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Abstract: In this study, a non-linear vibro-impact mechanism is integrated inside a semi-
submerged cylindrical heaving point absorber in order to enhance its power capture by utilising
the non-linearity of vibro-impact events. A piece-wise linear model is derived considering
linear wave-buoy interaction and the non-linear vibro-impact mechanism. Since the dynamics
and performance of the vibro-impact wave energy converter (WEC) are sensitive to design
parameters, a parametric study and analysis are conducted numerically by varying the design
parameters in a broad range to evaluate their influence on the vibro-impact WEC’s dynamics
and performance, in terms of response amplitude operator, average power output and peak-to-
average power ratio. Numerical simulations show that there exist some optimal sets of the design
parameters to achieve a trade-off among the aforementioned performance indices. Hence, the
parametric study in this paper can give some basic guidelines for optimising and prototyping
the design of the vibro-impact WEC for wave tank testing.

Keywords: Wave Energy Conversion, Heaving Point Absorber, Vibro-Impact Mechanism,
Non-linear Power Take-Off, Parametric Study.

1. INTRODUCTION

To harvest energy from ocean waves, various technologies
and devices have been examined (Drew et al., 2009; Falcão,
2010; Babarit et al., 2012). These wave energy converters
(WECs) can be classified into the following five predom-
inant types: oscillating water columns, attenuators, point
absorbers (PAs), terminators, and over-topping devices.
Among the aforementioned WECs, the heaving PA may
be one of the simplest and most promising concepts (Ricci
et al., 2009), since it is easy to install and economical
to maintain. PAs can be categorised into three subtypes,
including (i) one-body PAs, e.g. the CETO buoy, (ii)
two-body PAs, e.g. the Wavebob buoy and the OPT’s
PowerBuoy, and (iii) PA arrays, e.g. the WaveStar device.

These PAs can harvest energy efficiently when resonance
occurs. However, PAs’ resonance bandwidths are narrow,
while wave spectra are generally broader. One way to max-
imise power absorption of WECs across a wide frequency
range is to utilise control approaches (Ringwood et al.,
2014). Another way is to design novel WEC concepts
or power take-off (PTO) systems. Some non-linear PTO
concepts have the potential to improve power capture
width and to widen resonance bandwidth. For example,
Bailey (2010) investigated the influence of non-linear PTO
dampers on WECs’ power capture by numerical and exper-
imental testing. In addition to non-linear dampers, Zhang
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Fig. 1. Schematic diagram of a vibro-impact mechanism
integrated inside a cylindrical heaving point absorber.

et al. (2014) proposed a bi-stable mechanical system, con-
sisting of two symmetrically oblique springs, to achieve
negative stiffness by a snap-through mechanism. Based on
the same principle, CorPower Ocean invented a ‘negative’
spring, termed WaveSpring, to increase WECs’ response
bandwidth (Todalshaug et al., 2016). These studies con-
clude that a properly designed non-linear PTO system has
the potential to maximise power absorption over a wide
range of wave frequencies. As resonance is achieved by
control or novel PTO design, PAs’ heaving motion may be
large enough to violate physical constraints (Chen et al.,
2017). Therefore, an end-stop function is required, and
can be achieved by mechanical design or optimal control
considering physical constraints (Zhan and Li, 2018).



This study proposes a vibro-impact WEC which uses a
non-linear vibro-impact mechanism to enhance power cap-
ture, to broaden its bandwidth and to provide an end-stop
function. As shown in Fig. 1, a semi-submerged cylindrical
buoy (Mb) is excited by incident waves, and oscillates as
a result. An inner mass (Mm) is connected to the buoy
by a linear PTO damper (c) and a supporting spring (k1),
and oscillates accordingly due to the interaction force with
the buoy. The supporting spring is prestressed to balance
the inner mass at its equilibrium point with a suitable
original length. The key mechanism is that the upper and
lower impact springs (k2), attached to the top and floor
of the buoy, induce vibro-impact events when the relative
displacement between the inner mass and buoy exceeds
the upper or lower gaps (G). The non-linear vibro-impact
events increase the WEC’s complexity, but have the po-
tential to improve the WEC’s power capture bandwidth.

End-stop springs were previously used to limit heave mo-
tion of PAs (Jaya Muliawan et al., 2013; Göteman et al.,
2015; Chen et al., 2017). However, the effect of end-stop
setups under a wide range of variation in design param-
eters, including Mm, k1, k2, G and c, on PAs’ dynamics
and power capture is missing. As a preliminary study of the
modelling of the vibro-impact WEC in Fig. 1 was discussed
by Guo and Ringwood (2020), with specific focuses on
the vibro-impact induced non-linear dynamics, end-stop
performance and comparison with normal WEC without
vibro-impact, this paper only focuses on a numerical para-
metric study to emphasise how the design parameters
influence the vibro-impact WEC’s dynamics and power
absorption under regular wave conditions. Numerical sim-
ulations demonstrate that: (i) The response amplitude
operator (RAO) of the relative motion between the inner
mass and the buoy acts like a “band-pass filter”, with
relatively small gain value when the wave frequency is low.
(ii) The dynamics and power capture of the vibro-impact
WEC are sensitive to the design parameters. Hence, the
system performance, in terms of relative RAO and average
power output, can be optimised by adjusting Mm, k1, k2,
G and c. (iii) Occurrence of impacts may increase the peak-
to-average power ratio of the PTO under certain settings,
but the peak-to-average power ratio can be constrained,
even reduced under certain sets of design parameters.

The remainder of the paper is organised as follows: Section
2 details the wave-buoy interaction, while the vibro-impact
mechanism is detailed in Section 3. Section 4 discusses the
parametric study to investigate how the design parameters
influence the dynamics and performance of the vibro-
impact WEC. Some concluding remarks are drawn up in
Section 5.

2. WAVE-BUOY INTERACTION

As shown in Fig. 1, a cylindrical buoy is considered, and
its radius, height and draft are r = 1 m, h = 2 m, and
d = 1 m, respectively. As this study mainly focuses on
how the design parameters influence the dynamics and
performance of the vibro-impact WEC, the buoy’s motion
is constrained to heave mode only. Therefore, the dynamics
of the buoy are governed by

Mbz̈b = fe + fr + fhs + fi, (1)

where fe is the excitation force due to incident waves and
diffraction, fr is the radiation force related to the motion of
the buoy, fhs is the hydrostatic restoring force representing
the mismatch between gravity and the device buoyancy,
and fi represents the interaction force between the inner
mass and the buoy. Mb, zb and z̈b are the buoy mass, heave
displacement and acceleration, respectively.

For the buoy in Fig. 1, the hydrostatic force is given as

fhs = −ρgπr2zb, (2)

where ρ and g are the water density and gravity constant,
respectively. The radiation force, in the time-domain, is
written as the Cummins formula (Cummins, 1962), as

fr = −m∞z̈b − kr ∗ żb, (3)

where m∞, kr and żb are the added mass at infinite
frequency, the impulse response function (IRF) of the
radiation force, and the velocity of the buoy in heave,
respectively. The symbol ∗ represents the convolution op-
erator. The hydrodynamic coefficients are computed using
the boundary element method code NEMOH (Babarit and
Delhommeau, 2015), and the radiation IRF is shown in
Fig. 2(a). The convolution term of the radiation force in
Eq. (3), frc = kr ∗ żb, can be approximated by a finite
order state-space model (Guo et al., 2017b; Faedo et al.,
2018), written as

ẋr = Arxr +Br żb, (4)

frc ≈ Crxr, (5)

where xr ∈ Rn×1 is the state vector for the identified
system. Ar ∈ Rn×n, Br ∈ Rn×1, Cr ∈ R1×n are the
system matrices given in the Appendix. n is the dynamical
order which is selected by trial and error via evaluating the
goodness of fit, defined by the normalised mean square-
error (Guo et al., 2017b). In this study, n = 4 is used, and
the goodness of fit is 0.9998.

The excitation force can be determined by its frequency
response function (FRF), as

Fe(jω) = He(jω)A(jω), (6)

where He(jω) is the FRF of the excitation force and A(jω)
is the frequency-domain representation of incident wave
η(t). In Fig. 2(b), the excitation FRF is represented by its
amplitude response |He(jω)| and phase response He(jω).
Alternatively, the excitation force can be rewritten in the
time-domain as

fe(t) = ke(t) ∗ η(t) =

∫ ∞
−∞

ke(t− τ)η(τ)dτ, (7)

where ke(t) = 1
2π

∫∞
−∞He(jω)ejωtdω is the excitation

force IRF. Based on the excitation FRF in Fig. 2(b), the
excitation IRF ke(t) is represented by the black dash-
dot curve in Fig. 2(c). However, ke(t) is non-causal since
ke(t) 6= 0 for t < 0 (see the shadowed area in Fig. 2(c)).
The physical explanation of the non-causality is discussed
by Falnes (2002).

Causalisation and approximation of the excitation were
studied by Guo et al. (2017a, 2018), in which a time-
shifting technique was applied to causalise the non-causal
kernel function ke(t) to its causalised form ke,c(t) with
causalisation time tc (tc ≥ 0). Thus, wave prediction
with a horizon of tc is required. According to the time
shift property of the convolution operator, the causalised
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Fig. 2. (a) Radiation IRFs, (b) excitation FRF and (c) excitation IRFs.In (b), the excitation FRF is represented by its
amplitude response |He(jω)| and phase response He(jω).

system with wave prediction gives the same excitation
force of the non-causal system, since

fe(t) = ke(t) ∗ η(t) (8)

= ke(t− tc) ∗ η(t+ tc) = ke,c(t) ∗ ηp(t), (9)

where ke,c(t) = ke(t − tc) and ηp(t) = η(t + tc) are
the causalised excitation IRF (see the red solid curve in
Fig. 2(c)) and the predicted wave elevation advanced by
tc, respectively. Wave prediction is required and several
forecasting methods have been investigated by Fusco and
Ringwood (2010).

Similarly, Eq. (9) can be approximated by a finite order
state-space model, written as

ẋe = Aexe +Beηp, (10)

fe ≈ Cexe +Deηp, (11)

where xe ∈ Rn×1 is the state vector for the excitation
system. Ae ∈ Rn×n, Be ∈ Rn×1, Ce ∈ R1×n and De ∈
R1×1 are the system matrices given in the Appendix, and
n is the order. tc and n are selected by trial and error
via evaluating the truncation error and goodness of fit,
defined by Guo et al. (2018). In this study, tc = 3.2 s and
n = 6 are selected, and the identified excitation IRF is
compared with the causualised excitation IRF in Fig. 2(c)
with a truncation error of less than 0.0073 and a goodness
of fit of 0.9953.

3. VIBRO-IMPACT MECHANISM

For the inner mass, its equation of motion is given as

Mmz̈m = −fi, (12)

where Mm, zm and z̈m represent the inner mass, and its
displacement and acceleration in heave, respectively. The
interaction force fi depends on the relative displacement
between the inner mass and the buoy, zr = zm − zb. As
shown in Fig. 3(a), when the relative displacement is larger
than or equal to the gap G, that is zr ≥ G, the supporting
spring (k1), the upper impact spring (k2), and the PTO
damper (c) are active. Therefore, fi can be written as

fi = k1zr + k2(zr −G) + cvr, (13)

where vr = żr represent the relative velocity.

As shown in Fig. 3(b), when G > zr > −G, the supporting
spring (k1) and the PTO damper (c) are active. Therefore,
fi can be written as

fi = k1zr + cvr. (14)

For the case zr ≤ −G in Fig. 3(c), the supporting spring
(k1), the lower impact spring (k2), and the PTO damper
(c) are active. Hence, fi can be written as
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Fig. 3. Three operation modes of the vibro-impact WEC.

fi = k1zr + k2(zr +G) + cvr. (15)

4. PARAMETRIC STUDY

In this section, a parametric study is conducted to in-
vestigate how these parameters influence the vibro-impact
WEC’s performance. For clarity, regular wave condition,
with wave height H and period T , is considered. To eval-
uate the dynamics of the vibro-impact WEC, the relative
RAO is defined as

RAOr = 2max(zr)/H, (16)

In this study, a pure damper is used as the PTO device.
To evaluate the performance of the vibro-impact WEC,
the instantaneous power Pi, average power Pa and peak-
to-average power ratio Pp2a are defined as

Pi = cv2r , (17)

Pa =
1

T

∫ T

0

Pidt, (18)

Pp2a = max(Pi)/Pa. (19)

4.1 Influence of Inner Mass

The influence of the inner mass on the relative RAO,
average power, and peak-to-average power ratio is shown
in Fig. 4. As shown in Figs. 4(a)-(b), the relative RAO
and average power are characterised by a band-pass effect,
where the bandwidth is sensitive to the variation in the
inner mass. The bandwidth initially increases and then
decrease as Mm increases from 200 kg to 3000 kg, while the
resonance frequency decreases monotonically. In Fig. 4(c),
the maximal and minimal values of the peak-to-average
power ratio are 3.5 and 1.5, respectively. That is, the
peak-to-average power ratio can be either amplified or
attenuated by the vibro-impact mechanism, depending on
design parameter values and wave conditions. Therefore,
Mm ∈ [750, 1500] kg is preferred to achieve a large relative
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Fig. 4. (a) Relative RAO, (b) average power output, and (c) peak-to-average power ratio, with Mm ∈ [200, 3000] kg,
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Fig. 6. (a) Relative RAO, (b) average power output, and (c) peak-to-average power ratio, with k2 ∈ [5000, 600000] N/m,
ω ∈ [0.06, 6.28] rad/s, Mm = 1500 kg, k1 = 10000 N/m, G = 0.8 m, c = 1000 Ns/m, and H = 0.8 m.

RAO, a high average power, a broad bandwidth, and a low
peak-to-average power ratio, simultaneously.

4.2 Influence of Stiffness

By adjusting k1, the vibro-impact WEC’s dynamics and
performance vary significantly, as shown in Fig. 5. As
shown in Figs. 5(a)-(b), the resonance frequency increases
slightly as k1 increases, while the bandwidth of the relative
RAO and average power output decreases significantly. In
Fig. 5(c), the peak-to-average power ratio is low, with
a maximum value of 3 and a minimum value of 1.5.
k1 ∈ [5000, 20000] N/m is preferred for achieving a

trade-off among the relative RAO, average power, capture
bandwidth, and peak-to-average power ratio.

Variation in k2 has little influence on the dynamics and
performance of the vibro-impact WEC, which is illustrated
in Fig. 6. The relative RAO, average power, bandwidth and
peak-to-average power ratio are robust to the change of k2.
Meanwhile, harder end-stop impact springs are preferred
to limit the relative heave motion. Therefore, the suitable
region is k2 ∈ [50000, 200000] N/m. Comparing Figs. 5
and 6, it is clear that the dynamics and performance of
the vibro-impact WEC are more sensitive to the stiffness
of the supporting spring than the impact springs.
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Fig. 8. (a) Relative RAO, (b) average power output, and (c) peak-to-average power ratio, with c ∈ [150, 4000] Ns/m,
ω ∈ [0.06, 6.28] rad/s, Mm = 1500 kg, k1 = 10000 N/m, k2 = 200000 N/m, G = 0.6 m, and H = 0.8 m.

4.3 Influence of Gap

Variation inG does not affect the bandwidth of the relative
RAO and average power, but has significant influence
on their maximum values, as shown in Figs. 7(a)-(b).
A small G leads to a small relative RAO and a low
average power, since impact events occur periodically
and the relative motion is constrained by the impact
springs with large stiffness. Consequently, the peak-to-
average power ratio is large, mainly due to the low average
power output. In contrast to the other design parameters,
Fig. 7(c) illustrates that the peak-to-average power ratio
is critically sensitive to the variation in G. Therefore, a
large G is preferred to achieve a large relative RAO, a high
average power and a small peak-to-average power ratio,
simultaneously. However, the upper gap limit is bounded
by physical constraints, e.g. the buoy height. For this case
study, the preferred values are G ∈ [0.4, 0.8] m.

4.4 Influence of Damping Coefficient

The PTO damping coefficient has a large influence on
the dynamics and performance of the vibro-impact WEC,
as shown in Fig. 8, where a large damping coefficient
results in a small relative RAO and a narrow bandwidth.
However, the resonance frequency appears to be unaffected
by the PTO damping coefficient. As shown in Fig. 8(b), the
average power output is low and the bandwidth is narrow
when the damping coefficient is less than 800 Ns/m.
The bandwidth appears to be unaffected by the damping

coefficient when it is larger than 1500 Ns/m. Fig. 8(c) also
shows that the peak-to-average power ratio tends to small
values when the damping coefficient is larger than 1500
Ns/m. Therefore, the preferred damping coefficient values
are within c ∈ [1500, 2500] Ns/m to obtain a large relative
RAO, a high average power output, a wide bandwidth,
and a low peak-to-average power ratio, simultaneously.

5. CONCLUSION

In this work, a mathematical model of the vibro-impact
WEC is derived. Parametric studies are conducted by
numerical simulations, which illustrate that the vibro-
impact WEC’s dynamics and performance, in terms of
relative RAO, average power output and peak-to-average
power ratio, are sensitive to variations in the design
parameters, including the inner mass, spring stiffness,
impact gaps and PTO damping coefficient.

Regardless of how these parameters vary, the relative RAO
is characterised by a band-pass effect. Hence, the relative
RAO is small when the wave frequency is low, indicating
high system survivability under extreme sea states, which
generally consist of low frequencies. The average power
output is sensitive to all the design parameters, while
the peak-to-average power ratio seem to be only affected
significantly by the impact gap. The bandwidth of the
relative RAO and average power output is sensitive to the
variations in the inner mass, stiffness of the primary spring,
and insensitive to the variations in the stiffness of the
impact springs, impact gap, and PTO damping coefficient.



These parametric studies give some basic guidelines for the
design of a vibro-impact WEC.

Design optimisation is required to find some sets of the
design parameters to achieve a large relative RAO, a high
average power output, a wide power capture bandwidth,
and a low peak-to-average power ratio. Ongoing work fo-
cuses on design optimisation of the proposed vibro-impact
WEC to match a specific wave spectrum by panchromatic
analysis, and on prototyping of a small scale vibro-impact
WEC for wave tank testing.
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Appendix A. PARAMETERS

Simulation conditions are: buoy radius r = 1 m, height
h = 2 m, draft d = 1 m, total mass of the buoy and
inner mass Mt = Mb + Mm = 3, 220.13 kg, water density
ρ = 1, 025 kg/m3, gravity constant g = 9.81 N/kg, added
mass at infinite frequency m∞ = 1, 883.47 kg, and wave
height H = 0.8 m.

The system matrices in Eqs. (4) and (5) are

Ar =

−1.50,−2.06, 1.54,−0.35
2.06,−0.01, 0.07,−0.02
−1.54, 0.07,−2.38, 1.96
−0.35, 0.02,−1.96,−0.54

 ,
Br = [−403.88, 22.57,−181.05,−49.82 ]

T
,

Cr = [−4.04,−0.23, 1.81,−0.50 ] .

The system matrices in Eqs. (10) and (11) are

Ae =


−0.05,−0.61,−0.13,−0.24,−0.13,−0.12
0.61,−0.19,−1.13,−0.29,−0.39,−0.24
−0.13, 1.13,−0.39,−1.56,−0.47,−0.52
0.24,−0.29, 1.56,−0.62,−2.04,−0.66
−0.13, 0.39,−0.47, 2.04,−0.88,−2.38
0.12,−0.24, 0.52,−0.66, 2.38,−1.21

 ,
Be = [−549.4, 884.3,−1008.7, 939.5,−784.6, 603.3 ]

T
,

Ce = [−5.49,−8.84,−10.09,−9.39,−7.85,−6.03 ] ,

De = [ 49.85 ] .


