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Abstract— In this paper, we investigate the role of a physical
watermarking signal in quickest detection of a deception attack
in a scalar linear control system where the sensor measurements
can be replaced by an arbitrary stationary signal generated by
an attacker. By adding a random watermarking signal to the
control action, the controller designs a sequential test based
on a Cumulative Sum (CUSUM) method that accumulates
the log-likelihood ratio of the joint distribution of the residue
and the watermarking signal (under attack) and the joint
distribution of the innovations and the watermarking signal
under no attack. As the average detection delay in such
tests is asymptotically (as the false alarm rate goes to zero)
upper bounded by a quantity inversely proportional to the
Kullback-Leibler divergence(KLD) measure between the two
joint distributions mentioned above, we analyze the effect of
the watermarking signal variance on the above KLD. We
also analyze the increase in the LQG control cost due to the
watermarking signal, and show that there is a tradeoff between
quick detection of attacks and the penalty in the control cost.
It is shown that by considering a sequential detection test
based on the joint distributions of residue/innovations and the
watermarking signal, as opposed to the distributions of the
residue/innovations only, we can achieve a higher KLD, thus
resulting in a reduced average detection delay. We also present
some new structural results involving the associated KLD and
its behaviour with respect to the attacker’s signal power and
the watermarking signal power. These somewhat non-intuitive
structural results can be used by either the attacker to choose
their power to minimize the KLD, and/or by the system designer
to choose its watermarking signal variance appropriately to
increase the KLD. Numerical results are provided to support
our claims.

I. INTRODUCTION

Attacks on cyber-physical systems (CPS) can affect the
integrity, availability and confidentiality in CPS. Examples
range from deception based attacks such as false-data-
injection [1], sensor and actuator attacks, replay attacks,
and also denial of service attacks [2] on the underlying
networked control system (NCS). Deception attacks refer to
scenarios where integrity of control packets or measurements
are compromised by altering the behaviour of sensors and
actuators. In particular, false data injection attacks are intro-
duced by injecting incorrect or misleading measurements or
control inputs. Replay attacks are carried out by hijacking the
sensors, recording the sensor measurements for a period of
time, and then repeating such measurements to the controller
while injecting a harmful exogenous signal into the system.
On the other hand, denial of service attacks can be carried out
by an adversary compromising the availability of resources
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to the CPS, e.g., by jamming the communication channel.
Documented defence mechanisms can range from attack
identification and detection, intrusion detection as well as
physical watermarking of valid control signals. Most of these
defence mechanisms have been developed to tackle specific
types of attacks, whereas a generalized unified approach for
attack identification and detection is developed by adopting
a descriptor system modelling framework for CPS [3] and
applications illustrated for power and water networks. Linear
state estimation with corrupted measurements has been also
studied in [4] where the maximum number of faulty sensors
is characterized and a decoding algorithm for detecting
corrupted measurements is presented.

The defence mechanism of relevance to this paper is
the idea of physical watermarking of control signals. Tra-
ditionally, digital watermarking has been used extensively
in audio and image processing for authentication purposes,
where a specific signal is embedded in the transmitted
message/document, and is later used to identify the rightful
owner of the message. The idea of physical watermarking
in NCS is similar, where a random signal is added to the
control signal, and under normal operations, the effect of this
watermarking signal should be present in the system output.
However, when the system is attacked or compromised and
sensor measurements are substituted by injection of false
data, the expected effect of the watermarking signal will
be absent or perturbed, thus leading to a statistical test
which can detect the presence of an attacker. Two most
recent works that deal with design and analysis of physical
watermarking for NCS are [2] and [10]. In [2], the authors
consider a linear state space model under a replay attack,
and first design an optimal detector based on the Neyman-
Pearson test. However, as the performance of this detector
is hard to analyze, they design an optimal watermarking
signal (added to the true control signal) which maximizes
the Kullback-Leibler Divergence (KLD) measure between
the densities of the residual before and after the attack,
subject to a constraint on the loss of linear quadratic (LQ)
control cost due to the addition of the watermarking signal.
In [10], the authors proposed a model where the attacker
also replaces the sensor measurements by its own simulated
signal, which tries to mimic the nominal system without the
knowledge of the watermarking signal in the control input.
The key result in [10] develops two tests at the actuator
that the attacker has to pass to remain stealthy, but this is
only possible if the attacker replaces the true sensor outputs
by a signal of zero average energy. Further recent results
on this topic include design of statistical watermarking for
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joint sensor and communication attack detection [13], and
Gaussian watermarking with packet drops in [14]. In a
separate line of enquiry, a trade-off between controller utility
and detectability of an attacker is studied using known input
statistics at the controller, without actually formulating the
problem in the context of a true feedback control system, or
investigating sequential detection of attacks [7].

In detecting attacks in CPS, it is of paramount importance
that attack detection happens with minimum delay, thus
favouring quickest sequential detection based methods. The
importance of this can be easily illustrated by a simple
experiment where the attacker replaces the sensor data by
a stationary Gaussian signal mimicking the properties of
the sensor output, and subsequently, the estimator/controller
(unaware of the attack) uses this false data to design their
estimation/control algorithm, resulting in system instability
exponentially fast. The watermark design techniques em-
ployed in [2], [10] are not designed specifically for quickest
detection of attacks, and the statistical detection tests de-
veloped in [10] are asymptotic in nature, thus relying on
collecting a large number of system outputs in practice. In
this paper, we will therefore focus on design and analysis
of physical watermarking signals that minimize the average
detection delay in sequential detection methods, while still
keeping the system performance within a prescribed safety
limit - as demanded by resilience requirements of CPS under
attacks [5].

In particular, we consider a scalar networked linear control
system, where the attacker launches a deception attack at a
certain unknown but deterministic time point, by injecting a
stationary temporally correlated Gaussian false measurement
sequence (thus replacing and mimicking) the true sensor
measurements, while the estimator/controller employs stan-
dard optimal linear quadratic Gaussian (LQG) control based
on the received measurement sequence without knowing
whether there has been an attack or not. In order to aid the
detection of the attacker, which on the other hand tries to re-
main stealthy, the controller adds a random (independent and
identically distributed Gaussian watermarking signal) to the
control signal, which is only known to the controller/actuator,
and not the adversary.

Our main contributions are as follows: (i) We design a
sequential quickest detection test at the controller, based
on the cumulative sum (CUSUM) algorithm that is well
known to minimize the average detection delay under a
constraint on the mean time between false alarms. This
sequential test is based on the log-likelihood ratio of the joint
distribution of the residue (measurement prediction error)
and the watermarking signal before and after the attack. (ii)
Motivated by the result that the asymptotic (as the false alarm
rate goes to zero) upper bound on the average detection delay
is inversely proportional to the Kullback-Leibler divergence
(KLD) measure between these joint distributions before and
after the attack, we analyze the behaviour of the KLD
measure with respect to the variance of the watermarking
signal as well as the attacker signal variance, and present
some structural results. These results show that for a fixed

watermarking signal variance, the attacker can choose its
own signal power to minimize the proposed KLD, whereas
the KLD (when the attacker’s signal power is fixed) is an
increasing function in the watermarking signal variance if
and only if the attacker signal variance is above a certain
threshold. (iii) The behaviour of the increase in the LQG
control cost due to the watermarking signal is also analyzed,
illustrating the tradeoff between quickest detection, and the
penalty in the control cost. (iv) Unlike previous works
which consider KLD between the distributions of the residue
signal (under attack) and the innovations (before the attack)
only, we show that by considering the joint distributions of
the residue/innovation and the watermarking signal, we can
increase the KLD even further, thus reducing the average
detection delay. Numerical results confirm our findings.

II. PROBLEM SETUP

A. System model

We consider the following architecture of a networked
control system. The single-input single-output, linear time
invariant system is modeled as:

xk+1 = Axk +Buk + wk (1)

in which xk ∈ R is the state variable and uk ∈ R is the
control input at time k generated by the controller. wk ∈ R ∼
N (0, Q) is the process noise at time k which is assumed to
be an independent and identically distributed (i.i.d) random
process. A sensor reports its (scalar) observations to the
controller in the following form at time k:

yk = Cxk + vk (2)

in which vk ∼ N (0, R) is i.i.d. measurement noise that is
independent of the process noise wk. Note that although we
consider a scalar state-space system, we still use uppercase
letters for the system parameters A,B,C,Q,R, with a slight
abuse of notation. We assume that the system has started at
time t = −∞ and currently is in steady-state condition, as
stabilizability and detectability are guaranteed for a scalar
system. Then the optimal state estimate equations, based on
Kalman filtering, are given as

x̂k+1|k = Ax̂k|k +Buk (3)
x̂k|k = x̂k|k−1 +Kγk (4)

where x̂k+1|k = E[xk+1|Yk], and x̂k|k = E[xk|Yk] are
the Kalman predicted and filtered state estimate, respectively
based on received measurements up to time k, given by Yk.
Also, K = CP

C2P+R is the steady-state Kalman gain and
where P is the steady-state minimum mean-squared error
(MMSE) estimation error variance E(xk−x̂k|k−1)2 obtained
from the solution to the algebraic Riccati equation

P = A2P +Q−A2C2P 2(C2P +R)−1. (5)

In (4) the innovation sequence γk is the defined as

γk , yk − Cx̂k|k−1. (6)

We assume that the sensor is connected to the estima-
tor/controller via a link that is susceptible to malicious
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attacks. In the system equation (1), the control signal uk
is sent by the controller (which is assumed to be co-located
with the actuator), to the sensor as a linear function of the
filtered state estimate, such that uk = f(x̂k−∞) minimizes
the infinite-horizon LQG cost:

J = lim
T→∞

E
1

2T + 1
[

T∑
k=−T

(Wx2k + Uu2k)] (7)

where W and U are positive weights. The LQG control
policy results in a fixed-gain linear control signal as

uk = Lx̂k|k, L =
−ABS
B2S + U

(8)

where S is the solution obtained from the algebraic Riccati
equation

S = A2S +W −A2B2S2(B2S + U)−1. (9)

B. Attack model

We assume that the adversary can launch an attack against
the integrity of the sensor measurements such that the esti-
mator/controller, instead of receiving the true measurement,
yk sent by the honest sensor, receives zk, which is injected
by the attacker. Furthermore, we assume that the attacker
knows the system parameters A,B,C,Q and R and also
the control policy, i.e., L but not necessarily the true sensor
measurements yk. On the other hand, we assume that the
control signal is not tampered with by the adversary.

The goal of the attacker is to change the performance of
the control system by sending fake observations, zk, that
replaces the true ones and while doing so remain undetected.
In the following section, we consider an attack model where
the attacker replaces the true measurement ym by a fake
measurement zm for all m ≥ k. This is a kind of spoofing
attack which can be accomplished by the adversary, even
without having access to yk itself, by jamming or overpow-
ering the true sensor signal if sent over wireless. However,
if the sensor signal is not sent over wireless the adversary
might be able to hijack it in another way and replacing the
yk with zk in a so called man-in-the-middle attack. Most
protocols used today would not be able to detect such an
attack. Nevertheless, the objective of the attacker is to remain
stealthy for a sufficiently long period of time over which the
attack takes place, to cause maximum damage to the control
system.

In this paper, we will assume that the attacker does not
need to know the true sensor measurements but can simply
alter them by injecting (as we will assume for the rest of this
paper) the sequence {zk}, which is stationary with statistics

E(z2k) = σ2
z , E(zk, zk−k′) = ρk

′
σ2
z (10)

in which |ρ| < 1. Depending on whether the attacker
physically compromises the sensor node or simply replaces
the sensor measurements by injecting a strong interfering
signal, it may also need to know the encryption algorithm
used by the networked control system. However, it is com-
mon to assume that the adversary has full knowledge of
all system parameters and protocols, as is often done in

cryptography according to the notion of “security through
obscurity” known as Kerckhoffs’s principle, or also accord-
ing to Shannon’s maxim, which essentially assumes that “the
enemy knows the system.” The attacker’s knowledge of the
system is a sensible assumption since then the adversary can
cause maximum damage, a situation that is essential to detect
as fast as possible.

C. Attack stealthiness

To determine whether an attack is present in the control
system or not we shall rely on a hypothesis testing procedure
based on the following two hypotheses:
H0: No attack (the controller receives the true sequence yk),
H1: Attack (the controller receives the false sequence zk).

Let pFk represent the false alarm probability, i.e., deciding
H1 when H0 is true and let pDk represent the detection
probability, i.e., deciding H1 when H1 is true, at time k. Fur-
thermore, define γ̃k to be the innovation signal zk−Cx̂Fk|k−1,
where x̂Fk|k−1 is the inaccurate Kalman predictor designed in
the presence of an attack based on the received sequence
{zk}. Let γ̃k1 and γk1 represent the sequences {γ̃j}kj=1

{γj}kj=1, respectively. The goal is to design a detector which,
with high probability can detect an attack while keeping the
false alarm probability as small as possible. It is common to
design a hypothesis testing procedure that decides in favour
of H0 or H1 based on testing the innovation sequence γ̃k1
(under attack) and the true innovation sequence γk1 .

In detection theory, the performance of the detector can be
characterized by the trade-off between pFk and pDk . Following
[6], [8], we introduce the following definition of a stealthy
attack:

Definition 1: For ε > 0 and 0 < δ < 1, an attack is ε-
stealthy if for any detector that satisfies 0 < 1− pDk ≤ δ, it
holds that

lim sup
k→∞

−1

k
log(pFk ) ≤ ε (11)

It was shown in [8] that condition (11) is equivalent to

lim sup
k→∞

1

k
D(fγ̃‖fγ) ≤ ε (12)

when the hypothesis H0 for no attack assumes the innovation
sequence γk1 , and the residues γ̃k1 for H1. Here, D(fγ̃‖fγ)
is the Kullback-Leibler Divergence (KLD) between the se-
quences γ̃k1 and γk1 defined as:

D(fγ̃‖fγ) =

∫ ∞
−∞

fγ̃(γk1 ) log
fγ̃(γk1 )

fγ(γk1 )
dγk1 . (13)

where fγ̃ , fγ are the (stationary) distributions of the se-
quences {γ̃k} and {γk}, respectively. Clearly, the objec-
tive for the control system designer is to detect the at-
tacker, and hence increase the value of the quantity D =
lim supk→∞

1
kD(fγ̃k‖fγk), an expression for which was

provided in [8], while the attacker tries to minimize the KLD
as much as possible (i.e, make ε as small as possible). This
leads us to the next section, where we employ a physical
watermarking mechanism to increase an appropriate KLD
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measure based on the joint distributions of the innova-
tions/residues and the random watermarking signal (rather
than the residue signals only), thus making it difficult for the
attacker to remain undetected through a sequential detection
test designed accordingly. Note that we do not discuss how
the adversary designs ε in response to the sequential detection
test employed by the control system designer in this paper, a
topic which will be further investigated in a game theoretic
setting in future work.

D. Defence mechanism based on physical watermarking

As explained above, the attacker can choose an intelligent
policy to inject false observations and tries to remain unde-
tected. This however relies on the the fact that the control
system is influenced by process and measurement noises,
which produce uncertainty in favour of the attacker.

To protect the system against these active attacks, a key
idea is to add a random watermarking signal, known only by
the controller (and not to the attacker, although the attacker
may know the statistics of the watermarking signal), to the
control sequence uk. In particular, the controller adds the
watermarking sequence ek to the control signal, i.e.,

uk = Lx̂k|k + ek (14)

where ek is assumed to be an i.i.d. zero-mean Gaussian
sequence with variance σ2

e . The idea of adding such a
physical watermarking signal was proposed in [2] in the
context of detecting replay attacks, and further extended and
analyzed in the context of dynamic watermarking in [10].
In general, the signal ek can be a stationary Gauss-Markov
process as shown in [2], although for the purpose of this
paper, we assume it to be i.i.d.

By adding this sequence the controller is provided with
a tool to check if the received signal from the sensors bear
any correlation with the watermarking sequence or not. If
the attacker injects a false observation zk, which is naturally
independent of the watermarking signal, then this can be
detected by the controller, even though the attacker may
know the statistics of the watermarking signal.

In [2], a Neyman-Pearson test based failure detector using
the residue vector (which is either γk or γ̃k) was suggested
for detecting an attack, whereas in [10], two asymptotic tests
were proposed to detect an attack. Both of these schemes
do not address the problem of quickest detection of the
attack, which is of utmost importance, and this motivates
us to consider a non-Bayesian sequential detection method
under the assumption that the attack takes place at a fixed
but unknown point of time. In particular, the cumulative-sum
(CUSUM) method which minimizes the average detection
delay subject to a constraint on the mean time between
false alarms, also known as Lorden’s method [11]. However,
instead of comparing directly the distribution of residues γk
and γ̃k, we propose a detection mechanism as follows. The
controller, upon receiving the observation yk (which is not
known to be the true yk or the false zk) calculates γk (or γ̃k

)and computes

Sk = max(0, Sk−1 + log
fγ̃k,ek−1

(γ̃k, ek−1)

fγk,ek−1
(γ̃k, ek−1)

) . (15)

where fγ̃k,ek−1
and fγk,ek−1

denote the joint distribution
between the residue signal and the watermarking signal. The
controller then decides on “attack” or “no attack” based on
the following policy:

The system is under attack if Sk > α,

The system is not under attack if Sk < α (16)

where α , | log pF | .
The above policy can be justified in the way that if the

received observation by the controller is the true one, then

γk = yk − Cx̂k|k−1
= Cxk + vk − C(A+BL)x̂k−1|k−1 − CBek−1
= CA(xk−1 − x̂k−1|k−1) + Cwk−1 + vk . (17)

meaning that γk is uncorrelated with the watermarking
signal ek−1. On the contrary, if the received observation by
the controller is the false zk, then

γ̃k = zk − Cx̂Fk|k−1
= zk − C(A+BL)x̂Fk−1|k−1 − CBek−1. (18)

Thus, it is evident that the false innovations γ̃k is correlated
with watermarking signal ek−1 and we can conclude that the
control system is under attack.

It is worth mentioning that one might be tempted to
conduct a sequential test based on the log-likelihood ratio
log

fγ̃k (γ̃k)

fγk (γk)
(i.e, based on the log-likelihood ratio of the

distributions of the residue under attack and innovations
(no attack)), instead of Sk defined in (15), which is based
on the joint distributions of the residue/innovations and
the watermarking signal. In the following sections, we will
illustrate how our suggested test quantity Sk can reduce
the average detection delay as opposed to using the log-
likelihood ratio based on the residue/innovations only, as
mentioned above.

III. MAIN RESULTS

To analyze our suggested detection approach further we
will use the Average Detection Delay (ADD) as a measure
to quantify performance. It is well known that [9], [11]
when the observations before and after the change are i.i.d,
it is shown that, as the mean time between false alarms
goes to infinity (or false alarm rate pF goes to zero) the
ADD is asymptotically upper bounded by | log pF |

I1
where

I1 corresponds to the KLD between the distributions after
and before the change. Although originally derived for i.i.d.
sequences, these asymptotic upper bound results have been
extended to the case of dependent but stationary sequences
in [12], which allows us to write the following asymptotic
upper bound on the ADD for the proposed sequential test
based on (15), (16):

| log pF |
limk→∞D(fγ̃k,ek−1

‖fγk,ek−1
)
. (19)
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Clearly, for a fixed pF , the upper bound on the ADD
is inversely proportional to the KLD between the joint
distributions before and after the attack. In the following
theorem, we obtain an expression for D(fγ̃k,ek−1

‖fγk,ek−1
)

corresponding to our proposed detection approach.
Theorem 1: Consider the joint distributions between

the watermarking signal and the true and false
innovations, respectively, i.e., fγk,ek−1

and fγ̃k,ek−1
.

The KLD between these joint stationary distributions,
limk→∞D(fγ̃k,ek−1

‖fγk,ek−1
), is then given by:

lim
k→∞

D(fγ̃k,ek−1
‖fγk,ek−1

) =
1

2
log(

1

1− λ2
)

+
1

2
(
σ2
γ̃

σ2
γ

− 1− log
σ2
γ̃

σ2
γ

) (20)

in which λ = −BCσe
σγ̃

, and

σ2
γ̃ =

[
(1− ρCK(A+BL)

1− ρA
)2

+
(1− ρ2)C2K2(A+BL)2

(1−A2)(1− ρA)2

]
σ2
z +

B2C2

1−A2
σ2
e (21)

σ2
γ = C2P +R (22)

where A , (1−CK)(A+BL) (note also that A < 1 from
stabilizability and detectability which is automatic for the
scalar case) and P is calculated according to (5). Finally,
|λ| < 1, as shown in the proof.

Proof: See Section Appendix A.
In Theorem 1, limk→∞D(fγ̃k,ek−1

‖fγk,ek−1
) is the KL

divergence between the joint stationary distributions be-
tween the innovations and the watermarking signal, i.e.,
fγk,ek−1

(γk, ek−1) and fγ̃k,ek−1
(γ̃k, ek−1), as k → ∞, for

the healthy and attacked systems, respectively. With a fixed
false alarm probability, we need to make these distributions
as distinguishable as possible to avoid unnecessary detection
delays., or increase the KLD as much as possible, whereas
the attacker tries to minimize the KLD.

Properties of KLD as functions of σ2
z and σ2

e

Here we briefly present two results that illustrate the
behaviour of the KLD expression in (20) with respect to
σ2
z , and σ2

e , respectively. We assume that ρ is fixed in these
discussions. First, we introduce the following simplifying
notations. One can rewrite (32) in the proof of the above
theorem as σ2

γ̃ = M1σ
2
z + M2σ

2
e , where M1 > 0,M2 > 0

are given by

M1 = [(1− ρCK(A+BL)

1− ρA
)2 +

(1− ρ2)C2K2(A+BL)2

(1−A2)(1− ρA)2
],

M2 =
B2C2

1−A2
.

Define also M3 = λ2

1−A2 = B2C2

1−A2

σ2
e

σ2
γ

. Then we can show the
following result:

Theorem 2: For a fixed σ2
e , ρ, the KLD given by (20) is

convex in σ2
z . Furthermore, if σ2

e

σ2
γ
< (1/A2−1)

B2C2 , then it is first
decreasing and then increasing in σ2

z , attaining a minimum at

σ2
zopt =

σ2
γ

M1

(
M3 + 1−M3/(1−A2)

)
. Otherwise, if σ2

e

σ2
γ
≥

(1/A2−1)
B2C2 , then the KLD is monotonically increasing in σ2

z .
Proof: The proof follows simply by investigating the

first and second derivatives of the KLD with respect to
σ2
z , while keeping σ2

e , ρ fixed, and is omitted for space
restrictions.
In a similar fashion, by investigating the first and second
derivatives of the KLD with respect to σ2

e , while keeping
σ2
z , ρ fixed, one can show that the KLD is a convex function

of σ2
e , and is monotonically increasing for all values of

σ2
e > 0, if and only if σ2

z > A2

M1
σ2
γ . The proof involves

tedious calculations, and hence is not included due to space
restrictions. A similar behaviour of the KLD can be observed
as a function of ρ, if σ2

z and σ2
e are kept fixed.

Remark 1: The above observations indicate that the at-
tacker (defender) can choose their signal power (watermark-
ing signal variance) based on their knowledge of each other’s
parameters, and while the attacker can choose its signal
power to minimize the KLD, increasing the watermarking
variance does not necessarily increase the KLD for the
defender unless the attack signal variance is above a certain
threshold. We illustrate this non-intuitive behaviour in the
simulations section with a numerical example.

However, increasing the watermarking variance to increase
the KLD (decrease the ADD) comes at a cost: by increasing
the watermarking signal power we also diverge from the
optimal LQG cost given by (7), (8). Hence, there is a
tradeoff between reducing the average detection delay and
the system performance in terms of the increase of the LQG
cost. We elaborate on this issue in the following theorem, by
considering the difference in the LQG cost for the healthy
system (no attack), as under attack an unstable open loop
system can be easily destabilized. See [2] for a similar
treatment.

Theorem 3: Consider the LQG cost (7) with weighting
factors W and U and let ∆LQG represent the acceptable
increase in the LQG cost from the optimal LQG cost for
the system under no attack. Then, the watermarking signal
variance is related to the increase in LQG cost as follows:

σ2
e =

∆LQG

U + B2(W+L2U)
1−(A+BL)2

(23)

Proof: See Section Appendix B.
In practice, the system designer will choose a certain σ2

e to
tolerate a maximum ∆LQG as given by the above theorem,
and since the attacker knows σ2

e and other system parameters
as assumed, it can design its signal variance σ2

z to minimize
the KLD. For the system designer, the knowledge of the
attacker parameters ρ, σ2

z can help increase the KLD by
choosing an appropriate σ2

e , by allowing a larger ∆LQG
if necessary. This interaction between the defender and the
attacker can be formulated in a dynamic game scenario,
which will be investigated in future work.

Remark 2: As stated in the previous section, instead of
the distribution of the innovations in our detection policy,
we considered the joint distribution between the innova-
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tions and the watermarking signal. The benefit of using
the joint distribution instead of using the innovations only
can be immediately observed in the expression of the
D(fγ̃k,ek−1

‖fγk,ek−1
) in (20). By considering the innovations

only, the corresponding D(fγ̃k‖fγk) expression equals the

second term in (20) i.e., 1
2 (
σ2
γ̃

σ2
γ
− 1 − log

σ2
γ̃

σ2
γ

). By using the
joint distributions we also obtain the first term in (20), which
is positive, leading to a larger KLD, thus making it more
difficult for the attacker to remain stealthy.

IV. NUMERICAL RESULTS

In this section we will investigate the tradeoff between
ADD and ∆LQG. This is shown in Fig. 1 for two different
values of pF = .001 and pF = .01. The blue dashed line
represents the simulated ADD according to our detection
policy in (16) while the solid pink line shows the ADD upper
bound according to our result in Theorem 1. The red dash-
dot line shows the ADD upper bound for the detection policy
based on the KLD between the distributions of the residue
signal (under attack) and the true innovations (no attack).
This is referred to in the graphs as “ADD bound based on
innovations only”. It should be noted that in previous works
such as [10], some numerical results based on a sequential
detection are presented, although the actual detection policy
is not clearly stated. The results in Fig. 1 are depicted for
the values A = .7, B = C = R = Q = W = 1, U = .4,
σ2
z = 4, ρ = .5 and the real ADD blue dashed line is

calculated based on the average over 100 random realizations
of the sequential detection algorithm. Comparison between
the solid pink line and the red dash-dot line in Fig. 1
demonstrates the reduction in the ADD upper bounds due
to using our proposed sequential detection test compared to
a sequential detection based on innovations/residues only.

In Fig. 2 we investigate the behaviour of the KLD (as given
by (20)) as a function of σ2

z (while keeping ρ, σ2
e fixed), and

as a function of σ2
e (while keeping ρ, σ2

z fixed). In these
simulations, A = 1.1, B = C = Q = R = W = U = 1,
ρ = 0.7, and σ2

e is chosen by using ∆LQG = 0.7. The
first decreasing and then increasing behaviour of the KLD is
clearly visible, as in this case it can be checked that σ2

e

σ2
γ
<

(1/A2−1)
B2C2 , and the theoretically calculated value of σ2

zopt =
4.0253. In the bottom figure, we plot the KLD as a function
of σ2

e while keeping ρ, σ2
z fixed. The parameter values are

the same as before, except here σ2
z = 0.02, which is less

than the threshold given by A2

M1
. The first decreasing and

then increasing behaviour of the KLD as a function of σ2
e is

clearly visible, implying that if the attacker signal variance is
lower than a required threshold, increasing the watermarking
variance may not always increase the KLD. In fact, it is
obvious from the figure that if the currently used σ2

e < 2,
then it is beneficial to actually decrease σ2

e if only a moderate
increase in KLD is required, as this also lowers the increase
in LQG cost if there is no attack.

Fig. 3 illustrates the ADD for an unstable system with
A > 1. The ADD is shown in two different values for ρ for
A = 1.2 while B = C = R = Q = W = 1, U = .4, σ2

z =
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Fig. 1. ADD in terms of ∆LQG for pF = .001 and pF = .01

4.0, pF = .01. It is seen that in the unstable case with A > 1,
there exists a higher gap between the ADD bounds for the
sequential tests based on the joint distribution as proposed in
this paper and the one based on innovations/residues only.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how a suitably designed se-
quential detection test can detect deception attacks in a scalar
networked control system with an average detection delay
that can be reduced by introducing a physical watermarking
signal with a suitable variance. The tradeoff between quick
detection and penalty in the control cost as a result of using
the watermarking signal is also investigated. Future works
will extend these results to multi-variable (vector state and
measurements) systems with more general attack strategies,
and propose a dynamic game between the adversary and
the control system designer regarding the attacker’s effort
to remain stealthy, and the system designer’s effort to detect
the attack with minimum delay, using such physical water-
marking schemes.

APPENDIX

A. Proof of Theorem 1

To calculate D(fγ̃k,ek−1
‖fγk,ek−1

), we need to obtain the
joint distributions fγk,ek−1

(γ, e) and fγ̃k,ek−1
(γ, e) in steady
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Fig. 2. Behaviour of KLD as a function of σ2
z and σ2

e .

state. As it was shown in (17), in the healthy system, γk
and ek−1 are uncorrelated for i.i.d. watermarking sequence.
Hence the joint distribution fγkek−1

(γ, e) appears as:

fγkek−1
(γ, e) =

1

2πσγσe
exp
−1

2
(
γ2

σ2
γ

+
e2

σ2
e

) (24)

in which σ2
γ is given as in (22). On the other hand, when we

have attack, γ̃k and ek−1 are correlated according to (18).
Since γ̃k and ek−1 are zero-mean Gaussian, to obtain their
joint distribution, we need to calculate σ2

γ̃ and cov(γ̃k, ek−1).
Since ek−1 is uncorrelated with zk and x̂Fk−1|k−1, we use (18)
to obtain:

cov(γ̃k, ek−1) = −CBσ2
e (25)

Using the same equation, we have:

σ2
γ̃ = σ2

z + C2(A+BL)2σ2
x̂

− 2C(A+BL)cov(zk, x̂
F
k−1|k−1) + C2B2σ2

e . (26)

where σ2
x̂ = E

(
x̂Fk−1|k−1

)2
.

To calculate cov(zk, x̂
F
k−1|k−1) we proceed as follows. By

combining (4) and (6), for the attacked system, one obtains:

x̂Fk−1|k−1 = Kzk−1 +Ax̂Fk−2|k−2 +B(1−CK)ek−2. (27)

By multiplying the above equation with zk, zk+1, zk+2, ...
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Fig. 3. ADD in terms of ∆LQG for different values of σ2
z and ρ with

A = 1.2

etc., and calculating expectation of the both sides for the sta-
tionary system, and defining Ex̂z(−l) = cov(zk, x̂

F
k−l|k−l),

we have for k = 1, 2, . . . ,

Ex̂z(−k) = KEzz(k) +AEx̂z(−(k + 1)).

in which Ezz(k) is obtained according to (10).
Since A < 1 and ρ < 1, Ex̂z(−1) is obtained as a sum of

an infinite geometric series which converges to:

Ex̂z(−1) = Kσ2
z

∞∑
i=1

ρiAi−1 = Kσ2
zρ

∞∑
i=0

(ρA)i =
Kσ2

zρ

1− ρA
(28)

To calculate σ2
x̂, we reuse (27) such that:

E(x̂Fk−1|k−1)2 = K2E(z2k−1) +A2E(x̂Fk−2|k−2)2

+ 2KAE(zk−1x̂
F
k−2|k−2) +B2(1− CK)2σ2

e

(29)
which results in:

σ2
x̂ = K2σ2

z +A2σ2
x̂ + 2KAEx̂z(−1) +B2(1− CK)2σ2

e .
(30)
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Combining (28) and (30) yields:

σ2
x̂ =

K2(1 + ρA)

(1− ρA)(1−A2)
σ2
z +

B2(1− CK)2

1−A2
σ2
e . (31)

and further manipulations using (26), σ2
γ̃ is obtained as:

σ2
γ̃ = [(1− ρCK(A+BL)

1−ρA )2 + (1−ρ2)C2K2(A+BL)2

(1−A2)(1−ρA)2 ]σ2
z

+B2C2

1−A2σ
2
e (32)

To obtain the joint distribution fγ̃kek−1
(γ, e), we form the

cross-covariance matrix of γk.ek−1 as:

Σ =

(
σ2
γ̃ −CBσ2

e

−CBσ2
e σ2

e

)
(33)

and consequently:

fγ̃k,ek−1
(γ, e) =

1

2πσγ̃σe
√

1− λ2

× exp

{
−1

2(1− λ2)

(
γ2

σ2
γ̃

+
e2

σ2
e

− 2λeγ

σeσγ̃

)}
(34)

in which
λ =

cov(γ̃k, ek−1)

σeσγ̃

(a)
=
−BCσe
σγ̃

(35)

where (a) is deduced from (25). Note also that |λ| < 1 as it
is a correlation coefficient.

Then D(fγ̃k,ek−1
‖fγk,ek−1

) is calculated as:∫∫ ∞
−∞

fγ̃kek−1
(γ, e) log

fγ̃k,ek−1
(γ, e)

fγk,ek−1
(γ, e)

)dedγ. (36)

Replacing the joint distributions as in (24) and (34) in (36)
yields

D(fγ̃k,ek−1
‖fγk,ek−1

) = log(
σγ

σγ̃
√

1− λ2
)

+
−σ2

γ̃

2
(

1

(1− λ2)σ2
γ̃

− 1

σ2
γ

) +
−1

2
(

1

(1− λ2)
− 1)

+
λcov(γ̃k, ek−1)

(1− λ2)σγ̃σe

=
1

2
log(

1

1− λ2
) +

1

2
(
σ2
γ̃

σ2
γ

− 1− log
σ2
γ̃

σ2
γ

)

Using the same approach as in [8], it can be shown
that the averaged KLD is equal to the single letter
D(fγ̃k,ek−1

‖fγk,ek−1
) calculated above in which the distri-

butions are the steady state ones.

B. Proof of Theorem 2

To calculate the cost of using the watermarking for the
purpose of detection, we obtain the difference of LQGs
between the cases depending on whether watermarking is
used or not used in the healthy system. According to (7), we
use (14) to obtain:

∆LQG = Jw − Jn =

W (E(X2
w)−E(X2

n))+UL2(E(X̂2
w)−E(X̂2

n))+Uσ2
e(37)

where subscript ’w’ refers to the case where we use wa-
termarking and subscript ’n’ refers to the case that we don’t
use watermarking. To calculate ∆LQG, we need to calculate

E(X2
w) and E(X̂2

w). Based on the fact that γk is uncorrelated
with x̂k|k−1, we use (4) in steady-state condition to obtain:

E(X̂2
w) =

1

1− (A+BL)2
(B2σ2

e +K2(C2P +R)) (38)

To calculate E(X2
w), (6) is obtained as:

E(Y 2
w) = σ2

γ + C2((A+BL)2E(X̂2
w) +B2σ2

e)

= (C2P +R)(1 + C2K2(A+BL)2

1−(A+BL)2 ) + B2C2

1−(A+BL)2σ
2
e)(39)

where we used (38) to conclude (39).
Then (2) is used to calculate E(X2

w) as

E(X2
w) =

E(Y 2
w)−R
C2

= P + K2(A+BL)2(C2P+R)
1−(A+BL)2 + B2

1−(A+BL)2σ
2
e (40)

Combining (38) and (40) with (37) gives us:

∆LQG =

(
U +

B2(W + L2U)

1− (A+BL)2

)
σ2
e (41)
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