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Abstract—This paper considers the ergodic weighted sum rate
maximization (WSRMax) problem for an underlay cognitive
radio multiple input single output (MISO) broadcast channel.
In this setting, a secondary network, consisting of a base-station
with M transmit antennas and K single-antenna secondary users
(SUs), is allowed to share the same spectrum with a primary
user (PU), under an average total transmit power (ATTP)
constraint and an average interference power (AIP) constraint
at the PU receiver. We show that the ATTP constraint always
remains active, and as the maximum ATTP Pav → ∞, the
ergodic WSR approaches infinity similar to conventional non-
CR networks. We propose a novel low-complexity suboptimal
beamforming scheme termed “Partially-Projected & Regularized
Zero-Forcing Beamforming” (PP-RZFBF) with a close-form
beamformer, by combining the regularized zero-forcing (RZF)
with the channel projection idea, to achieve a tradeoff between
maximizing secondary throughput and suppressing secondary
multiuser interference as well as the interference on PU. In order
to analyze and optimize the performance of this scheme, we
employ the large system analysis technique, in the limit as M
and K approach infinity with a fixed ratio r = K

M
. This allows

us to derive deterministic limiting approximations for the PP-
RZFBF problem which enables us to determine asymptotically
optimal beamformers for PP-RZFBF. In the large system limit,
for the PP-RZFBF scheme, we also find that as Pav → ∞,
the interference on PU caused by the secondary transmission
is asymptotically removed. A special suboptimal beamforming
scheme called “CZFBF” is also considered, which involves zero
forcing all the interference, including the secondary multiuser
interference as well as the interference imposed on PU. Various
interesting comparisons between PP-RZFBF and CZFBF are
provided. Numerical simulations illustrate that the asymptotically
optimal beamformers for the PP-RZFBF scheme provide an
excellent performance even for finite-sized systems.

Index Terms—Underlay cognitive radio, secondary multiple-
input single-output broadcast channel, weighted sum rate maxi-
mization, beamforming design, large system analysis.

I. INTRODUCTION

COGNITIVE radio (CR) has been promoted as a promis-
ing approach for dramatically increasing the efficiency of

spectrum utilization, it involves allowing unlicensed/secondary
users (SUs) to access the spectrum originally licensed to
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primary users (PUs), under various operational constraints. Ef-
fectively, three categories of CR network paradigms have been
proposed: interweave, overlay, and underlay [1]. This paper
will focus on underlay systems, where the SUs can transmit
simultaneously with PUs, as long as the resulting interference
on PUs does not exceed a tolerable limit. Therefore the trans-
mission strategies of SUs should be designed properly so as to
achieve the best trade-off between maximizing the secondary
throughput and minimizing the interference imposed on PUs.

The well-studied multi-antenna (MIMO) technology has
been increasingly used in the secondary network to sig-
nificantly boost the secondary throughput. A CR point-to-
point MIMO network throughput maximization problem was
optimally solved in [2], which first introduced the ‘channel
projection’ idea (projecting secondary channels into certain
null space of secondary-to-primary interference channels) to
design suboptimal transmission schemes. It also showed that
beamforming (BF) is the optimal transmit strategy for the
corresponding MISO case. In [3], the authors considered the
sum-rate maximization (SRMax) problem in a CR SIMO mul-
tiple access channel (MAC). In [4], the authors investigated
the weighted SRMax (WSRMax) problem for CR Multi-SUs
MIMO broadcast channel (BC) with a dirty paper coding
(DPC) precoder (motivated by the fact that DPC is the optimal
capacity achieving scheme for non-CR MIMO BC [5]), which
is shown to be a nonconvex problem but can be transformed
into an equivalent convex CR MIMO MAC problem by apply-
ing the notion of BC-MAC duality. Throughput maximization
problems with linear BF schemes for CR MISO interference
channel (IFC) networks were studied in [6] and [7], where in
[6], the authors proposed distributed BF and rate allocation for
maximizing the smallest weighted rate. See also [7], where the
authors used an iterative algorithm to find a locally optimum
for the non-convex WSRMax problem. In the case of CR
MIMO ad hoc networks, the authors of [8] derived a semi-
distributed algorithm and an alternative centralized algorithm
for obtaining a locally optimal linear precoder for the non-
convex WSRMax problem. A CR multi-antenna two-way relay
network was considered in [9], which proposed optimal relay
BF structure and suboptimal relay BF schemes with a subspace
projection idea similar to [2]. In [10], the authors also provided
a overview of various CR MIMO networks.

In this paper, we address an ergodic secondary WSRMax
problem for an underlay CR multi-SUs MISO BC (CR-MISO-
BC) network, as shown in Fig.1, where a secondary multi-
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user MISO downlink is allowed to share the same spectrum
with an existing single-antenna PU, subject to an average
total transmit power (ATTP) constraint at the secondary base-
station (CR-BS) and an average interference power (AIP)
constraint at the PU to limit the interference caused by the
secondary transmission. The system setting is similar to [4],
but unlike [4], we consider a linear precoding transmit strategy
instead of nonlinear DPC. This is motivated by the fact
that despite the optimality of DPC, it is too complex to be
implemented in practical systems. The suboptimal but low-
complexity linear precoding technique provides a good trade-
off between performance and complexity, and consequently
much more attractive in practice. Similar to CR point-to-point
MISO case [2], we also find that BF is the optimal secondary
transmit strategy for our CR-MISO-BC. Although the CR-
MISO-BC WSRMax problem is non-convex and NP-hard,
a few existing algorithms for solving WSRMax problem of
traditional non-CR networks [11][12][13][14][15][16] and CR
networks [8][7], can be easily applied to find a globally/locally
optimal downlink BF. As an example, we design a locally
optimal BF algorithm named “Beamforming via Lagrangian
dual problem with zero-gradient iterative method” (BF-LDP-
ZGIM), based on a ZGIM algorithm proposed by [15][7].
Due to space constraints, we do not include its details but
they can be found in Section III-A of a longer version of this
paper [17]. Almost all of these algorithms generally have high
computational complexity and can only obtain the optimal BF
numerically with no explicit form, thus hindering any further
theoretical analysis. Motivated by this, in this paper, we will
focus on deriving low-complexity albeit suboptimal closed-
form beamformers for the CR-MISO-BC secondary WSRMax
problem. Our main contributions are summarized as follows:

• In our CR-MISO-BC WSRMax problem, we prove that
under all circumstances, the ATTP constraint always
remains active, and as the maximum ATTP Pav → ∞,
the ergodic WSR approaches infinity, and the optimal
transmit strategy of CR-MISO-BS system is BF. These
properties are in contrast with prior research on the
CR network with single-antenna transmitters (such as
[18][19][3]), where with fixed Qav (maximum AIP), in
the high Pav regime, only the AIP constraint is satisfied
with equality and the achievable rate remains upper
bounded.

• Motivated by difficulties imposed by the non-convexity
of the associated optimization problem, we derive a
low-complexity albeit suboptimal strategy (called ’PP-
RZFBF’) with a closed-form beamformer, by combining
the regularized zero-forcing (RZF) [20] (well studied
in traditional non-CR networks to control multiuser
interference) with the ’channel projection’ idea proposed
in [2][10][9] (to control the secondary interference on
PU), in order to achieve a tradeoff between maximizing
secondary throughput and suppressing secondary mul-
tiuser interference as well as the interference on PU.

• Designing the PP-RZFBF beamformer involves a two-
dimensional brute-force search for finding two crucial
parameters: the optimal regularization parameter α (to
control multiuser interference) and the projection control

Fig. 1. CR-MISO-BC system model.

parameter β (to control the secondary interference on
PU), which is obviously computationally rather pro-
hibitive. This motivates us to derive deterministic large
system approximations (inspired by [21][22][23][25]
which consider non-CR networks and have the regu-
larization parameter α only) for the PP-RZFBF scheme
in the large system limit (as M and K tend to infinity
with a fixed ratio r = K

M ), which enables us to derive
the asymptotically optimal value of α and the range of β
for the PP-RZFBF scheme. This allows us to apply the
resulting values of α and β into our proposed PP-RZFBF
scheme to obtain a low-complexity suboptimal beam-
former for finite-sized practical CR-MISO-BC systems.
We also find that in the large system limit, as Pav → ∞,
for the PP-RZFBF scheme, the interference on PU
caused by the secondary transmission is asymptotically
removed, i.e, the AIP constraint becomes asymptotically
inactive.1

• We also propose a special suboptimal beamforming
scheme ’CZFBF’ by zero forcing all the interference
(including the secondary multiuser interference as well
as the interference imposed on PU due to the secondary
transmission). Various interesting comparisons between
PP-RZFBF and CZFBF are provided.

Finally note that a preliminary version of this work with
some partial results has been presented in a conference paper
[28]. The current journal version provides a significantly
detailed and extended version with rigorous mathematical
analysis and a number of novel theoretical results in the large
systems analysis of CR-MISO-BC systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an underlay cognitive radio MISO broadcast
channel (CR-MISO-BC), as illustrated in Fig.1, where a
secondary base station (CR-BS) equipped with M ≥ 2 trans-
mit antennas communicates with K single-antenna secondary
users (SUs), in the presence of a single-antenna primary user
(PU). Regardless of the on/off status of the PU, the secondary
network is allowed to share the same spectrum with the PU,

1See also [24] for similar results for the non-CR scenario in massive MIMO
networks even with hardware impairments at both the base station and user
equipments.
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as long as the degradation of the received signal quality of PU
caused by the interference due to the secondary transmission
is below an acceptable level. Let hi ∈ CM×1, i = 1, . . . ,K
denote the channel vector from the CR-BS to the i-th SU
(denoted by SUi) and h0 ∈ CM×1 represent the channel
vector from the CR-BS to the PU. All channels involved
are assumed to be flat-fading, and the elements of each
hj , ∀j = 0, 1, . . . ,K are assumed to be i.i.d complex Gaussian
random variables with zero mean and unit variance. The
optimal Gaussian codebook is used by the transmitter at CR-
BS. Let H denote the Hermitian transpose and xi ∈ CM×1

be the desired signal vector to be transmitted to the SUi, then
the received signal at the SUi, is given as,

yi = hH
i xi +

K∑
j=1,j �=i

hH
i xj + ni, i = 1, . . . ,K, (1)

where ni is the additive white Gaussian noise at the receiver
SUi with ni ∼ CN (0, 1). 2 Let Si � 0 ∈ CM×M indicate
the transmit signal covariance matrix for SUi, ∀i = 1, . . . ,K .
Then the average total transmit power (ATTP) constraint is
given as E

[∑K
i=1 tr{Si}

]
≤ Pav ( Pav is the maximum

average transmit power), where the expectation is taken over
all channel states {h0, h1, . . . , hK}.3

Each secondary receiver only decodes its desirable informa-
tion and treats the remaining interference as noise. Thus given
H � {h1, . . . , hK} ∈ CM×K , h0 and S � {S1, . . . , SK}, the
signal to interference plus noise ratio (SINR) at each receiver
SUi is defined as,

SINRi =
hH
i Sihi

1 +
∑K

j=1,j �=i hH
i Sjhi

, i = 1, . . . ,K. (2)

The ergodic WSR of this CR-MISO-BC system is then given
as,

Rsum =

K∑
i=1

wiE[log(1 + SINRi)], (3)

where wi is the weight for SUi and the expectation is taken
over all CSI, i.e., H and h0. A common way to protect PU
is to impose either an average or a peak interference power
(AIP/PIP) constraint at the PU [29] to regulate the interference.
We adopt the AIP constraint in this paper, which can be written
as, E[

∑K
i=1 hH

0 Sih0] ≤ Qav, with Qav denoting maximum
average interference power tolerated by the PU.

Therefore, with the assumption of perfect CSI at both
transmitter and receivers (i.e., CR-BS knows H and h0, and
each user knows its own channel information), the WSRMax
problem for CR-MISO-BC, under both an ATTP constraint at
CR-BS and an AIP constraint at the PU, can be formulated
as,

2Here, similar to [2][30], we assume the background noise at each SU
receivers includes the interference from the primary transmitter, which is non-
white in general, but can be assumed to be approximately white Gaussian by
applying a noise-whitening filter [2] when the PR transmitter also uses a
Gaussian codebook.

3As we will show in (4), the design of optimal transmit signal co-
variance matrices Si,∀i = 1, . . . ,K , depends on the channel conditions
{h0, h1, . . . , hK}. Thus {Si}Ki=1 is a function of {h0, h1, . . . , hK}. For
simplicity however, we abbreviate Si(h0, h1, . . . , hK) as Si throughout the
paper.

maximize
Si�0,∀i

Rsum =

K∑
i=1

wiE

[
log

(
1 +

hH
i Sihi

1 +
∑K

j=1,j �=i hH
i Sjhi

)]

subject to E

[
K∑
i=1

tr{Si}
]
≤ Pav, E

[
K∑
i=1

hH
0 Sih0

]
≤ Qav. (4)

Proposition 1: In Problem (4), the maximum ergodic WSR
Rsum → ∞, as Pav → ∞; The optimal Si, ∀i = 1, . . . ,K for
Problem (4) satisfies Rank(Si) ≤ 1, i.e., the optimal secondary
transmit strategy of CR-MISO-BS system is BF; and given any
Pav and Qav, the ATTP constraint in Problem (4) is always
satisfied with equality.

Proof: See Appendix A.
Remark 1: The above properties of the CR-MISO-BC sys-

tem in Proposition 1 are different from prior research on
the CR network with single-antenna transmitters (such as
[18][19][3]), where in the high Pav regime, only the AIP
constraint is active and the achievable rate approaches a
constant.

Based on Proposition 1, Si (∀i = 1, . . . ,K) can be
expressed in the form of Si = qiq

H
i , where qi ∈ CM×1

denotes the transmit beamforming vector. Then, Problem (4)
can be simplified as,

maximize
qi,∀i=1,...,K

Rsum =

K∑
i=1

wiE

[
log

(
1 +

|hH
i qi|2

1 +
∑K

j=1,j �=i |hH
i qj |2

)]

subject to E

[
K∑
i=1

|qi|2
]
≤ Pav, E

[
K∑
i=1

|hH
0 qi|2

]
≤ Qav. (5)

It is easy to verify that Problem (5) is non-convex. Thus, find-
ing the global optimum is challenging. However, there are a
number of existing algorithms for globally optimizing non-CR
WSRMax problems, such as, branch-and-bound algorithms
introduced in [11][12][13], a monotonic optimization approach
proposed in [14] and a decentralized algorithm derived in
[31]. Other approaches, such as a semi-distributed algorithm
and an alternative centralized algorithm introduced by [8] (for
solving CR MIMO Ad Hoc WSRMax problems), successive
convex approximation with second-order cone programming
derived by [16], as well as a ZGIM algorithm proposed by
[15][7], can also be employed to obtain a local optimum
for Problem (5). As mentioned earlier, we use our own
’BF-LDP-ZGIM’ algorithm (adapted from ZGIM for solving
Problem (5)) (see Section III-A of [17] for further details)
as a benchmark for performance comparison of our proposed
suboptimal algorithms. In general, there is no closed form
solution for Problem (5), and although we can numerically
obtain globally/locally optimum BF using adaptations of the
above algorithms, they have high computational complexity
and are not amenable to further analysis of the BF solution.
Motivated by this, in the next section, we will focus on
deriving low-complexity albeit suboptimal BF strategies for
Problem (5) with a simple explicit BF solution.

III. SUBOPTIMUM BEAMFORMING DESIGN

The beamforming vector qi, ∀i = 1, . . . ,K also can be
expressed as qi =

√
pigi, where pi and gi are the transmit

signal power and the beamforming weight vector for SUi

respectively.
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A. Partially-projected and Regularized Zero-forcing Beam-
forming (PP-RZFBF)

Let G � {g1, . . . , gK} ∈ CM×K denote the beamforming
weight matrix. Similar to [10], we first look at two extreme
cases of Problem (5):

Case I (High Qav): In this scenario, we assume that
Qav is large enough to make the AIP constraint inactive.
Problem (5) reduces to the conventional non-CR MISO-BC
WSRMax problem with the ATTP constraint only. A popular
and effective suboptimal scheme for this conventional scenario
is known as zero-forcing beamforming (ZFBF)[20], where the
BF vectors are designed to completely remove the multiuser
interference. One straightforward choice of such beamforming
matrix, denoted as GI, is the pseudo-inverse of HH, i.e.,
GI = H(HHH)−1. However, as pointed out by [20], ZFBF
has some shortcomings, such as, the inverse of HHH may
not exist and when K = M , the sum-rate of ZFBF does
not scale linearly with K (or M ). These drawbacks can be
improved by adding a regularization term before inverting,

i.e., GI = H(HHH + αI)−1 (a)
= (HHH + αI)−1H, known

as regularized zero-forcing beamforming (RZFBF). α > 0
is the regularization parameter which controls the amount of
multiuser interference, and (a) is an equivalent expression as
given in [21][22].

Case II (Qav = 0): In this case, the AIP constraint in
Problem (5) becomes hH

0 gi = 0, ∀i = 1, . . . ,K , which implies
zero interference on the PU caused by the secondary network.
For this scenario, by applying the “channel projection” idea
introduced by [2][10], we first project H into the null space
of h0, given as H⊥ = (I − h0h

H
0 )H, where h0 = h0

||h0|| , and
then design the beamforming matrix, denoted as GII, based
on the projected channel matrix H⊥, so that the constraints
hH
0 gi = 0, ∀i = 1, . . . ,K are guaranteed to meet. More

specifically, we have H = H⊥ + h0h
H
0 H and hH

0 H⊥ = 0,
which gives HHgi = HH

⊥gi, ∀i = 1, . . . ,K . Applying this
into (5), Problem (5) again becomes a conventional non-
CR MISO-BC WSRMax problem with channel matrix H⊥,
where according to the Case I, suboptimal RZFBF scheme
can be applied to design the beamforming matrix, given as
GII = H⊥(HH

⊥H⊥+αI)−1 = (H⊥HH
⊥+αI)−1H⊥. Obviously,

we have hH
0 GII = 0, i.e., hH

0 gi = 0, ∀i = 1, . . . ,K .
Remark 2: From the definition of H⊥, we have

rank(H⊥) ≤ min
[
rank

(
I − h0h

H
0

)
, rank(H)

]
. Since

rank
(

I − h0h
H
0

)
=M − 1 and rank(H) ≤ min(M,K), thus

we can obtain rank(H⊥) ≤ min(M − 1,K) < M . When
K ≥ M , Rank(H⊥) < Rank(H) as a result of orthogonality
to h0, and both H⊥HH

⊥ and HH
⊥H⊥ are rank-deficient and

not invertible, which thus requires α �= 0.
In the two special cases mentioned above, the beamforming

matrix is designed by applying the RZFBF scheme based on
a certain form of H. By carefully comparing the expressions
of GI and GII, we observe that as Qav becomes smaller,
the certain form of H mentioned above used for beamformer
design changes from H to H⊥. It is seen that as Qav decreases,
the beamformer design evolves along a sequence of subspaces
of H with increasing amounts of projection into the null
space of h0 [10]. This motivates a general heuristic suboptimal

method for Problem (5) for any given Qav, by combining RZF
[20] (to control secondary multiuser interference) with the
‘channel projection’ idea [2][10][9] (to control the secondary
interference on PU), in order to achieve a tradeoff between
maximizing secondary throughput and suppressing secondary
multiuser interference as well as the interference on PU. We
call it the partially-projected-RZFBF (PP-RZFBF) scheme. In
this scheme, first, similar to [2][10][9], the secondary channel
matrix H is partially projected into the null space of h0,
denoted as H̃ and given as [9], H̃ = (I − βh0h

H
0 )H, where

0 ≤ β ≤ 1 is the projection control parameter; then RZFBF
algorithm is applied to H̃ to obtain the beamforming matrix,
namely,

G = H̃(H̃
H

H̃ + αI)−1 = (H̃H̃
H
+ αI)−1H̃, (6)

which gives, gi = (H̃H̃
H

+ αI)−1h̃i, ∀i = 1, . . . ,K where
the vector h̃i is the ith column of H̃. Obviously, β = 0 and
β = 1 correspond to Case I and Case II, respectively.

Thus, let H̃−i � {h̃1, . . . , h̃i−1, h̃i+1, . . . , h̃K} ∈ CM×K−1

and P−i � diag(p1, . . . , pi−1, pi+1, . . . , pK), Problem (5)
with the suboptimal PP-RZFBF scheme can be reduced to,

maximize
0≤β≤1, α>0, {pi≥0}K

i=1

RPP-RZFBF =

K∑
i=1

E [wi log(1 + SINRi)]

subject to E [φ] ≤ Pav, E [ψ] ≤ Qav, (7)

where

SINRi =
pi|hH

i (H̃H̃
H
+ αI)−1h̃i|2

1 + hH
i (H̃H̃

H
+ αI)−1H̃−iP−iH̃

H
−i(H̃H̃

H
+ αI)−1hi

,

φ �
K∑
i=1

pih̃
H
i (H̃H̃

H
+ αI)−2h̃i,

ψ �
K∑
i=1

pi|hH
0 (H̃H̃

H
+ αI)−1h̃i|2. (8)

Although its complexity is largely reduced compared to
Problem (5), Problem (7) is still a non-convex optimization
problem. However, for given β and α, a locally optimal
power allocation scheme can be obtained by using the SCALE
algorithm proposed by [32]. Then, we can utilize a two-
dimensional exhaustive search method to get the optimal β and
α, in order to obtain a locally optimal PP-RZFBF beamformer.
Obviously, a simultaneous exhaustive search over both β and
α is computationally prohibitive, especially since the searching
range for α is from 0 to ∞. This motivates us to do a large
system analysis in Section IV, which enables us to derive
simple but asymptotically optimal values of β∗ and α∗.

Remark 3: When β = 1, H̃ becomes H⊥, which, as we
mentioned before, is orthogonal to h0 and gives hH

0 gi =
0, ∀i = 1, . . . ,K , i.e., zero interference on the PU. Therefore,
in Problem (7), when β = 1, the AIP constraint is always
inactive unless Qav = 0.

B. Complete Zero-forcing Beamforming (CZFBF)

Zero interference based suboptimal BF design idea has been
extended to the CR network, for example, in [33], a ZF block
diagonalization precoder is developed for a CR MIMO BC
network. Here, we will also consider a ZF based suboptimal
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algorithm for Problem (5), as a performance benchmark for
PP-RZFBF, by zero forcing all the interference (including the
secondary multiuser interference as well as the interference
imposed on PU due to the secondary transmission), where
each beamforming vectors gi, ∀i = 1, . . . ,K, satisfies hH

j gi =
0, ∀j �= i, and hH

0 gi = 0. We call this special suboptimal
ZF solution as the “Complete-ZFBF (CZFBF)” scheme. Let
F−i � {h0, h1, . . . , hi−1, hi+1, . . . , hK} ∈ CM×K , then the
above ZF criteria can be rewritten as FH

−igi = 0, thus gi is in
the null space of the matrix FH

−i.
1) When K < M , rank(FH

−i) < M , and thus FH
−igi = 0, ∀i

has an infinite number of solutions. One such solution can be
chosen for the CZFBF scheme as G = H⊥(HH

⊥H⊥)
−1, where

H⊥ = (I − h0h
H
0 )H.

Remark 4: Comparing the CZFBF and the PP-RZFBF
beamforming matrices, it is seen that the CZFBF scheme for
K < M case obviously corresponds to the PP-RZFBF scheme
with β = 1 and α = 0. We will show later in Section IV that a
large system analysis can be used to obtain an asymptotically
optimal beamformer with α∗ = K

Pav
and a range of values for

the optimal β∗. Then the resulting α∗ and β∗ can be applied in
our proposed PP-RZFBF scheme to obtain a low-complexity
suboptimal beamformer (called PP-RZFBF-ABF) for finite-
sized CR-MISO-BC systems. According to Proposition 6, in
the large system limit, as Pav → ∞, the set of optimal β∗

collapses to just one element ’1’. Thus, in high Pav , α∗ = K
Pav

and β∗ → 1 can be applied to obtain the PP-RZFBF-ABF
scheme for use in the finite CR-MISO-BC systems. It follows
then that, for given finite values of K and M with K < M ,
the PP-RZFBF-ABF scheme approaches the CZFBF scheme
as Pav → ∞.

2) When K ≥ M , rank(FH
−i) = M , thus FH

−igi = 0
only has a trivial solution, i.e., gi = 0. In this case, all the
beamforming vectors are zero vectors, implying that the CR-
BS is not transmitting. To avoid this, a user selection algorithm
needs to be utilized to make sure that at most M − 1 out of
the K users are active (or at least K−M+1 number of users
must be inactive), so that a non-trivial CZFBF beamformer
can be obtained. In other words, when K ≥ M , CR-BS can
only transmit to a subset of fewer than K SUs to achieve
zero forcing on all resulting interference. Note that designing
an optimal user scheduling algorithm is beyond the scope of
this paper. However, since all the SU channels are assumed
to be i.i.d, in the case when all weights are the same, we can
just randomly choose M − 1 SUs without sacrificing fairness.

Remark 5: When K ≥ M , according to Remark 2, if
β = 1, α must be nonzero for the PP-RZFBF scheme. Since
it does not implement user selection, the PP-RZFBF scheme
with β → 1 and α → 0 does not lead to the CZFBF scheme
for K ≥M case.

Without loss of generality, let S ⊆ {1, . . . ,K} be the selected
subset of SUs indexes with |S| = min(M−1,K). The CZFBF
beamforming matrix can be chosen as G = Hs

⊥(H
s
⊥
HHs

⊥)
−1,

where Hs
⊥ = (I−h0h

H
0 )Hs with Hs = {hi, ∀i ∈ S}. Problem

(5) with the CZFBF scheme becomes,

maximize
pi≥0,∀i∈S

RCZFBF =
∑
i∈S

wiE
[
log
(
1 + pi|hH

i gi|2
)]

subject to E

[∑
i∈S

pi|gi|2
]
≤ Pav. (9)

The optimal power allocation for CZFBF scheme is given

by water-filling, i.e., pi =
(

wi

λ0|gi|2
− 1

|hH
i gi|2

)+
, i ∈

S, where the Lagrange multiplier λ0 is determined by
E
[∑

i∈S pi|gi|2
]
= Pav .

IV. LARGE SYSTEM ANALYSIS

Finding the optimal design parameters (i.e., α, β) for
PP-RZFBF (Problem (7)) with a two-dimensional brute-
force search method is prohibitively time-consuming. In
this section, we will pursue a large system analysis of the
PP-RZFBF scheme, in the limit as M and K grow jointly
to infinity with a fixed ratio r = K

M , defined as the “large
system limit”. Motivated by existing work in [21][22][23][25]
(large system analysis for the non-CR MISO-BC scenario)
and [26] (large system analysis for a non-CR multi-cell
downlink cooperation system), we will show that in the
large system limit, SINRi, φ, ψ in Problem (7) converge
almost surely to deterministic approximations, denoted by
SINR∞

i , φ
∞, ψ∞, respectively. This will later enable us to

determine the asymptotically optimal design parameters α, β
for Problem (7) and get further insight into the asymptotical
behaviour of our CR-MISO-BC system.

In the large system limit, we assume that
max(p1, . . . , pK) = O( 1

K ). And note that according
to [21][27], since H is M × K with i.i.d standardized
complex Gaussian entries (i.e., having zero mean and
unit variance), 1

M HHH has a uniformly bounded spectral

norm for all large M . Define W � I − βh0h
H
0 and

let ĥ0 = 1√
M

h0, ĥi = 1√
M

hi, ∀i = 1, . . . ,K and

Ĥ−i � {ĥ1, . . . , ĥi−1, ĥi+1, . . . , ĥK} ∈ CM×K−1.

Define Γ−i �
(

H̃−iH̃H
−i

M + α0I
)

, where α0 = α
M . Since

1√
M

H̃−i = WĤ−i, we have Γ−i =
(

WĤ−iĤ
H
−iW + α0I

)
.

Then we can obtain following result:
Proposition 2: As M → ∞, K → ∞, with a fixed ratio

r = K
M , we have,

1

M
tr{Γ−1

−i } → z(r, α0),

ĥ
H
0 Γ−1

−i ĥ0 → z(r, α0)

1 + (β2 − 2β)(1 − α0z(r, α0))
,

∂ĥ
H
0 Γ−1

−i ĥ0

∂α0
→

− z(r, α0)(1 + z(r, α0))
2 + z(r, α0)

3r(β2 − 2β)

(1 + (β2 − 2β)(1 − α0z(r, α0)))2(r + α0(1 + z(r, α0))2)
,

(10)

almost surely, where z(r, α0) =

1
2

[√
(1−r)2

α0
2 + 2(1+r)

α0
+ 1 + 1−r

α0
− 1

]
.
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Proof: See Appendix B.

Remark 6: From Proposition 2, we find that 1
M tr{Γ−1

−i } =
1
M tr
(

WĤ−iĤ
H
−iW + α0I

)
(where W � I − βh0h

H
0 )

attains the same deterministic asymptote z(r, α0) as
1
M tr
(

Ĥ−iĤ
H
−i + α0I

)
, i.e., βh0h

H
0 does not affect the asymp-

totic value of 1
M tr{Γ−1

−i }. This is attributed to the fact that for
1
M tr{Γ−1

−i }, βh0h
H
0 is like a rank-one perturbation of a large

matrix and its impact vanishes asymptotically as M → ∞.
On the contrary, βh0h

H
0 inside Γ−i has a greater impact on

the asymptotic value of ĥ
H
0 Γ−1

−i ĥ0, since it is highly correlated

with ĥ0. For example, when β = 1, we have ĥ
H
0 Γ−1

−i ĥ0 → 1
α0

;

whereas, when β = 0, we have ĥ
H
0 Γ−1

−i ĥ0 → z(r, α0).
Based on Proposition 2, the asymptotic expressions of

SINRi, φ, ψ can be obtained as follows:
Theorem 1: Let α0 > 0. Then as M → ∞, K → ∞ with

fixed r = K
M <∞,

SINRi
a.s.→ SINR∞

i

=
piz(r, α0)

2

(1 + z(r, α0))2 + τ(r, α0)
(

1
K

∑K
j=1 pj −

pi

K

) ;
(11a)

φ
a.s.→ φ∞ = τ(r, α0)

1

K

K∑
i=1

pi, (11b)

ψ
a.s.→ ψ∞ = ρ(r, α0, β)τ(r, α0)

1

K

K∑
i=1

pi, (11c)

where τ(r, α0) � rz(r,α0)
r+α0(1+z(r,α0))2

and ρ(r, α0, β) �
(1−β)2

(1+(β2−2β)(1−α0z(r,α0)))2
.

Proof: See Appendix C.

Remark 7: Theorem 1 illustrates that SINR∞
i , φ

∞, ψ∞ are
all deterministic quantities and do not depend on any instan-
taneous CSIT (H, h0). Furthermore, from Theorem 1, when
β = 0, we have ψ∞ = φ∞ and the expressions of SINR∞

i ,
and φ∞ in (11a)(11b) reduce to that of the corresponding non-
CR case considered in [21][22][23][25]. In case of β = 1, we
have ψ∞ = 0, i.e., the interference on PU caused by the
secondary transmission is nullified, which is consistent with
Remark 3.

Note that with the assumption max(p1, . . . , pK) = O( 1
K ),

the term pi

K in (11a) can be omitted. Therefore, with the
assumption

∑K
i wi = O(1), as M → ∞, K → ∞ with

their ratio r fixed, Problem (7) becomes,

maximize
β, α0, {pi}K

i=1

R∞
PP-RZFBF =

K∑
i=1

wi log(1 + piυ0(r, α0, β))

subject to
1

K

K∑
i=1

pi = P (r, α0, β),

0 ≤ β ≤ 1, α0 > 0, pi ≥ 0, ∀i = 1, . . . ,K
(12)

where

P (r, α0, β) ={
min{ Pav

τ(r,α0)
, Qav

ρ(r,α0,β)τ(r,α0)
}, when ρ(r, α0, β) �= 0;

Pav

τ(r,α0)
, when ρ(r, α0, β) = 0,

(13)

and υ0(r, α0, β) � z(r,α0)
2

(1+z(r,α0))2+τ(r,α0)
1
K

∑K
j=1 pj

(a)
=

z(r,α0)
2

(1+z(r,α0))2+τ(r,α0)P (r,α0,β)
, where (a) is obtained by

applying the power constraint of Problem (12).

A. Asymptotically Optimal beamforming for PP-RZFBF
Scheme (PP-RZFBF-ABF)

In this subsection, we will find the asymptotically optimal
design parameters for PP-RZFBF Scheme by optimally solv-
ing Problem (12). Problem (12) can be shown to be equivalent
to the following problem (the proof is similar to Proposition
1 of [34] and is omitted):

maximize
0≤β≤1, α0>0

f(β, α0) (14)

where

f(β, α0) � maximize
{pi≥0}K

i=1

K∑
i=1

wi log(1 + piυ0(r, α0, β))

subject to
1

K

K∑
i=1

pi = P (r, α0, β), (15)

With fixed β and α0, Problem (15) is a convex optimization
problem and the optimal {pi}Ki=1 is the conventional water-
filling,

p∗i =

[
wi

λ∞
− 1

υ0(r, α0, β)

]+
, ∀i = 1, . . . ,K (16)

where λ∞ is the Lagrange multiplier determined by the
constraint 1

K

∑K
i=1 pi = P (r, α0, β). Without loss of gen-

erality, assuming w1 ≥ · · · ≥ wK , from (16), we obtain
p1 ≥ · · · ≥ pK . Assuming there are K̄ non-zero powers we

can obtain λ∞ =
1
K

∑K̄
i=1 wi

K̄
K

1
υ0(r,α0,β)

+P (r,α0,β)
. Note that in the case

of w1 = · · · = wK = w, we have equal power allocation for
each SU, given by p1 = · · · = pK = P (r, α0, β), and the cor-
responding R∞

PP-RZFBF = Kw log(1+P (r, α0, β)υ0(r, α0, β)).
Substituting (16) into (15), Problem (14) can be expressed

as

maximize
0≤β≤1, α0>0

K̄∑
i=1

wi log

(
K̄

K
+ P (r, α0, β)υ0(r, α0, β)

)

+

K̄∑
i=1

wi log

(
wi

1
K

∑K̄
i=1 wi

)
(17)

which is equivalent to the following optimization problem:

maximize
0≤β≤1, α0>0

P (r, α0, β)υ0(r, α0, β)

=
P (r, α0, β)z(r, α0)

2

(1 + z(r, α0))2 + τ(r, α0)P (r, α0, β)
.

(18)
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Discussions:
Case 1: If ρ(r, α0, β) <

Qav

Pav
, then from (13), we must have

P (r, α0, β) =
Pav

τ(r,α0)
, implying that only the ATTP constraint

is active. In this scenario, the objective function of Problem

(18) becomes, P (r, α0, β)υ0(r, α0, β) =
Pav

τ(r,α0)
z(r,α0)

2

(1+z(r,α0))2+Pav
,

which is independent of β. Thus the optimal β of Problem
(18) only needs to satisfy

0 ≤ β ≤ 1 and ρ(r, α0, β) <
Qav

Pav
. (19)

Proposition 3: Let t =
√

Qav

Pav
. Define the set A1 �{

β

∣∣∣∣0 ≤ β ≤ 1 & ρ(r, α0, β) <
Qav

Pav

}
. Then the set A1 can

be rewritten as (20) (shown on the top of the next page),
where

φ1(r, α0) �
(√

1− 1

1− α0z(r, α0)
+

1

4t2(1− α0z(r, α0))2

− 1

2t(1− α0z(r, α0))
+ 1

)
,

φ2(r, α0) �
(
−
√

1− 1

1− α0z(r, α0)
+

1

4t2(1− α0z(r, α0))2

− 1

2t(1− α0z(r, α0))
+ 1

)
. (21)

Proof: See Appendix D.
Therefore, under Case 1, the optimal solution for Problem

(18), denoted by βP and α∗
0, are given as follows. βP can

take any value in the set A1 (with α0 substituted by α∗
0),

and α∗
0 = argmax

α0>0

Pav
τ(r,α0)

z(r,α0)
2

(1+z(r,α0))2+Pav
. This is similar

to the RZFBF obtained via a large system analysis based
optimization problem for the conventional non-CR MISO-BC
system considered in [22] where α∗

0 = r
Pav

.
Case 2: If ρ(r, α0, β) ≥ Qav

Pav
(obviously β �= 1), in this case,

from (13), we have P (r, α0, β) = Qav

ρ(r,α0,β)τ(r,α0)
. Define a

set A2 as,

A2 �
{
β

∣∣∣∣∣0 ≤ β < 1, & ρ(r, α0, β) ≥
Qav

Pav

}
. (22)

Proposition 4: Based on (22), the set A2 can be rewritten
as (23) (shown on the top of the next page).

Proof: See Appendix E.
Then in this case, Problem (18) becomes,

maximize
β∈A2, α0>0

P (r, α0, β)υ0(r, α0, β)

=
Qav

τ(r, α0)

z(r, α0)
2

ρ(r, α0, β)(1 + z(r, α0))2 +Qav
,

(24)

which is equivalent to the following problem:

maximize
α0>0

g(α0) (25)

where

g(α0) � maximize
β∈A2

Qav

τ (r,α0)

z(r, α0)
2

ρ(r, α0, β)(1 + z(r, α0))2 +Qav

(26)

Proposition 5: The optimal β for Problem (26), denoted by
βQ, is given by (27) (shown on the top of the next page). And
we always have ρ(r, α0, βQ) =

Qav

Pav
.

Proof: See Appendix F.
From Proposition 5, ρ(r, α0, βQ) = Qav

Pav
gives

P (r, α0, βQ) = Qav

ρ(r,α0,βQ)τ(r,α0)
= Pav

τ(r,α0)
. Then,

g(α0) =
Pav

τ(r,α0)
z(r,α0)

2

(1+z(r,α0))2+Pav
. Thus, same as Case 1, Problem

(25) also gives α∗
0 = r

Pav
.

Overall, combining the results of Case 1 and Case 2 , we
can conclude that in the large system limit, the asymptotically
optimal regularization parameter α∗ for the PP-RZFBF
scheme is given by α∗ = α∗

0M = r
Pav

M = K
Pav

and
the asymptotically optimal projection control parameter β∗

belongs to the set A3 � A1 ∪ βQ, summarized below as:

• when 0 ≤
√

Qav

Pav
< 1, we have φ1(r, α∗

0) ≤ β∗ ≤ 1;

• when 1 ≤
√

Qav

Pav
≤ 1

2
1√

α∗
0z(r,α

∗
0)(1−α∗

0z(r,α
∗
0))

, we have,

if α∗
0z(r, α

∗
0) < 0.5, then φ1(r, α

∗
0) ≤ β∗ ≤ 1 or 0 ≤

β∗ ≤ φ2(r, α
∗
0); if α∗

0z(r, α
∗
0) ≥ 0.5, then 0

(a)

≤ β∗ ≤ 1,

where in (a), the equality holds only when
√

Qav

Pav
= 1.

• when
√

Qav

Pav
> 1

2
1√

α∗
0z(r,α

∗
0)(1−α∗

0z(r,α
∗
0))

, we have, 0 ≤
β∗ ≤ 1.

Remark 8: From the above summarized results, the asymp-
totically optimal α0 (i.e., α∗

0 = r
Pav

) in our CR-MISO-BC
system is the same as the conventional non-CR MISO-BC
case, and is independent of projection control parameter β.
However the asymptotically optimal β (i.e., β∗) (or its range
of values) is dependent on α∗

0.
Remark 9: Both Case 1 and Case 2 have the same

P (r, α∗
0, β

∗), υ0(r, α∗
0, β

∗) and the optimal objective function
of Problem (18), i.e., P (r, α∗

0, β
∗)υ0(r, α

∗
0, β

∗) = z(r, α∗
0).

However, unlike Case 1 where only the ATTP constraint is
active, in Case 2, both ATTP and AIP constraints are satisfied
with equality. The ATTP constraint is always active in the
large system limit, which is consistent with Proposition 1.

Therefore instead of a two-dimensional brute-force search
to obtain optimal values of α and β for PP-RZFBF scheme,
applying α∗ and the asymptotically optimal range of β∗,
we only need to do one-dimensional exhaustive search over
set A3 to get the optimal β∗ value, so as to obtain an
asymptotically optimal PP-RZFBF beamformer for Problem
(7). We call this method as the ’PP-RZFBF-ABF’ scheme,
which is computationally much less burdensome compared to
the optimal PP-RZFBF case.

In the high Pav limit, we can also obtain the following
result:

Proposition 6: In the large system limit, for any given r,
as Pav → ∞, we have α∗

0 → 0 and β∗ → 1.

Proof: See Appendix G.
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A1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{β|φ1(r, α0) < β ≤ 1}, if 0 ≤ t < 1;

{β|φ1(r, α0) < β ≤ 1 || 0 ≤ β < φ2(r, α0)}, if 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

& α0z(r, α0) < 0.5;

{β|0 < β ≤ 1}, if 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

& α0z(r, α0) ≥ 0.5;

{β|0 ≤ β ≤ 1}, otherwise,

(20)

A2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{β|0 ≤ β ≤ φ1(r, α0)}, if 0 ≤ t < 1;

{β|β = 0}, if t = 1 & α0z(r, α0) ≥ 0.5;

{β|φ2(r, α0) ≤ β ≤ φ1(r, α0)}, if 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

& α0z(r, α0) < 0.5;

∅, otherwise.

(23)

βQ =

⎧⎪⎪⎨
⎪⎪⎩
φ1(r, α0), if 0 ≤ t < 1;

0, if t = 1 & α0z(r, α0) ≥ 0.5;

φ1(r, α0) or φ2(r, α0), if 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

& α0z(r, α0) < 0.5.

(27)

Remark 10: From Proposition 6, we can obtain that for the
PP-RZFBF scheme, in the large system regime, as Pav →
∞, H̃ asymptotically becomes H⊥, which implies that the
secondary channel matrix H is asymptotically projected into
the null space of the primary channel h0. In this case, the
interference on PU caused by the secondary transmission is
asymptotically removed and thus the AIP constraint becomes
asymptotically inactive (see Remark 3).

B. Asymptotic Maximum WSR with PP-RZFBF beamforming

With the values of α∗
0 β∗ obtained above, the maximum

asymptotic WSR with PP-RZFBF beamformer in the large
system regime for Problem (12) is given as,

R∞
PP-RZFBF

∗ =

K̄∑
i=1

wi log

(
K̄

K
+ z(r, α∗

0)

)
+

K̄∑
i=1

wi log

(
wi

1
K

∑K̄
i=1 wi

)

(28)

In the case of w1 = · · · = wK = w, K̄ = K and (28) becomes
R∞

PP-RZFBF
∗ = Kw log(1 + z(r, α∗

0)).
Remark 11: Obviously, the expression of R∞

PP-RZFBF
∗ given

above is the same as the asymptotic maximum WSR of
the conventional non-CR MISO-BC with RZFBF beamformer
(see [35] with the uncorrelated channels case, and for the case
of w1 = · · · = wK = 1, it is also given in [21][22]). Although
the obtained R∞

PP-RZFBF
∗ for Problem (12) is independent of

β∗, it does not mean that the AIP constraint of Problem (12)
is always inactive. On the contrary, as we mentioned in the
Remark 9, under Case 2, AIP constraint is also satisfied with
equality.

In the limit of large Pav, we have, z
(
r, r

Pav

)
≈

1−r
r Pav, when r < 1; z

(
r, r

Pav

)
≈

√
Pav, when r = 1;

and z
(
r, r

Pav

)
≈ 1

r−1 , when r > 1. Thus the expression for

R∞
PP-RZFBF

∗ further reduces to (29) (shown on the next page).

Remark 12: Note that from (16), the asymptotically op-

timal power p∗i = 1
υ0(r,α∗

0 ,β
∗)

[
wi( K̄

K +z(r,α∗
0))

1
K

∑K̄
i=1 wi

− 1

]+
, ∀i =

1, . . . ,K . Thus as long as 1
K

(∑K̄
i=1 wi

wi
− K̄

)
< z(r, α∗

0),

we will have pi > 0. As mentioned before, when r ≤ 1, as
Pav → ∞, we have z(r, α∗

0) → ∞. Therefore in the large
Pav regime, given finite wi, ∀i, the above inequality is always
satisfied, i.e., pi > 0, ∀i = 1, . . .K and thus K̄ = K .

From (29) and Remark 12, we can deduce that for high
Pav , when r < 1 (i.e.,K < M ), R∞

PP-RZFBF
∗ grows linearly

with
∑K

i=1 wi. When r = 1 (i.e.,K = M ), the linear growth
rate decreases to 1

2

∑K
i=1 wi; whereas, when r > 1 (i.e.,K >

M ), R∞
PP-RZFBF

∗ asymptotically approaches a constant. In the
specific case of w1 = · · · = wK = 1, (29) reduces to Equation
(24) of [36].

Remark 13: As shown in Section III-B, when K < M ,
for β = 1, α = 0, the PP-RZFBF beamforming matrix in
(6) reduces to the CZFBF beamforming matrix, given as,
G = H⊥(HH

⊥H⊥)
−1, where H⊥ = (I − h0h

H
0 )H. Define

V⊥ � H⊥(H
H
⊥H⊥)

−2HH
⊥ , then G can also be written as

G = V⊥H⊥. Thus, Problem (5) with the suboptimal CZFBF
scheme can be expressed as,

maximize
{pi≥0}K

i=1

RCZFBF =

K∑
i=1

E [wi log(1 + SINRi)]

subject to E
[
φ
]
≤ Pav (30)

where SINRi =
pi|hH

i V⊥h⊥
i |2

1 + hH
i V⊥H⊥

−iP−i(H
⊥
−i)

HV⊥hi

, and φ �∑K
i=1 pi(h

⊥
i )

H(V⊥)
−2h⊥

i with h⊥
i being the ith column of

H⊥ and H⊥
−i � {h⊥

1 , . . . , h
⊥
i−1, h

⊥
i+1, . . . , h

⊥
K}. Following a

similar analysis used to obtain the asymptotic PP-ZFBF, we
can show that in the large system limit, the asymptotic optimal
WSR with the CZFBF beamformer, denoted as R∞

CZFBF
∗, is

given as,
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which is also identical to that of the non-CR MISO-BC with a
ZFBF beamformer (see [21] for the case of w1 = · · · = wK)
4. Obviously, in the large Pav regime, R∞

CZFBF has a linear
growth rate

∑K
i=1 wi for K < M similar to R∞

PP-RZFBF. When
K ≥ M , after user selection, the performance of CZFBF is
same as that of the K < M case. Thus the linear scaling rate
of R∞

CZFBF is
∑

i∈S wi, which is different to that of PP-RZFBF.
More specifically, when K = M , the linear scaling rate for
asymptotic WSR of PP-RZFBF scheme and CZFBF scheme
are 1

2

∑K
i=1 wi and

∑
i∈S wi, respectively, which are generally

distinct except for the case K = M = 2 with w1 = w2.
When K > M , the asymptotic WSR of PP-RZFBF scheme
approaches a constant limiting value and clearly does not have
a linear scaling property like the CZFBF scheme.

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the
proposed BF strategies obtained from preceding analysis via
numerical simulations. All the channels involved are assumed
to undergo Rayleigh fading. All the SUs are assumed to have
equal weight, i.e., w1 = · · · = wK = w = 1, except for Fig.
2(b) (with unequal weight setting).

First, we will test the effectiveness of PP-RZFBF-ABF
scheme in the finite system scenario. In Fig. 2, we compare
the ergodic WSR performance between the optimized PP-
RZFBF (obtained via a two-dimensional exhaustive search
over all possible α and β), and PP-RZFBF-ABF (with the
asymptotically optimal value of α∗ and range of β∗ obtained
from the large system analysis and a one-dimensional ex-
haustive search for obtaining the optimal β∗ value), in a
finite system with K = M = 3, for Qav = 0 dB and
Qav = 10 dB, respectively. As observed from Fig. 2(a) (with
equal weight w1 = w2 = w3 = 1), for either value of
Qav, the gap between the WSR performance of these two
schemes is really small. This indicates that even for small
values of K,M , the asymptotically optimal α∗ and β∗ can
provide highly accurate approximations. A similar behaviour
can be observed in Fig. 2(b) for the unequal weights case with
w1 = 0.5, w2 = 1, w3 = 1.5. Therefore, in what follows, we

4Note that both R∞
PP-RZFBF

∗ and R∞
CZFBF

∗ do not depend on β and thus
their expressions are identical to the corresponding quantities in the non-CR
MISO-BC-RZFBF case and non-CR MISO-BC-ZFBF case respectively. By
applying SINR∞

i,zf = limα0→0 SINR∞
i,rzf (as obtained in the proof of [21,

Theorem 3] for the non-CR MISO-BC case), we can also obtain R∞
CZFBF

∗
via R∞

CZFBF
∗ = limα0→0 R∞

PP-RZFBF
∗.
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Fig. 2. Ergodic WSR performance comparison between optimal PP-RZFBF
and PP-RZFBF with asymptotically optimal beamformer (i.e., PP-RZFBF-
ABF) for K = M = 3.

will employ PP-RZFBF-ABF to obtain the WSR performance
for the PP-RZFBF scheme instead of trying to optimize the
PP-RZFBF with a two-dimensional exhaustive search.

Fig. 3 displays the ergodic WSR performance comparison
between locally optimum ’BF-LDP-ZGIM’ (see [17] for fur-
ther details) and the two suboptimal algorithms (PP-RZFBF
and CZFBF) versus Pav for M = 4,K = 3, under Qav = 0
dB and Qav = 10 dB, respectively. First, it can be easily
observed that all the WSR curves increase rapidly as Pav

increases, which is in agreement with Proposition 1 in that
as Pav → ∞, the optimal WSR obtained by BF-LDP-ZGIM
approaches ∞ and also Remark 13 in that for large Pav , the
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Fig. 3. Ergodic WSR performance comparison between BF-LDP-ZGIM
algorithm and two suboptimal algorithms (PP-RZFBF&CZFBF) for M =
4, K = 3 with different Qav.

asymptotic WSR of PP-RZFBF and CZFBF both have a linear
growth rate of Kw. Fig. 3 also shows that for BF-LDP-ZGIM,
higherQav always gives better WSR performance as expected.
However, for PP-RZFBF, the gain is not so pronounced after
Pav ≥ 15 dB. This is because as Pav → ∞, β∗ → 1 (see
Proposition 6) for PP-RZFBF. As stated in Remark 10, this es-
sentially implies that the interference caused by the secondary
transmission on the PU receiver is asymptotically driven to
zero. Thus in high Pav , the ergodic WSR performance of PP-
RZFBF is asymptotically independent of Qav. For the CZFBF
scheme, the AIP constraint is always inactive, and thus its
ergodic WSR performance does not depend on Qav at all.
Another striking observation from Fig. 3 is that at low Pav ,
the suboptimal PP-RZFBF scheme approaches the optimal BF-
LDP-ZGIM algorithm, while, as Pav is increased, PP-RZFBF
approaches the performance of CZFBF, in agreement with
Remark 4 (note that as we mentioned before, due to the high
complexity of obtaining the optimal PP-RZFBF, we employ
PP-RZFBF-ABF to obtain the PP-RZFBF performance). A
similar behaviour can be observed in Fig. 4 for the comparison
between PP-RZFBF and CZFBF where M is much bigger than
K ( M = 10 and K = 4). However, here we observe that PP-
RZFBF approaches CZFBF much more rapidly in high Pav .
For example, in Fig.4, with only about 15 dB of Pav , the two
schemes are already very close with each other. However in
Fig. 3, it requires about 30 dB of Pav for the two schemes to
get close to each other.

Fig. 5 illustrates the ergodic WSR performance of the two
suboptimal beamforming algorithms (PP-RZFBF and CZFBF)
versus Pav for M = K = 4 case, under Qav = 0 dB and
Qav = 10 dB, respectively. For comparison, the WSR of PP-
RZFBF with β = 1 and α → 0 case is also plotted. Similar to
Fig. 3, we can also see from Fig. 5 that, when Pav is small,
PP-RZFBF with Qav = 10 dB significantly outperforms PP-
RZFBF with Qav = 0 dB. But after approximately Pav ≥ 15
dB the gap between them shrinks and gradually approaches
the performance of PP-RZFBF with β = 1 and α → 0.
This confirms the results of Proposition 6 and Remark 10 for
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Fig. 4. Ergodic WSR performance comparison between PP-RZFBF scheme
and CZFBF scheme for M = 10, K = 4 with different Qav.
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Fig. 5. Ergodic WSR performance comparison between PP-RZFBF, PP-
RZFBF with β = 1 and α → 0, and CZFBF for M = K = 4 with different
Qav .

K = M case. However, unlike Fig. 3, in Fig. 5, PP-RZFBF
does not always outperform CZFBF, and the curves of PP-
RZFBF with β = 1 and α → 0 case and CZFBF are different.
This is in agreement with Remark 5 that when K ≥ M , PP-
RZFBF does not include CZFBF as a special case.

Fig. 6 further depicts the difference between PP-RZFBF
and CZFBF under Qav = 10 dB for M = K = 2 case and
M = K = 4 case, respectively. It can be observed clearly
from Fig. 6 that when M = K = 2, PP-RZFBF outperforms
CZFBF and in high Pav, both performances grow linearly at
a similar rate. On the other hand, when M = K = 4, PP-
RZFBF is better than CZFBF at small Pav and they achieve the
same WSR at about Pav = 18.5 dB. Past this point, the WSR
with CZFBF grows significantly faster than PP-RZFBF. This
is due to the fact that (see Remark 13) when K =M = 2, the
asymptotic WSR of PP-RZFBF and CZFBF have an identical
linear growth factor w, whereas when K = M = 4, the
asymptotic WSR of CZFBF has a larger scaling rate of 3w
than that of PP-RZFBF, which is 2w.
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Fig. 7. The asymptotic WSR behaviour of PP-RZFBF for Pav = 10 and
20 dB and Qav = 10 dB versus M (= K).

Fig. 7 shows the difference between the deterministic WSR
approximation of PP-RZFBF, i.e., R∞

PP-RZFBF
∗ provided in

(28), and RPP-RZFBF of the corresponding optimal PP-RZFBF
scheme for Pav = 10 & 20 dB and Qav = 10 dB with M = K
(taking values from 3 to 30). From Fig. 7, we can see that the
gap between RPP-RZFBF and R∞

PP-RZFBF
∗ decreases gradually as

M = K increases. This indicates R∞
PP-RZFBF

∗ approximates the
optimal WSR behaviour extremely well for moderately large
values of M = K .

VI. DISCUSSION

In this section we discuss some possible extensions of the
current work to more generalized system models. In line with
most of the existing works for large system analysis (see, for
example, [21][22][23][25][35][37]) dealing with i.i.d. channel
models (both gains and noise) for non-CR networks, we also
consider i.i.d. channel models in our underlay CR network,
so that the existing results for the large system analysis,
e.g, Lemma 1 and Lemma 2, can be directly applied. Note
that under the i.i.d. channel model assumption, all channels

are assumed to undergo identical unity-valued path loss, and
same channel noise variance (here assumed to be unity). The
extension to non-unity path loss (identical for all channels)
and non-unity noise variance are immediate by applying ap-
propriate scaling in the objective function and possibly scaling
the maximum allowable average power and interference limits
Pav and Qav.

The issue of antenna correlation and non-i.i.d. channels
can be also handled, but this requires use of extensions of
random matrix theoretic results to non i.i.d. random variables,
as presented in [41]. Indeed, such results have been used
recently in [21] (see also references therein) to deal with
antenna correlation and non-i.i.d. channels (with different
path loss etc.) to derive large-system analysis for non-CR
(that is, primary/licensed user only) networks. Heterogeneous
channel models and antenna correlation are clearly exciting
new research directions and will be tackled in future work by
suitably adapting the techniques from [21] to our underlay CR
network.

Finally, note that for heterogenous (independent but not
identically distributed) channels with possibly unequal noise
variances, our current results could still be used to derive
upper bounds and lower bounds on the weighted sum rate of
the CR-MISO-BC network, by considering the corresponding
i.i.d. channel models with the best channel conditions and the
corresponding i.i.d. channel models with the worst channel
conditions, respectively.

Other possible extensions:
Extensions to multiple PUs: Let L denote the number of
single-antenna PUs and h0n ∈ CM×1, n = 1, . . . , L, represent
the channel vector from the CR-BS (secondary base station)
to the nth PU. Problem (5) in this case can be written as,

maximize
qi,∀i=1,...,K

Rsum =

K∑
i=1

wiE

[
log

(
1 +

|hH
i qi|2

1 +
∑K

j �=i |h
H
i qj |2

)]

subject to E

[
K∑
i=1

|qi|2
]
≤ Pav,

E

[
K∑
i=1

|hH
0nqi|2

]
≤ Qn

av, ∀n = 1, . . . , L. (32)

where Qn
av is the maximum AIP tolerated by the PUn.

i) If all the CR-BC to primary user channels are i.i.d,
the L AIP constraints in Problem (refmpu) reduce to
E
[∑K

i=1 |h
H
0 qi|2

]
≤ min[Q1

av, . . . , Q
L
av]. Extending our PP-

RZFBF beamformer idea to this multiple PUs case, a (pos-
sibly) suboptimal beamformer for Problem (32) can be given
as

G = H(HHH + αI)−1 = (HHH + αI)−1H, (33)

where

H = (I − βH0T (H
H
0T H0T )

−1HH
0T )H, (34)

where H0T = {h0n, ∀n ∈ T } with T ⊆ {1, . . . , L} being the
selected subset of PUs indexes and 1 ≤ |T | ≤ L. (34) implies
that, in the multiple PUs case, the secondary channel matrix H
is partially projected into the null space of a selected subset of
all the CR-BC to PUs’ channels resulting in a general problem
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formulation. How to select the best subset of CR-BC to PUs
channels and find the corresponding asymptotically optimal
values of α and β via large system analysis remain an open
question. This is out of the scope of the current paper, but is
clearly a very interesting topic for future research. However,
when |T | = 1, i.e., in (34), H is partially projected into the null
space of only one of CR-BC to PUs’ channels as a suboptimal
strategy, then the expression (34) becomes similar to the single
PU case. In that case, all the results derived in our work for
the single PU case can be directly applied.
ii) Extensions to more general heterogeneous channel models
(with different noise power, pathloss) and also with antenna
correlation need careful examination of the techniques pre-
sented in [21] for non-cognitive radio networks and how these
can be extended to our underlay cognitive radio setting with
multiple PUs. This is again, left for future research.
(iii) Finally, all the above results need to be extended to the
more general case of partial/imperfect CSI, especially for the
CR-BS to the PUs channels.

VII. CONCLUSIONS

In this paper, we investigated design of transmit beam-
forming schemes for an underlay CR-MISO-BC ergodic WS-
RMax problem, subject to an ATTP constraint at the CR-
BS and an AIP constraint on the PU. To better analyze
the performance of the beamforming schemes, we proposed
a low-complexity suboptimal beamforming scheme (called
partially-projected regularized zero-forcing beamforming “PP-
RZFBF”) with a close-form beamformer. Large system analy-
sis was then applied to derive deterministic approximations for
the PP-RZFBF scheme, based on which, asymptotically opti-
mal value/range of parameters β and α can be obtained. We
also derived explicit expressions for the asymptotic WSR for
PP-RZFBF in the large system regime. A special suboptimal
beamforming scheme “CZFBF” was also considered, where
all the secondary multiuser interference and the interference
on PU are zero-forced. Various comparisons between PP-
RZFBF and CZFBF were provided. Numerical simulations
confirmed the accuracy of asymptomatically optimal β and
α for PP-RZFBF even in the case of finite-sized systems, and
showed that asymptotic expressions of WSR approximate the
PP-RZFBF behaviour extremely well for large M,K . Future
work will extend such beamforming design and associated
large system analysis to the various generalizations mentioned
in the Discussion Section.

APPENDIX

A. Proof for Proposition 1

The proof of the fact that as Pav → ∞, Rsum → ∞ is
omitted due to space limit but can be found in the Appendix
A of the longer version of this paper in [17].

Let λ∗, μ∗, U∗
i , ∀i = 1, . . . ,K be the optimum Lagrange

multipliers associated with the ATTP constraint, the AIP
constraint and the positive semi-definite (PSD) constraints
Si � 0, ∀i = 1, . . . ,K in Problem (4), respectively and we
have λ∗ ≥ 0, μ∗ ≥ 0, U∗

i � 0, ∀i = 1, . . . ,K . Let {S∗
i }Ki=1

denote the optimal solution of Problem (4), then {S∗
i }Ki=1 must

satisfy the KKT necessary conditions, given as,

U∗
i = T−i − cihihH

i (35)

where T−i ∈ CM×M �
∑K

j=1,j �=i bjhjhH
j + λ∗I + μ∗h0hH

0

with bj =
wjhH

j S∗
j hj

(1+
∑

K
n=1,n �=j hH

j S∗
nhj)(1+

∑
K
n=1 hH

j S∗
nhj)

, and

ci = wi

1+
∑

K
j=1 hH

i S∗
j hi

. If T−i is rank-deficient, i.e.,

rank(T−i) < M , we must have λ∗ = 0 and there must
exist a nonzero vector x ∈ CM satisfying T−ix = 0. Due
to the independence of hi and h0, hj , ∀j �= i, we have
xHhi �= 0. Then similar to [37, Proposition 1], from (35),
we have xHU∗

i x = −cixHhihH
i x < 0, which violates

U∗
i � 0. Therefore T−i must have full rank and thus

rank(U∗
i ) ≥ M − 1, which gives rank(S∗

i ) ≤ 1 due to
U∗

i S∗
i = 0 [2] [37].

Now, we will show that in Problem (4), the ATTP constraint
is always active. When K < M , we must have λ∗ > 0,
otherwise, rank(T−i) < M . Thus in this case, the ATTP
constraint is always active. When K ≥ M , we suppose that
in Problem (4), given a pair of values of Pav and Qav, the
ATTP constraint is inactive at the optimal solution {S∗

i }Ki=1,

i.e., E
[∑K

i=1 tr{S∗
i }
]
< Pav , which implies λ∗ = 0. Then

we must have μ∗ �= 0. 5 In this case, for every given fading
realization Hf � {h0, h1, . . . , hK} ∈ CM×(K+1), there must
be at least M out of K SUs that are active in order to ensure
rank(T−i|λ∗=0) = M, ∀i = 1, . . . ,K . Let us assume there
are K̄ active SUs, where M ≤ K̄ ≤ K , and without loss of
generality, the K̄ active SUs are assumed to be SU1, . . . ,
SUK̄ . Obviously, we have bi �= 0, ∀i = 1, . . . , K̄ . We have
showed that rank(U∗

i ) ≥M−1 and U∗
i S∗

i = 0, ∀i = 1, . . . ,K ,
thus if rank(U∗

i ) = M , then S∗
i = 0, and if S∗

i �= 0, i.e., the
user is active, we must have rank(U∗

i ) =M−1. Thus we must
have rank(U∗

i ) =M − 1, for ∀i = 1, . . . , K̄. In this case, the
KKT condition (35) for i = 1, . . . , K̄ can be written as, U∗

i =∑K
j=1,j �=i bjhjhH

j + μ∗h0hH
0 − cihih

H
i = HfD−iH

H
f , where

D−i � diag(μ, b1, . . . , bi−1,−ci, bi+1, . . . , bK̄ , 0, . . . , 0) ∈
C(K+1)×(K+1). Obviously, we have rank(Hf ) =
rank(HH

f ) = M . Let Ai = HfD−i, i = 1, . . . , K̄,
then we have Ai = [μh0, b1h1, . . . , bi−1hi−1,
−cihi, bi+1hi+1, . . . , bK̄hK̄ , 0, . . . , 0]. Due to μ �= 0,
bi �= 0, ∀i = 1, . . . , K̄ , ci �= 0 and K̄ ≥ M ,
we must have rank(Ai) = M . Because of
rank(AiHH

f ) = rank(U∗
i ) = M − 1, there must exist a

nonzero vector x ∈ CM satisfying AiHH
f x = 0. Since Ai is

full rank, the vector HH
f x must be zero, thus HH

f must be
rank-deficient. However, this violates rank(HH

f ) = M . Thus
with λ∗ = 0, rank(U∗

i ) �= M − 1, ∀i = 1, . . . , K̄, implying
that none of SUs is active, which obviously is not optimal
for K ≥M . Therefore, we must have λ∗ > 0, i.e., the ATTP
constraint must be always active for K ≥M as well.

B. Proof for Proposition 2

From the definition of Γ−i, we can obtain,

5Otherwise, both the ATTP and AIP constraints are inactive, then, similar
to non-CR case, we can increase the WSR by scaling all the covariance
matrices with the same parameter c > 1, i.e., {cS∗

i }Ki=1 without violating
the two constraints, which is in contradiction with the optimality of {S∗

i }Ki=1.
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Γ−1
−i =

(
WĤ−iĤ

H
−iW + α0I

)−1

=

(
Ĥ−iĤ

H
−i − β

M

|h0|2 Ĥ−iĤ
H
−iĥ0ĥ

H
0

−β M

|h0|2 ĥ0ĥ
H
0 Ĥ−iĤ

H
−i + β2

(
M

|h0|2
)2

θĥ0ĥ
H
0 + α0I

)−1

(36)

where θ = ĥ
H
0 Ĥ−iĤ

H
−iĥ0. Let C1 � (Ĥ−iĤ

H
−i + α0I),

then since

(
− β M

|h0|2 Ĥ−iĤ
H
−iĥ0ĥ

H
0 − β M

|h0|2 ĥ0ĥ
H
0 Ĥ−iĤ

H
−i

+β2
(

M
|h0|2

)2
θĥ0ĥ

H
0

)
is a rank-one matrix, by applying

Lemma 3 (see Appendix H), we have as M → ∞,

1

M
tr{Γ−1

−i }
a.s.→ 1

M
tr{C−1

1 }
(a)
a.s.→ z(r, α0) (37)

where (a) is obtained by applying the Lemma 4 (see Appendix

H) and z(r, α0) =
1
2

[√
(1−r)2

α0
2 + 2(1+r)

α0
+ 1 + 1−r

α0
− 1
]
.

Let C2 � (C1 − β M
|h0|2 Ĥ−iĤ

H
−iĥ0ĥ

H
0 ) and C3 �

(C2 − β M
|h0|2 ĥ0ĥ

H
0 Ĥ−iĤ

H
−i), then from (36), we have

Γ−1
−i =

(
C3 + β2( M

|h0|2 )
2θĥ0ĥ

H
0

)−1

. Applying Matrix Inver-

sion Lemma into Γ−1
−i , C−1

3 and C−1
2 respectively, we can get,

Γ−1
−i = C−1

3 −
β2( M

|h0|2 )
2θC−1

3 ĥ0ĥ
H
0 C−1

3

1 + β2( M
|h0|2 )

2θĥ
H
0 C−1

3 ĥ0

,

C−1
3 = C−1

2 +
β M

|h0|2 C−1
2 ĥ0ĥ

H
0 Ĥ−iĤ

H
−iC

−1
2

1− β M
|h0|2 ĥ

H
0 Ĥ−iĤ

H
−iC

−1
2 ĥ0

,

C−1
2 = C−1

1 +
β M

|h0|2 C−1
1 Ĥ−iĤ

H
−iĥ0ĥ

H
0 C−1

1

1− β M
|h0|2 ĥ

H
0 C−1

1 Ĥ−iĤ
H
−iĥ0

. (38)

Then, we can easily obtain,

ĥ
H
0 Γ−1

−i ĥ0 = ĥ
H
0 C−1

3 ĥ0 −
β2( M

|h0|2 )
2θ(ĥ

H
0 C−1

3 ĥ0)
2

1 + β2( M
|h0|2 )

2θĥ
H
0 C−1

3 ĥ0

=
ĥ
H
0 C−1

3 ĥ0

1 + β2( M
|h0|2 )

2θĥ
H
0 C−1

3 ĥ0

(39)

Similarly, we have,

ĥ
H
0 C−1

3 ĥ0 =
ĥ
H
0 C−1

2 ĥ0

1− β M
|h0|2 ĥ

H
0 Ĥ−iĤ

H
−iC

−1
2 ĥ0

(40)

and

ĥ
H
0 C−1

2 ĥ0 =
ĥ
H
0 C−1

1 ĥ0

1− β M
|h0|2 ĥ

H
0 C−1

1 Ĥ−iĤ
H
−iĥ0

,

ĥ
H
0 Ĥ−iĤ

H
−iC

−1
2 ĥ0 = ĥ

H
0 Ĥ−iĤ

H
−iC

−1
1 ĥ0

+
β M

|h0|2 ĥ
H
0 Ĥ−iĤ

H
−iC

−1
1 Ĥ−iĤ

H
−iĥ0ĥ

H
0 C−1

1 ĥ0

1− β M
|h0|2 ĥ

H
0 C−1

1 Ĥ−iĤ
H
−iĥ0

(41)

From Lemma 1 (see Appendix H), we see that as M → ∞,
M

|h0|2 = 1

ĥ
H
0 ĥ0

a.s.→ 1
1
M tr{I} = 1. Applying this fact and Lemma

1 into (41), we can get, as M → ∞,

ĥ
H
0 C−1

2 ĥ0
a.s.→

1
M tr{C−1

1 }

1− β 1
M tr{C−1

1 Ĥ−iĤ
H
−i}

ĥ
H
0 Ĥ−iĤ

H
−iC

−1
2 ĥ0

a.s.→ 1

M
tr{Ĥ−iĤ

H
−iC

−1
1 }

+
β 1

M tr{Ĥ−iĤ
H
−iC

−1
1 Ĥ−iĤ

H
−i} 1

M tr{C−1
1 }

1− β 1
M tr{C−1

1 Ĥ−iĤ
H
−i}

(42)

By applying Lemma 4 (see Appendix H), as M → ∞, (42)
becomes,

ĥ
H
0 C−1

2 ĥ0
a.s.→ z(r, α0)

1− β + βα0z(r, α0)
,

ĥ
H
0 Ĥ−iĤ

H
−iC

−1
2 ĥ0

a.s.→ 1 +
(βr − α0)z(r, α0)

1− β + βα0z(r, α0)
. (43)

Then applying M
|h0|2

a.s.→ 1 together with (43) into (40), we
obtain almost surely, as M → ∞

ĥ
H
0 C−1

3 ĥ0
a.s.→ z(r, α0)

1 + (β2 − 2β)(1 − α0z(r, α0))− β2rz(r, α0)
(44)

Finally, from Lemma 1 and Lemma 4, we have as M → ∞,
θ = ĥ

H
0 Ĥ−iĤ

H
−iĥ0

a.s.→ 1
M tr{Ĥ−iĤ

H
−i}

a.s.→ r. Applying it
together with M

|h0|2
a.s.→ 1 and (44) into (39), we obtain, as

M → ∞,

ĥ
H
0 Γ−1

−i ĥ0
a.s.→ z(r, α0)

1 + (β2 − 2β)(1− α0z(r, α0))
(45)

and (46) (shown on the top of next page), where (a) is obtained
by applying 1− α0z(r, α0) =

z(r,α0)r
1+z(r,α0)

into the numerator.

C. Proof for Theorem 1

The proof is inspired by the large system analysis in
[21][22][23][25] for the non-CR MISO-BC scenario.
(1) Deterministic asymptote for SINRi:

The SINRi can be expressed as SINRi =
piU

2
1i

1+U2i
, where

U1i � hH
i (H̃H̃

H
+ αI)−1h̃i and U2i � hH

i (H̃H̃
H

+

αI)−1H̃−iP−iH̃
H
−i(H̃H̃

H
+αI)−1hi. First, we will derive the

limiting asymptotes for U1i and U2i, respectively, as M → ∞
and then apply them back to get SINR∞

i .
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∂ĥ
H
0 Γ−1

−i ĥ0

∂α0

a.s.→ −z(r, α0)(1 + z(r, α0))
2(1 + (β2 − 2β)(1− α0z(r, α0))) + z(r, α0)

2r(β2 − 2β)

(1 + (β2 − 2β)(1− α0z(r, α0)))2(r + α0(1 + z(r, α0))2)

(a)
= − z(r, α0)(1 + z(r, α0))

2 + z(r, α0)
3r(β2 − 2β)

(1 + (β2 − 2β)(1− α0z(r, α0)))2(r + α0(1 + z(r, α0))2)
(46)

a) Deterministic asymptote for U1i:
According to the Matrix Inversion Lemma, we can obtain,

(H̃H̃
H
+ αI)−1h̃i =

(H̃−iH̃
H
−i + αI)−1h̃i

1 + h̃
H
i (H̃−iH̃

H
−i + αI)−1h̃i

. (47)

Then with (47) and h̃i = Whi, U1i can be rewritten as, U1i =
ĥ
H
i Γ−1

−i Wĥi

1+ĥH
i WΓ−1

−i Wĥi

. By applying Lemma 1, we have, as M → ∞,

U1i
a.s.→

1
M tr{Γ−1

−i W}
1+ 1

M tr{WΓ−1
−i W} . Let di1 � 1

M tr{Γ−1
−i W} and di2 �

1
M tr{WΓ−1

−i W}, then applying the definition of W, we have

di1 =
1

M
tr{Γ−1

−i } − β
M

|h0|2
1

M
tr{Γ−1

−i ĥ0ĥ
H
0 },

di2 =
1

M
tr{Γ−1

−i }+ (β2 − 2β)
M

|h0|2
1

M
tr{Γ−1

−i ĥ0ĥ
H
0 }

(48)

From Lemma 1, we can obtain as M → ∞, ĥ
H
0 ĥ0

a.s.→
1
M tr{I} = 1, thus M

|h0|2 = 1

ĥ
H
0 ĥ0

a.s.→ 1. Then by applying
M

|h0|2
a.s.→ 1 as M → ∞ and Proposition 2 into (48), we obtain

as M → ∞, almost surely,

di1→z(r, α0), di2→z(r, α0). (49)

Thus we have, as M → ∞,

U1i
a.s.→ z(r, α0)

1 + z(r, α0)
(50)

b) Deterministic asymptote for U2i:
According to the Matrix Inversion Lemma, we can obtain,

(H̃H̃
H
+ αI)−1 =

1

M

⎛
⎝Γ−1

−i −
Γ−1
−i Wĥiĥ

H
i WΓ−1

−i

1 + ĥ
H
i WΓ−1

−i Wĥi

⎞
⎠ . (51)

With (51), U2i becomes,

U2i = ĥ
H
i

(
Γ−1
−i −

Γ−1
−i Wĥiĥ

H
i WΓ−1

−i

1 + ĥ
H
i WΓ−1

−i Wĥi

)
WĤ−iP−iĤ

H
−iW

(
Γ−1
−i −

Γ−1
−i Wĥiĥ

H
i WΓ−1

−i

1 + ĥ
H
i WΓ−1

−i Wĥi

)
ĥi

= ĥ
H
i Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i ĥi

− ĥ
H
i Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i Wĥiĥ
H
i WΓ−1

−i ĥi

1 + ĥ
H
i WΓ−1

−i Wĥi

− ĥ
H
i Γ−1

−i Wĥiĥ
H
i WΓ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i ĥi

1 + ĥ
H
i WΓ−1

−i Wĥi

+
ĥ
H
i Γ−1

−i Wĥiĥ
H
i WΓ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i Wĥiĥ
H
i WΓ−1

−i ĥi

(1 + ĥ
H
i WΓ−1

−i Wĥi)2

(52)

After applying Lemma 1 into (52) , we have, as M → ∞,

U2i
a.s.→ 1

M
tr{Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i }

− 2
1
M tr{Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i W} 1
M tr{WΓ−1

−i }
1 + 1

M tr{WΓ−1
−i W}

+
( 1
M tr{Γ−1

−i W})2 1
M tr{WΓ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i W}
(1 + 1

M tr{WΓ−1
−i W})2

= di3 − 2
(di3 − β M

|h0|2 d
i
4)d

i
1

1 + di2
+

(di1)
2(di3 + (β2 − 2β) M

|h0|2 d
i
4)

(1 + di2)
2

.

(53)

where di3 � 1
M tr{Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i }, di4 �
1
M tr{Γ−1

−i WĤ−iP−iĤ
H
−iWΓ−1

−i ĥ0ĥ
H
0 }. Similar to [21], from

Lemma 3 (see Appendix H), we have, as M → ∞,

di3
a.s.→ d̂i3 � 1

M
tr{Γ−1WĤ−iP−iĤ

H
−iWΓ−1},

di4
a.s.→ d̂i4 � 1

M
tr{Γ−1WĤ−iP−iĤ

H
−iWΓ−1ĥ0ĥ

H
0 } (54)

where Γ � ( H̃H̃H

M + α0I). d̂i3 can be rewritten as,

d̂i3 =
1

M
tr{P−iĤ

H
−iWΓ−2WĤ−i}

=
1

M

K∑
j=1,j �=i

pj ĥ
H
j WΓ−2Wĥj

(a)
=

1

M

K∑
j=1,j �=i

pj
ĥ
H
j WΓ−2

−jWĥj

(1 + ĥ
H
j WΓ−1

−jWĥj)2
(55)

where (a) is obtained by applying matrix inversion lemma
twice with Γ−j = (WĤ−jĤ

H
−jW + α0I), and Ĥ−j is the

matrix of Ĥ where the jth columns are removed. Applying
Lemma 1, we get as M → ∞,

d̂i3
a.s.→ 1

M

K∑
j=1,j �=i

pj

1
M tr{WΓ−2

−jW}
(1 + 1

M tr{WΓ−1
−jW})2

(a)
= r

1

K

K∑
j=1,j �=i

pj
−∂ 1

M tr{WΓ−1
−jW}

∂α0

(1 + 1
M tr{WΓ−1

−jW})2

(b)
a.s.→ rz(r, α0)

r + α0(1 + z(r, α0))2

⎛
⎝ 1

K

K∑
j=1,j �=i

pj

⎞
⎠ (56)

where (a) is obtained due to −∂tr{Γ−1
−jW2}

∂α0
= −tr{∂Γ−1

−j

∂α0
W

2} =

tr{Γ−1
−j

∂Γ−j

∂α0
Γ−1
−jW

2} = tr{Γ−2
−jW

2}, and in (b),
1
M tr{WΓ−1

−jW}a.s.→ z(r, α0), i.e., di2 in (49), is applied.
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Similarly, d̂i4 also can be expressed as,

d̂i4 =
1

M
tr{P−iĤ

H
−iWΓ−1ĥ0ĥ

H
0 Γ−1WĤ−i}

=
1

M

K∑
j=1,j �=i

pj ĥ
H
j WΓ−1ĥ0ĥ

H
0 Γ−1Wĥj

=
1

M

K∑
j=1,j �=i

pj
ĥ
H
j WΓ−1

−j ĥ0ĥ
H
0 Γ−1

−jWĥj

(1 + ĥ
H
j WΓ−1

−jWĥj)2

a.s.→ 1

M

K∑
j=1,j �=i

pj

1
M tr{WΓ−1

−j ĥ0ĥ
H
0 Γ−1

−jW}
(1 + 1

M tr{WΓ−1
−jW})2

(57)

By applying Proposition 2, we can get (58) (shown on the
top of the next page), where the last equality is obtained by
applying zr = (1 + z)(1−α0z). Applying (58) into (57), we
have, as M → ∞,

d̂i4
a.s.→

1

M

r(1− β)2z(r, α0)
(

1
K

∑K
j=1,j �=i pj

)
(1 + (β2 − 2β)(1− α0z(r, α0)))2(r + α0(1 + z(r, α0))2)

.

(59)

Substituting (49), (56) and (59) into (53), yields, as M → ∞,

U2i
a.s.→

rz(r, α0)
(

1
K

∑K
j=1,j �=i pj

)
(r + α0(1 + z(r, α0))2)(1 + z(r, α0))2

(60)

Therefore, with (50) and (60), as M → ∞, we can obtain
(61) (shown on the top of the next page).
(2) Deterministic asymptote for φ:

By using (47), φ becomes

φ =

K∑
i=1

pi

1
M ĥ

H
i WΓ−2

−i Wĥi

(1 + ĥ
H
i WΓ−1

−i Wĥi)2

a.s.→
K∑
i=1

pi

1
M2 tr{WΓ−2

−i W}
(1 + 1

M tr{WΓ−1
−i W})2

= r
− ∂di

2

∂α0

(1 + di2)
2

(
1

K

K∑
i=1

pi

)

a.s.→ rz(r, α0)

r + α0(1 + z(r, α0))2

(
1

K

K∑
i=1

pi

)
(62)

(3) Deterministic asymptote for ψ:
By using (47), ψ can be written as,

ψ =

K∑
i=1

pi
ĥ
H
i WΓ−1

−i ĥ0ĥ
H
0 Γ−1

−i Wĥi

(1 + ĥ
H
i WΓ−1

−i Wĥi)2

a.s.→
K∑
i=1

pi

1
M tr{WΓ−1

−i ĥ0ĥ
H
0 Γ−1

−i W}
(1 + di2)

2
(63)

By applying (58), we have

ψ
a.s.→

r(1− β)2z(r, α0)
(

1
K

∑K
i=1 pi

)
(1 + (β2 − 2β)(1− α0z(r, α0)))2(r + α0(1 + z(r, α0))2)

.

(64)

D. Proof for Proposition 3

Let t =
√

Qav

Pav
. Applying the definition of ρ(r, α0, β) into

ρ(r, α0, β) <
Qav

Pav
, gives,(

β +
1

2t(1− α0z(r, α0))
− 1

)2

> 1− 1

1− α0z(r, α0)
+

1

4t2(1− α0z(r, α0))2
(65)

1) when t > 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

(implying 1 −
1

1−α0z(r,α0)
+ 1

4t2(1−α0z(r,α0))2
< 0), in this case, (19) be-

comes 0 ≤ β ≤ 1.
2) when t ≤ 1

2
1√

α0z(r,α0)(1−α0z(r,α0))
, in this case,

(65) gives β > φ1(r, α0) or β < φ2(r, α0), where
the definitions of φ1(r, α0) and φ2(r, α0) are given by
(21). Obviously, φ2(r, α0) < φ1(r, α0) and φ1(r, α0) <(√

1
4t2(1−α0z(r,α0))2

− 1
2t(1−α0z(r,α0))

+ 1
)

= 1. Then (19)
becomes,

max {0, φ1(r, α0)} < β ≤ 1 or 0 ≤ β < max{0, φ2(r, α0)}.
(66)

Note that 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

=

1
2

1√
0.25−(0.5−α0z(r,α0))2

≥ 1. Then from (21), it is easy to

get that,

(i) when t ∈
(

1
2(1−α0z(r,α0))

, 12
1√

α0z(r,α0)(1−α0z(r,α0))

]
,

or t ∈
[
0, 1

2(1−α0z(r,α0))

]
∩ [0, 1), we have

max {0, φ1(r, α0)} = φ1(r, α0); while, when 1 ≤
t ≤ min

[
1

2(1−α0z(r,α0))
, 12

1√
α0z(r,α0)(1−α0z(r,α0))

]
, we

have max {0, φ1(r, α0)} = 0.
(ii) when max[ 1

2(1−α0z(r,α0))
, 1] < t ≤

1
2

1√
α0z(r,α0)(1−α0z(r,α0))

, we have

max {0, φ2(r, α0)} = φ2(r, α0); Otherwise,
max {0, φ2(r, α0)} = 0.

Based on the above (i) and (ii), we can obtain,
2.1) If α0z(r, α0) < 0.5, then we have 1

2(1−α0z(r,α0))
< 1

and 1
2(1−α0z(r,α0))

< 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

. In

this case, according to (i) and (ii), we have when
0 ≤ t ≤ 1

2
1√

α0z(r,α0)(1−α0z(r,α0))
, max {0, φ1(r, α0)}

= φ1(r, α0); when 1 < t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

,

max {0, φ2(r, α0)} = φ2(r, α0), otherwise,
max {0, φ2(r, α0)} = 0. Thus (66) becomes,⎧⎪⎪⎨
⎪⎪⎩
φ1(r, α0) < β ≤ 1 when 0 ≤ t ≤ 1;

φ1(r, α0) < β ≤ 1, or 0 ≤ β < φ2(r, α0),

when 1 < t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(67)

(67) can be rewritten as,⎧⎪⎪⎨
⎪⎪⎩
φ1(r, α0) < β ≤ 1 when 0 ≤ t < 1;

φ1(r, α0) < β ≤ 1, or 0 ≤ β < φ2(r, α0),

when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(68)
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ĥ
H
0 Γ−1

−i WWΓ−1
−i ĥ0 = ĥ

H
0 Γ−2

−i ĥ0 + (β2 − 2β)
M

|h0|2
(ĥ

H
0 Γ−1

−i ĥ0)
2 = −

∂ĥ
H
0 Γ−1

−i ĥ0

∂α0
+ (β2 − 2β)

M

|h0|2
(ĥ

H
0 Γ−1

−i ĥ0)
2

a.s.→ z(r, α0)(1 + z(r, α0))
2 + (β2 − 2β)z2(r, α0)(1 + z(r, α0))(r + α0(1 + z(r, α0)))

(1 + (β2 − 2β)(1− α0z(r, α0)))2(r + α0(1 + z(r, α0))2)

=
(1− β)2z(r, α0)(1 + z(r, α0))

2

(1 + (β2 − 2β)(1 − α0z(r, α0)))2(r + α0(1 + z(r, α0))2)
, (58)

SINRi =
piU

2
1i

1 + U2i

a.s.→ piz(r, α0)
2(r + α0(1 + z(r, α0))

2)

(1 + z(r, α0))2(r + α0(1 + z(r, α0))2) + rz(r, α0)(
1
K

∑K
j=1,j �=i pj)

(61)

This is because given α0z(r, α0) < 0.5, when t = 1, we
have φ2(r, α0) = 0, then the β set for the case of t = 1
in (68), i.e., φ1(r, α0) < β ≤ 1, or 0 ≤ β < φ2(r, α0),
reduces to φ1(r, α0) < β ≤ 1, which is the same as that
in (67) for t = 1 case.

2.2) If α0z(r, α0) ≥ 0.5, then we have 1
2(1−α0z(r,α0))

≥ 1

and 1
2(1−α0z(r,α0))

≥ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

. In this

case, according to (i) and (ii), we have when 0 ≤ t < 1,
max {0, φ1(r, α0)} = φ1(r, α0), while when 1 ≤ t ≤
1
2

1√
α0z(r,α0)(1−α0z(r,α0))

, max {0, φ1(r, α0)} = 0; it

always has max {0, φ2(r, α0)} = 0. Thus (66) becomes,{
φ1(r, α0) < β ≤ 1 when 0 ≤ t < 1;

0 < β ≤ 1, when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(69)

Therefore, combining the results from 1) and 2), we can
obtain the range of β that satisfies (19) is given by Proposition
3.

E. Proof for Proposition 4

Applying the definition of ρ(r, α0, β) into the inequality
ρ(r, α0, β) ≥ Qav

Pav
, we have,

(
β +

1

2t(1− α0z(r, α0))
− 1

)2

≤ 1− 1

1− α0z(r, α0)
+

1

4t2(1− α0z(r, α0))2
(70)

Obviously, the right hand side (RHS) of (70) must be non-
negative, which gives t ≤ 1

2
1√

α0z(r,α0)(1−α0z(r,α0))
. Then

from (70), we have, φ2(r, α0) ≤ β ≤ φ1(r, α0). Thus, (22)
becomes,

max{0, φ2(r, α0)} ≤ β ≤ max {0, φ1(r, α0)} (71)

Based on the (i) and (ii) in Appendix D, similar to 2.1) and
2.2) in Appendix D, we can obtain,

(1) If α0z(r, α0) < 0.5, then (71) becomes,⎧⎪⎪⎨
⎪⎪⎩
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t ≤ 1;

φ2(r, α0) ≤ β ≤ φ1(r, α0)

when 1 < t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(72)

(72) can be rewritten as,⎧⎪⎪⎨
⎪⎪⎩
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t < 1;

φ2(r, α0) ≤ β ≤ φ1(r, α0)

when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(73)

This is because given α0z(r, α0) < 0.5, when t = 1,
we have φ2(r, α0) = 0, then the β set for the case of
t = 1 in (73), i.e., φ2(r, α0) ≤ β ≤ φ1(r, α0), becomes
0 ≤ β ≤ φ1(r, α0), which is the same as that in (72)
for t = 1 case.

(2) If α0z(r, α0) ≥ 0.5, then (71) becomes,{
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t < 1;

β = 0, when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(74)

Need to note that one of constraints in (22), i.e.,
ρ(r, α0, β) ≥ Qav

Pav
= t2, gives t ≤

√
ρ(r, α0, β),

then in (74), when 1 < t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

,

β = 0 leads to t ≤
√
ρ(r, α0, 0) = 1, which contradicts

with 1 < t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

. Therefore, (74)

should be revised as,{
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t < 1;

β = 0, when t = 1.

(75)

Thus, combining the results of (73) and (75), we can obtain
the range of β that satisfies the constraints in (22) is given by
Proposition 4.

F. Proof for Proposition 5

Let βQ denote the optimal solution of Problem (26). Prob-
lem (26) is equivalent to the following optimization problem:

βQ = argmin
β∈A2

ρ(r, α0, β) (76)

According to the Fermat’s theorem, every local extremum
of ρ(r, α0, β) on the set β ∈ A, satisfies ∂ρ(r,α0,β)

∂β = 0.

Note that, ∂ρ(r,α0,β)
∂β = 2(1−β)

(1+(β2−2β)(1−α0z(r,α0)))3
(−1 + (1 −

α0z(r, α0))((1−β)2+1)). Since 2(1−β)
(1+(β2−2β)(1−α0z(r,α0)))3

>

0 on the set β ∈ [0, 1), there is only one solution for
∂ρ(r,α0,β)

∂β = 0, denoted by β0 and given as, β0 = 1 −
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√
1

1−α0z(r,α0)
− 1.

1) When α0z(r, α0) ≥ 0.5,
In this case, we have β0 ≤ 0, then ∂ρ(r,α0,β)

∂β ≤ 0 on
the set [0, 1), i.e., ρ(r, α0, β) is a nondecreasing on [0, 1).
According to Proposition 4, in this case, β must satisfy,{
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t < 1;

β = 0, when t = 1.
Thus, we have

βQ =

{
φ1(r, α0) when 0 ≤ t < 1;

0, when t = 1.
(77)

2) When α0z(r, α0) < 0.5,
In this case, we have β0 > 0. Then for 0 ≤ β < β0,
we have ∂ρ(r,α0,β)

∂β > 0; while, for β0 < β < 1,

we have ∂ρ(r,α0,β)
∂β < 0. Therefore, ρ(r, α0, β) is first

increasing on the set [0, β0], and then decreasing on the
set (β0, 1), i.e., β0 is the maximum point for ρ(r, α0, β).
According to Proposition 4, in this case, β must satisfy,⎧⎪⎪⎨
⎪⎪⎩
0 ≤ β ≤ φ1(r, α0) when 0 ≤ t < 1;

φ2(r, α0) ≤ β ≤ φ1(r, α0),

when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

2.1) when 0 ≤ t < 1, after simple algebra manipulations, we
can get ρ(r, α0, β)|β=φ1(r,α0) = t2 < 1 = ρ(r, α0, β)|β=0,
which results in βQ = φ1(r, α0).
2.2) when 1 ≤ t ≤ 1

2
1√

α0z(r,α0)(1−α0z(r,α0))
, in this case,

ρ(r, α0, β)|β=φ1(r,α0) = ρ(r, α0, β)|β=φ2(r,α0) = t2, which
gives βQ = φ1(r, α0) or φ2(r, α0).
Combing the results from 2.1) and 2.2), we have

βQ =

⎧⎪⎪⎨
⎪⎪⎩
φ1(r, α0) when 0 ≤ t < 1;

φ1(r, α0) or φ2(r, α0),

when 1 ≤ t ≤ 1
2

1√
α0z(r,α0)(1−α0z(r,α0))

.

(78)

Therefore, from 1) and 2), we have the optimal solution for
Problem (76) is given by Proposition 5.

G. Proof for Proposition 6

As Pav → ∞, t =
√

Qav

Pav
→ 0. Thus in this case, we have

0 ≤ t < 1, and then according to set A3, we have that β∗

must satisfy

φ1(r, α
∗
0) ≤ β∗ ≤ 1. (79)

The definition of φ1(r, α∗
0) is given by (21). Note that, as

Pav → ∞, α∗
0 = r

Pav
→ 0, thus we have,

lim
Pav→∞

α∗
0z(r, α

∗
0) = lim

α∗
0→0

α∗
0z(r, α

∗
0)

= lim
α∗

0→0

1

2

[√
(1− r)2 + 2(1 + r)α∗

0 + (α∗
0)

2 + 1− r − α∗
0

]

=
1

2
(|1− r|+ 1− r) =

{
0, when r ≥ 1

1− r, when r < 1

(80)

Applying (80) into the definition of φ1(r, α∗
0) in (21), gives:

1) when r ≥ 1, limPav→∞ φ1(r, α
∗
0) = 1; 2) when r < 1,

limPav→∞ φ1(r, α
∗
0)

(a)
= lim

t→0

√
4(r−1)rt2+1+2rt−1

2rt = 1, where

(a) is due to as Pav → ∞, t =
√

Qav

Pav
→ 0. Based on 1) and

2), we can conclude for any given r, limPav→∞ φ1(r, α
∗
0) = 1.

Therefore, from (79), we can obtain limPav→∞ β∗ = 1.

H. Some useful Lemmas

Lemma 1: ([38, Corollary 1] obtained directly from [39,
Lemma B.26]) Let A be a deterministic M × M complex
matrix with uniformly bounded spectral norm for all M . Let
vector x = 1√

M
[x1, . . . , xM ]T , which is independent of A,

and xi, ∀i = 1, . . . ,M are i.i.d complex random variables
with zero mean, unit variance and finite eighth order moment.
Then as M → ∞, xHAx − 1

M tr{A} → 0 almost surely.
Lemma 2: ([38, Theorem 7] and [22]) Let x be as de-

fined in Lemma 1 and let Y be a M × K matrix of
i.i.d. complex random variables, independent of x, with zero
mean and variance 1

M . Assume r = limM→∞
K
M being

held constant, then as M → ∞, 1
M tr{YYH + σI}−1 →

z(r, σ) almost surely, where z(r, σ) is the unique solu-
tion of z(r, σ) = (σ + r

1+z(r,σ) )
−1 [38, Theorem 7].

In [22], the closed-form solution to above equation was

found as z(r, σ) = 1
2

[√
(1−r)2

σ2 + 2(1+r)
σ + 1 + 1−r

σ − 1

]
and

∂z(r,σ)
∂σ = − z(r,σ)(1+z(r,σ))2

r+σ(1+z(r,σ))2 . Thus xH(YYH + σI)−1x →
1
M tr{YYH + σI}−1 → z(r, σ), as M → ∞.

Remark 14: Note that the original inspiration for this
Lemma is the famous Marcenko-Pastur law [42], which can
be seen by considering the Stieltjes transformation of the
asymptotic eigenvalue distribution of the matrix YYH.

Lemma 3: ([21, Lemma 6]) Let A be a deterministic M ×
M complex matrix with uniformly bounded spectral norm for
all M and B ∈ CM×M be random Hermitian, with its mini-
mum eigenvalue, denoted as λB , satisfying ∃ε > 0, λB > ε for
all M with probability one. Then for x ∈ CM , as M → ∞,
1
M tr{AB−1} → 1

M tr{A(B + xxH)−1} almost surely, where
B−1 and (B+ xxH)−1 exist with probability one as M → ∞.

Lemma 4: Given bounded r = K
M , as M → ∞,

1
M tr{C−1

1 } a.s.→ z(r, α0), 1
M tr{Ĥ−iĤ

H
−i}

a.s.→ r,
1
M tr{C−1

1 Ĥ−iĤ
H
−i}

a.s.→ 1 − α0z(r, α0) and
1
M tr{Ĥ−iĤ

H
−iC

−1
1 Ĥ−iĤ

H
−i}

a.s.→ r − α0 + α2
0z(r, α0)

where C1 � (Ĥ−iĤ
H
−i + α0I) and z(r, α0) =

1
2

[√
(1−r)2

α0
2 + 2(1+r)

α0
+ 1 + 1−r

α0
− 1

]
.

Proof : Given C1 � (Ĥ−iĤ
H
−i + α0I), according to

Lemma 3 and Lemma 2 (see Appendix H), with fixed
r = limM→∞

K
M , we have, as M → ∞, 1

M tr{C−1
1 } a.s.→

1
M tr{(ĤĤ

H
+ α0I)−1} a.s.→ z(r, α0). Following the result

in [40, Equation (2.102)] (i.e., limM→∞
1
M tr{(YYH)m} =∑m

i=1
1
m

(
m
i

)(
m
i−1

)
ri where Y is a M × K matrix of i.i.d.

complex random variables with zero mean and variance 1
M )

and Lemma 1, we have, as M → ∞,

1

M
tr{Ĥ−iĤ

H
−i} =

1

M
tr{ĤĤ

H} − 1

M
ĥ
H
i ĥi

a.s.→ r − 1

M2
tr{I} a.s.→ r (81)
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Then, as M → ∞, we obtain almost surely,

1

M
tr{C−1

1 Ĥ−iĤ
H
−i} =

1

M
tr{C−1

1 (C1 − α0I)}

= 1− α0
1

M
tr{C−1

1 } a.s.→ 1− α0z(r, α0).

(82)

Similarly, we have, as M → ∞,

1

M
tr{Ĥ−iĤ

H
−iC

−1
1 Ĥ−iĤ

H
−i}

=
1

M
tr{Ĥ−iĤ

H
−i} − α0

1

M
tr{C−1

1 Ĥ−iĤ
H
−i}

a.s.→ r − α0 + α2
0z(r, α0). (83)
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