represents the added-mass at infinite
frequency, and k is the (causal) radiation impulse response.
The linearised drag force can be written as Fv(t) = bvẋ(t),
with bv = 1

2ρDCdγ, where ρ is the water density, D is the
characteristic area of the device, Cd > 0 is the viscous drag
force coefficient and γ represents the linearisation coefficient.
Finally, the linearised equation of motion is given by

(m+µ∞)ẍ(t)+k(t)∗ ẋ(t)+bvẋ(t)+shx(t) = Fe(t)−u(t),
(7)

The internal stability of equation (7), for the WEC case, has
been analysed and guaranteed for any physically meaningful
value of the parameters and the convolution kernel k involved
[11].

B. Optimal control formulation and motion constraints

We consider constraints on both the displacement of the
WEC x and the exerted control (PTO) force u, which can
be compactly written as{

|x(t)| ≤ Xmax,

|u(t)| ≤ Umax,
∀t ∈ R+, {Xmax, Umax} ⊂ R+. (8)

Given the objective function defined in (4), the governing
dynamics of the WEC in (7) and the set of state and input

2See [11] for the definition of Ã(ω).
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constraints defined in (8), the constrained energy-maximising
optimal control problem can be stated as

uopt(t) = arg max
u(t)∈R

J

subject to:{
WEC dynamics (7),
state and input constraints (8).

(9)

IV. MOMENT-BASED WEC CONTROL: ROBUST
FORMULATION

In the robust moment-based framework proposed in this
paper we consider parametric uncertainties in (7). In par-
ticular, we assume that the parameters m, bv and sh are
imprecisely known quantities, written as

m = m0 +mδ, bv = b0v + bδv, sh = s0
h + sδh, (10)

where m0, b0v , and s0
h denote the nominal parameter values

and the elements of the vector δ = [mδ, bδv, s
δ
h]ᵀ ∈ P are

variations around the nominal values. It is assumed that P ⊂
R3 is a convex V-polytope (the reader is referred to [12]
for further detail) given as the convex hull of a finite set
of N points (vertices) in space Vδ = {δV1 , . . . , δVN}, i.e.
P = conv{Vδ}.

Considering the equation of motion (7), the imprecisely
known parameters described in (10) and defining the function

U (t) = Fe(t)− u(t)− k(t)∗ ẋ(t), (11)

we write the uncertain system dynamics in standard Σ−∆
configuration [12] with

D(t) = ∆Z (t), ∆ =

mδ 0 0
0 bδv 0
0 0 sδh

 , (12)

Σ :


ϕ̇(t) = A0ϕ(t) +B0U (t) +D0D(t),

Z (t) = AZ ϕ(t) +BZ U (t) +DZ D(t),

yϕ(t) = Cϕ(t),

(13)

where ϕ(t) = [x(t), ẋ(t)]ᵀ ∈ R2 and yϕ(t) = ẋ(t) ∈ R is
the output of the system (the device velocity). The matrices
of the dynamical system Σ in (13) are defined as

A0 =

[
0 1

− s0h
m0+µ∞

− b0v
m0+µ∞

]
, B0 =

[
0
1

m0+µ∞

]
,

AZ =

− s0h
m0+µ∞

− b0v
m0+µ∞

0 1
1 0

 , BZ =

 1
m0+µ∞

0
0

 ,
D0 =

[
0 0 0

− 1
m0+µ∞

− 1
m0+µ∞

− 1
m0+µ∞

]
,

DZ =

− 1
m0+µ∞

− 1
m0+µ∞

− 1
m0+µ∞

0 0 0
0 0 0

 ,
C =

[
0 1
]
.

(14)

Remark 3. The matrix ∆ can be explicitly written as a
function of δ ∈ P , i.e. ∆ = g(δ), with g(δ) =

∑3
i=1 e

3
ii δ e

3
i .

Following the theoretical basis of the moment-based
framework, both the wave excitation force Fe and the control
input u are expressed as output of a signal generator as

ξ̇(t) = S ξ(t), Fe(t) = Le ξ(t), u(t) = Lu ξ(t), (15)

where the dimension of S, Le and Lu are as in (2), ξ(t) ∈ Rν
and the pairs (Le, S) and (Lu, S) are observable. Given the
characteristics of λ(S) (see Lemma 1), we consider the finite
set F = {ωp}fp=1 ⊂ R and write the matrix S in a real
block-diagonal form as

S =

f⊕
p=1

[
0 ωp
−ωp 0

]
, (16)

where ν = 2f , f > 0 integer. Without any loss of generality,
the initial condition of the signal generator is ξe(0) = εν .

With this selection of matrices, the moment of the uncer-
tain system (13), driven by the signal generator (15), can be
computed by solving the Sylvester equation (see Lemma 1)

(A0 +A∆)Π∆
ϕ + (B0 +B∆)(Le −Lu −Z) = Π∆

ϕS, (17)

where Π∆
ϕ ∈ R2×ν and Z is the moment-domain equiva-

lent of the radiation force convolution term (see [6]). The
matrices A∆ and B∆ can be computed immediately, after
algebraic manipulation of (13), and are defined as

A∆ = D0∆(I3 −DZ ∆)−1AZ ,

B∆ = D0∆(I3 −DZ ∆)−1BZ .
(18)

Note that the moment-domain equivalent of the velocity can
be expressed in terms of the solution of (17), straightfor-
wardly, as V∆ = CΠ∆

ϕ .
We now state the following proposition, that establishes

the uniqueness of the solution of the Sylvester equation (17)
associated with the uncertain system Σ.

Proposition 1. Suppose ∆ = g(δ), with δ ∈ P , is such that
system Σ in (13) is asymptotically stable. Then the moment-
domain equivalent of the output yϕ of system (13) is uniquely
determined as

V∆ = (Le − Lu) Ψ∆
ϕ

ᵀ, (19)

where

Ψ∆
ϕ = (Iν ⊗ C)Φ∆−1

ϕ (Iν ⊗ (B0 +B∆)),

Φ∆
ϕ =

(
S ⊕̂ (A0 +A∆)

)
+ Rᵀ ⊗−(B0 +B∆)C,

(20)

with Φ∆
ϕ ∈ R2ν×2ν , Ψ∆

ϕ ∈ Rν×ν and where R ∈ Rν×ν is a
block-diagonal matrix defined as

R =

f⊕
p=1

[
rωp mωp
−mωp rωp

]
, (21)

with rωp = B̃(ωp), mωp = ωp

[
Ã(ωp)− µ∞

]
, (22)

where Ã(ω) is the radiation added-mass and B̃(ω) is the
radiation damping3 of the device at each specific frequency
associated with the eigenvalues of the matrix S.

3See [11] for the definition of B̃(ω).
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The result of Proposition 1 provides a method both to
guarantee the uniqueness and to perform the computation
of the moment-domain equivalent of the uncertain system Σ
defined in (13). Using these theoretical results, and following
a similar analysis to that of [6] for the nominal WEC model
case, we solve the moment-based formulation of the energy-
maximising optimal control problem (9) when considering
the uncertain system Σ.

Proposition 2. Consider the (motion unconstrained) energy-
maximising optimal control problem (9). Let ωp = pω0 in
(16) for all p ∈ Nf . Then the optimal control law uopt(t) =
Lopt
u ξ(t) that maximises J over the time period [0, T ], with

T = 2π/ω0, can be computed in the moment-domain as the
solution of the QP problem

Lopt
u = arg max

Lu∈R1×ν
−1

2
LuΨ∆

ϕ
ᵀLᵀ

u +
1

2
LeΨ

∆
ϕ

ᵀLᵀ
u. (23)

Proposition 3. The QP optimisation problem defined in (23)
has a unique global solution if and only if

b∆v + b0v + rωp > 0, for all p ∈ Nf . (24)

Proposition 3 states that the existence of a unique global
maximiser for the optimal control input under the QP
problem (23) is completely determined by three particular
quantities: the radiation damping of the device at the fre-
quencies associated with the eigenvalues of the matrix S,
and the nominal value and the uncertainty of the viscous
force coefficients, i.e. b0v and bδv , respectively.

A. Robust optimisation problem
In this section, following the approach proposed in [4], we

re-formulate the moment-domain optimisation problem (23)
based on the underlying principles of robust optimisation
theory developed in key studies, such as [5]. The underpin-
ning concept behind this approach originates in the field of
decision theory and is known as the Worst-Case Performance
(WCP) method. For our moment-domain QP problem in
equation (23), the (well-posed) robust QP formulation can
be defined as follows.

Problem 1 (Robust formulation). Suppose condition (24)
holds for every δ ∈ P and every p ∈ Nf . Then the robust
formulation of the (motion unconstrained) QP problem (23)
can be written as

LRC
u = arg max

Lu∈R1×ν
min
δ∈P
−1

2
LuΨ∆

ϕ
ᵀLᵀ

u +
1

2
LeΨ

∆
ϕ

ᵀLᵀ
u, (25)

where uRC(t) = LRC
u ξ(t) denotes the worst-case performance

energy-maximising optimal control law.

Problem 1 computes the worst-case scenario for the
energy-maximising problem (23) taking into account every
possible uncertainty δ lying inside the polytope P .
Remark 4. Standard nonlinear programming routines can be
used to solve (25). Moreover, given the concavity of the QP
problem and the convexity of the polytope P , the solution
of (25) always lies precisely at one of the vertices of P [8],
[13], i.e. it is sufficient to solve equation (25) only for the
N elements of the finite set Vδ .

B. Handling of motion constraints

The set of motion constraints (8) can be mapped to their
respective moment-domain equivalents following the theory
developed in [6], as4{
|x(t)| ≤ Xmax,

|u(t)| ≤ Umax,
7→

{∣∣V∆S−1eStεν
∣∣ ≤ Xmax,∣∣Lu eStεν∣∣ ≤ Umax, (26)

to then be enforced only at a set of specified time instants
T = {ti}Nci=1 ⊂ R+. Given that it is sufficient to solve the
robust formulation (25) only at the finite set of vertices of the
convex polytope P (see Remark 4), a sensible approach to
incorporate state constraints into Problem 1 is to guarantee
that such constraints are satisfied at every point of the set
Vδ . This effectively ensures that (8) is consistently fulfilled
for every δ ∈ P [8], [13].

By defining the matrices Λ ∈ Rν×Nc and Ω ∈ Rν×2Nc as

Λ =
[(
eSt1εν

)
. . .

(
eStNc εν

)]
, Ω =

[
Λ −Λ

]
, (27)

and substituting V∆ from (19) in the (mapped) constraints
of equation (26), the motion constrained robust energy-
maxisimising optimal control problem can be written in the
moment-domain as an inequality-constrained minimax QP
problem.

Problem 2 (Constrained robust formulation). Suppose con-
dition (24) holds for every δ ∈ P and every p ∈ Nf . Then
the motion constrained robust QP formulation is given by

LRC
u = arg max

Lu∈R1×ν
min

δ∈Vδ⊂P
−1

2
LuΨ∆

ϕ
ᵀLᵀ

u +
1

2
LeΨ

∆
ϕ

ᵀLᵀ
u,

subject to:

LuARC
x ≤ BRC

x , LuARC
u ≤ BRC

u ,
(28)

where

ARC
x =

[
Aδ1x , . . . ,AδNx

]
, BRC

x =
[
Bδ1x , . . . ,BδNx

]
,

ARC
u = Ω, BRC

u = Umax11×2Nc ,
(29)

and the matrices Aδix ,Bδix are defined as

Aδix = −Ψ∆i
ϕ

ᵀS−1Ω, Bδix = Xmax11×2Nc + LeAδix , (30)

where Ψ∆i
ϕ is computed as Ψ∆

ϕ in (20) with ∆ = g(δi),
δi ∈ Vδ , for all i ∈ NN (we refer the reader to Remark 3
for the definition of the mapping g).

Remark 5. The computation of the matrices ARC
u and BRC

u

can be performed independently from the polytope P , i.e.
the definition of the PTO force constraint does not depend
on the uncertainty set. Though this is not the case with the
matrices ARC

x ,BRC
x , which explicitly depend on the nature of

the polytope P (i.e. the set of vertices Vδ), we note that it
is sufficient to compute both matrices only once, which can
be readily done offline after the definition of the set P .

4Note that the moment-domain equivalent of the position x can be
expressed as V∆S−1 [9].

4289



V. APPLICATION TO A HEAVING POINT ABSORBER WEC

We consider a spherical heaving point absorber WEC with
a diameter of 5 [m], subject both to regular (monochromatic)
and irregular (polychromatic) waves. The nominal values for
the model parameters involved in Σ, i.e. equation (13), are
set to m0 = 30.34× 103 [kg], b0v = 29.45× 103 [kg/s] and
s0
h = 196.87× 103 [kg/s2].

It is now useful to write the nominal parameter b0v as b0v =
1
2ρAdC

0
dγ

0, where C0
d and γ0 stand for the nominal viscous

drag and nominal linearisation coefficients, respectively. To
determine the polytope P , we assume that both Cd and γ
are uncertain, specifically within ±10% of their respective
nominal values. In this study we make explicit use of our
robust moment-based strategy to overcome the important
drawback of choosing a fixed value for Cd and γ (see, for
example, [2], [14]), by allowing these quantities to vary over
a suitably defined convex polytope P . For this example case
we assume that both Cd and γ vary ±10% around each of
their respective nominal values. Following the definition of ∆
in (13), these uncertainty levels can be covered in this robust
approach by assuming that the viscous force coefficient bv
can vary within a range of ±25% of its nominal value b0v .
Finally, we consider that the hydrodynamic stiffness sh can
vary within ±15% of its nominal value s0

h, and that there is
no uncertainty in the mass of the device5.

To be precise, we define the polytope P as the convex hull
of the set Vδ = {δV1 , δV2 , δV3 , δV4 } with vertices

δV1 =
[
0,−0.25 b0v, 0.15 s0

h

]ᵀ
,

δV2 =
[
0, 0.25 b0v, 0.15 s0

h

]ᵀ
,

δV3 =
[
0, 0.25 b0v,−0.15 s0

h

]ᵀ
,

δV4 =
[
0,−0.25 b0v,−0.15 s0

h

]ᵀ
.

(31)

This polytope is depicted in Figure 1, where each vertex δVi
is specified by a white circle. In addition to the set Vδ , Figure
1 indicates two important elements contained in the polytope
P: δ0 (indicated with a solid-black dot in Figure 1) and δ?

(indicated with a green star in Figure 1). The former defines
the nominal system Σ0, i.e. system Σ in (13) when ∆ =
g(δ0) = 0, while the latter defines the position of the actual
system Σ? inside the polytope, i.e. system Σ with ∆ = g(δ?).
For the following case, δ? = [0, 0.1 b0v,−0.2 s0

h] ∈ P .

Fig. 1. Convex polytope P ⊂ R3 considered for the case study.

5This assumption does not pose any loss of generality. It is only
considered to simplify the definition of the convex polytope P and its
corresponding visualisation in Figure 1.

We now define three scenarios, which are consistently
considered in the remainder of this section. Note that we
also provide the color and line codes used in the upcoming
figures for each particular scenario.

Ideal performance: the optimal control input is
computed using the nominal approach, i.e. using the
nominal model Σ0 and without considering any possible
uncertainty, and applied to the same nominal system.

Nominal performance: the optimal control input is
computed using the nominal approach, i.e. using the
nominal model Σ0 and without considering any possible
uncertainty, and applied to the actual system Σ?.

Robust performance: the optimal control input is
computed using the robust approach proposed in this
paper, i.e. the control law explicitly uses the knowledge
of the uncertainty polytope P , and applied to the actual
system Σ?.

We first assess the performance of the robust moment-
based controller in regular waves without motion constraints.
Figure 2 shows the value of the objective function J
(absorbed power) for several wave periods T [s], with T ∈
[3, 12], and wave height H ∈ [1, 3] [m]. It can be readily
appreciated that the robust strategy outperforms the nominal
case when applied to the actual model Σ?, being able to
control the WEC device reasonably close to its maximum
achievable performance for the complete set of the analysed
wave periods and different wave heights.

0

0.5

1

1

1.5

2

105

2.5

3

21.5 4
2 6

82.5 10
3 12

Fig. 2. Value of the objective function J for the ideal, nominal and robust
performance cases, with varying wave period T and wave height H .

In what follows we analyse the performance of the robust
moment-based controller under polychromatic excitation and
with active motion (state and input) constraints. The dis-
placement and control input constraints are set to Xmax = 1
[m] and Umax = 1 × 105 [N], respectively. To generate the
irregular waves case, we consider a JONSWAP spectrum [15]
with a significant wave height of 3 [m], peak wave period
of 8 [s] and peak enhancement factor of 3.3. Figure 3 shows
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both the device displacement (top) and velocity (centre) in
the nominal and robust performance cases. One of the key
aspects to highlight in the device displacement case is the
fact that in the nominal performance case the displacement
constraint is violated at several time instants. Though this
constraint violation is not significant (in magnitude) for this
example case, it happens consistently in time and can po-
tentially damage the device components. Unlike the nominal
performance case, when the robust optimal control input is
applied to the actual system, the displacement limitation of
±1 [m] is consistently respected over the complete simula-
tion time, as a consequence of the definition of the constraints
in the optimisation problem (25). In the case of the device
velocity, both scenarios perform similarly, preserving the
well-known in-phase6 phenomenon with the excitation force
(depicted in dotted-blue line), coinciding with the results
of optimal energy absorption for unconstrained motion in
regular waves (see [11]). Lastly, Figure 3 (bottom) depicts
the optimal control laws computed for both the nominal and
the robust performance cases. Note that both control laws
always respect the PTO force limitation, as a consequence
of the fact that such a constraint is formulated independently
from the definition of the uncertainty (see Remarks 6 and 7).
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Fig. 3. Device displacement (top), velocity (centre) and optimal control
force (bottom) for the ideal, nominal and robust performance cases, under
state and input constraints. In the velocity figure, the wave excitation force
Fe is depicted, using a dotted-blue line.

VI. CONCLUSIONS

This study proposes a moment-based energy-maximising
technique which allows the user to consider model uncer-

6The concept of phase is not defined for a signal with multiple frequency
components. Herein, we use the expression “in-phase” to denote that the
peaks (maxima and minima) of both signals are aligned in time.

tainty in the computation of the energy-maximising optimal
control input. This robust approach effectively incorporates
parametric uncertainty in the WEC moment-based energy-
maximising optimisation problem, by means of a suitable
definition of an uncertainty (convex) polytope, and exploiting
the underpinning concept of the Worst-Case Performance
method. The proposed optimisation is formulated as a mini-
max problem which has to be solved only at the vertices of
the polytope. This is due to the concavity of the objective
function obtained once the state variables and both the ex-
ternal and control inputs are mapped to the moment-domain.
As a result, this strategy provides a computationally efficient
robust optimal control law which is able to consistently
satisfy state and input constraints under the presence of
parametric uncertainty.
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