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New Finite-Dimensional Risk-Sensitive and linear measurements. Here we show that when the measurements
Filters: Small Noise Limits include the increments of the state process, and are thus nonlinear, the
risk-sensitive filter is finite-dimensional. In principle, this is expected
Charalambos D. Charalambous, Subhrakanti Dey, from the finite-dimensionality of the analogous control problems
and Robert J. Elliott treated in [13]. However, because the formulation of the risk-sensitive

cost criterion is different from the formulation of the information state
_ _ _ _ _ _ of [13], and finite-dimensional filters are essentially nonexistent, these
Abstract—This paper is concerned with continuous-time nonlinear fijters should be treated separately. Another reason for treating these

risk-sensitive filters. It is shown that for large classes of nonlinearities . . . . _ . .
entering both the dynamics and measurements, these filters are finite- filters separately is their connection to analogous finite-dimensional

dimensional generalizations of the Benes filters. Specific examples areMinimax f?lters, Whic_h we explore in this paper.
discussed. The small noise limiting analog is discussed using change of In Section Il, we introduce the class of signal models we are

probability measures. dealing with and formulate the risk-sensitive filtering problem. Using
Index Terms—Filtering, finite-dimensional, risk-sensitive. change of probability measure techniques, an unnormalized measure
(also known as the information state), is defined that satisfies a
Feynman—Kac version of the DMZ equation. The optimal risk-
I. INTRODUCTION sensitive estimate is given as the minimizing argument of an integral
Risk-sensitive estimation optimizes the expectation of an expiwolving this information state. This minimization can be recast as a
nential of quadratic (or a more general convex) cost criteriopointwise minimization by employing dynamic programming to de-
Compared with minimum variance estimation, which achieves thigre a Hamilton—Jacobi equation with infinite-dimensional state space.
minimization of a quadratic error criteria, risk-sensitive estimatiofection Ill presents finite-dimensional risk-sensitive filtering results.
robustifies the estimator against noise uncertainties by penaliziigction IV includes some discussions on small noise limits which
all the higher order moments of the estimation error energy. Fenable us to obtain finite-dimensional deterministic minimax filters.
example, it has been shown in [2], that discrete-time risk-sensitive
filters for hidden Markov models with finite-discrete states perform
better than standard filters in situations involving uncertainties in the Il. PROBLEM STATEMENT AND METHODOLOGY
noise statistics. Also, in the small noise limit, risk-sensitive problems Let [0, T], T € R denote the time interval, and I&R, A, ﬁ) be a
are shown to be related to estimation/control problems, formulatedmplete probability space that carries the standard Wiener processes
as deterministic minimax dynamic game® estimation/control {w,: ¢t € [0, T]}, {b:; t € [0, T]} which take values ifR™, R?,
problems for linear/nonlinear systems) [3]-[9]. respectively, and the random variabté0). Throughout this paper
It is well known that the conditional density of continuousit is assumed that these Wiener processes :fij are mutually
time partially observed stochastic systems satisfies the Duneependent under measufe
can—Mortensen-Zakai (DMZ) equation. Aside from the case of On the probability spacd(l, A, P), the processeqz:;t €
linear systems, solutions of this equation are rare. In fact, the orjly T}, {y:; t € [0, T]} are solutions of the stochastic differential
success is that noted by Benes [1] and the subsequent generalizatieptions
again with linear measurements.
Motivated by the finite-dimensional solutions of the DMZ equation day = f(t, ae) dt + Gy dw,, z(0) € R (1)
and its Feynman—Kac version, it was recently noted independently
by Charalambous—Naidu—Moore [10], Charalambous [11], and Ben-
soussan—Elliott [12] that the existence of finite-dimensional filters y(0)=0€ R". (2)
for nonlinear systems is closely related to the existence of finite-
dimensional controllers for nonlinear partially observed stochasfiteret — G, aq, N}/? are knownn x m, d x n, d x d, real-
optimal control problems. The most general extensions are givealued matrices, respectively, continuous dnand G:G; > 0;
in [13], where the nonlinearities are also allowed to enter th¥, = N\/2N,/>" > 0. Also, |f(t, z)| < K(1 + |z|), |h(t, z)| <
measurements. K(1+|z|),andf(-, x), h(-, ) are continuous im. {x; t € [0, T}
The main result of this paper is the derivation of finite-dimension&@ a Markov diffusion process, and so for ady? function ®:
risk-sensitive filters when nonlinearities enter the dynamics afml’ — R, with compact support, its generator is defined by
measurement equations. In all the existing literature on nonlinear
filtering, finite-dimensional filter es_timates are comp_uted based on ADB(x) = Tr (GoG\D2®(x)) + f(t, x). De®(x) 3)
the model of Benes (see [1]), which assumes nonlinear dynamics 2

dye = h(t, x;) dt + o day + N2 db,
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{y.:0 < s < t < T}. More precisely, letting{.Fy ,; ¢ € [0,#]} In fact the Radon Nikodym derivative of} , x Fg’', x F*(®
denote the complete filtration generated by the observatiatyebras (F¢’, = o{w(s); 0 < s < t}, F*(0 = 0{$(0)}) is given by
a{ys; 0 < s < t}, the risk-sensitive estimation problem is to

find a random process which is a nonanticipative functional of the P . ,

observations process nameWi; = p*(t, {ys; 0 < s < t}) iP = Ao,

t € [0, T]} such that e . 1
| I = exp{/ h(s, xs). c? dys
0

.
_%/ |G 20 (s, wo)]? d5} (11)
0

&"(+) = arg min J(#("))

where
N - ¢ ; 1/2 SN2
J(2(-)) :E{QXP 5(/0 Q" (s — &)|" ds Note that under measut®, {g:, t € [0, T]} and {w; t € [0, T]}

] Ry are independent standard Wiener processes. Consequently, denoting

Q=0 =Q, " Q, > 0. 4) £ the expectation with respect to measudteve have
Here () is Borel measurable and bgundéd,> 0, and E denotes . e t 12 )
expectation with respect to measufe That is, for eacht > 0, J(&(-)) :E{GXP 3 </ Qs " (ws — ws)|“d5)}

0

an admissible risk-sensitive estimator /', measurable. Thus, if

-t

there exists anf] , measurable density functiosf = ¢°(x. t) :E{Ao,t exp %(/ QY (wy — 24)) ds)}

such that E{&®(x) exp(8/2)(f1 |QY*(ws — &:)[2ds)|FY,} = 90

S O(x)¢’ (x, t) dz, then (4) is expressed as :E{E{Ao‘t exp 5

X ol 0 't 1/2 A N2 Ty N /2, ]2 g
J(2(-)) = EqEqexp 3 |Qs " (xs — &) ds ||FS , : |Qs/ " (xs — &) ds || FG ¢ - (12)
9] Q
:E{/ ¢ (x, 1) d.L} (5) Define

In our case such density functions exist and they are unique ¢’ (x, t)dz iE{II,EdIAU,t exp g
provided ¢ is sufficiently small. Note thag! is by construction .

an infinite-dimensional information state and so formally we may </ QY2 (2y — i0)? ds)|}"5’ t}_ (13)
write #; = p(t, {y.; 0 < s < t}) = j(t, §0), vt € [0, 1]. 0 ’

i/lu%rﬁ ?z::’tl:](g dlses;(r?;?;iid@;‘? ;ir?ii ?fga :ngltet; l:;ngﬁlryorhc;gsgﬂtle%hen by (5), (12), and (13) we have the alternative representation
them, then these finite-number quantities are sufficient statistics for ~ .

the risk-sensitive estimation problem; that {si; ¢ € [0, 7]} is a J(&()) ZE{/ §’(w, t) dw}

finite-dimensional risk-sensitive estimator, which is a functional of s

the sufficient statistics. :E{/ ¢’ (z. 1) dx}. (14)
Toward introducing an equation governig, or some version wn
of it, recall that (2) is also equivalent tdy; = (h(t, z¢) +

Here ¢! = ¢’(x, t) is the unnormalized version of the conditional
densityd” (x, t), which is a solution of the Feynman—Kac version of
the DMZ equation (see [11] and [15]), namely

ap f(t, v)) dt + oGy dwy + 1 ’tl/z db,, so we may conveniently
rewrite

dye = h(t, xy) dt + &y dw, + N /* db, , , 6 ,
~ _ * 0 2, L2
h(t, x) = h(t, 2) + ar f(, =), G = Gy (6) dq’(x, t) = A(t)"q (x, t)dt + B) Q" (z —&)["q (x, t)dt
+ h(t, )" (. ). Cy "t dy,
- D,. (qe(.c, t)Gtci';)éfl dye,
) ) . (z, t) € R" x (0, T, (15)
Ci = &dy + Ny, D¢ = I, — a;C; 'aq. (7 qg(;m 0) :qg(:c), z e R". (16)

Certainly, we shall need results for correlated risk-sensitive problems;
these are drawn from [11] and [15]. To this end introduce

From the linear growth off (¢, «) and %(t, «), (assumingz(0) Here A(#)" is the formal adjoint ofA(#) defined in (3).
has finite second moment), the measi¥éunder which the system
(1) and (2) is defined) is absolutely continuous with the meagure

defined by the system
IIl. FINITE-DIMENSIONAL RISK-SENSITIVE FILTERS

dae = (f(t, 20) — Gea ) Cy Rty @) dt + GoDY'” diisy In this section, we present the finite-dimensional risk-sensitive
+ Gtailtét_1/2 dije, 2(0) € R" ®) filtering results: Notg that .undgr uniqueness of .solutions .of (15)
s — G d N2 i 0 =0 e R 9 and (16), the finite-dimensionality of the information state implies
dyr = arGre dwe + Ny "’ ) =0¢ ©) finite-dimensionality of the risk-sensitive estimaté). Define
where ' ) . 0. 1 -
Ct = vy + Ny, Qi =Q: — 7 Q1
dijLiC;l/zdyl L e 1 50 = 15
diy =D,V dw, — &, My, ) (10) Qe=Qu  mi = =g, T
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whereQ = Q', m aren x n, 1x n, Borel measurable, bounded, real-
valued matrices, respectively, afds a Borel measurable, bounded,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 10, OCTOBER 1998

the risk-sensitive estimation problem is equivalent to finding
an &*(-) minimizing the expression

real-valued function.
Theorem 3.1: Consider the risk-sensitive estimation problem

dze = (Frae + g(t, x)) dt + Gidwy, z(0) e R" (A7)
dy, = Hyx dt 4+ h(t, x) dt + o dwy + N}/2 db,
y(0) =0 € R? (18)

where we have the following.

Al) The nonlinear drift and observation functions are gradients

of some potential function
g(t, ©) = GGy Do (x, t)
h(t, 2) =G D, o (x, t)

6 €CT LR x [0, T]) (19)

and ¢; = (=, t) is a solution of the second-order partial

differential equation (PDE)
O it ETHGGID200) + G Do + For. Do

= %(@fr T+ 2m.r + gf)
A2) The random variable:(0) has density
g6 (x) = exp(6(x, 0)) x G5 («)

0,y exp(=Fg '(x —€).(x —€))
do(@) = (2017)"/2|P0|1/2 >

(20)

Py =Py >0.(21)

Suppose there exists sofiec § < #* such thatd,C; * H; —

8Q¢ > 0,Vt € [0, T]. Then a solution of the Feynman—Kac

information state equation is given by

exp (=3P @ = rul@)))
(@) PR
x exp(co, +(2) + Ao, +(£))

= oxp(d(w. 1)) x 4/ (22)
wherer: [0, T] x Q@ — R*, P = P2 [0, T] — ®R"*",
P, >0,Yte[0.T),c: [0, T]xQ2 — R, A: [0, T] x Q2 — R
are the sufficient statistics given by

dri(#) = (F + 0P.Qyri(#) dt — 0P, Qivy dt + 8Py dt

+ (P H{ + Gia)C7 (dys — Hyry(2) dt)

¢! = exp(6(z, 1) x

r(0) =¢ (23)
P, :FtPt+PtFL’+€PtQ?Pt
— (P H{ 4+ Gia})Ci Y (H( P + auGY)
+ GG PO)=D (24)
13
o, 1(3) = / Horo(#). C70 dys
0
"t
- l/ |CS Y2 Hor (2))° ds (25)
0

/\U,t(»i‘) = g / [Q(er(f‘)Is(fn) + Cgsi’.ﬁ-i's - Qst‘s- 7‘3(.’;3)

0

+2m%. ro(2) 4 62 + Tr(P.Q%)] ds. (26)
Moreover, letting
S(r, t) = 2 log/ exp(o(x, 1))
9 . :
exp (=317 2@ =)
dx (27)

@) P

J(&(+)) :E{/‘n (]o(xf, t) (liL’}

E{ / expl(o(a, 1)) x &' (x, 1) 1}
gon

E{CXP g (S(re(2), 1)) x CXP(/\U,t(»f“))} (28)

where under measur®, b, = y, — [, Hr.(i)ds is the
innovations process.

If, instead of (18), we consider observationy; =
Hia, dt+oy dz+N;/* db,, then the following modifications

need to be introduced in the above equations:
Hi — H, + o F,. (29)

Remark 3.2: Let g(¢, ) = 0, (¢, ) = 0 in Theorem 3.1 so (17)
and (18) specialize to the linear case

day = Fray dt + Gy dwy, z(0) € R"
dyy = Hyxy dt + o daey + NLl/Z dby,

Qp — Oéf,Gf,,

y(0) =0 € R
Then,¢{ is given by (22) withé(z, t) = 0, Q. = 0, 1, = 0, and

8: = 0, and, therefore by (28), the risk-sensitive estimaitdf-) is
obtained by minimizing the expression

J(#0) =E{exp g( /O‘th;/z(u(i) —af

+ Tr(PsQs)] ds) } (30)
Consequentlyz; = r¢, Vt € [0, T], where
di; = Fy2) dt + (P,H| 4+ Gyal,)C b dby
db; = dy, — Hyap dt,  #7(0)=¢ (31)
P, =F.P, + P,F, + P.Q. P,
— (PtHZ + Gtalz)cfl(ﬂtpt + Ot’tG,L)
+ GG, P(0) = P,. (32

These are precisely the filtering equations of deterministic linear-
quadratic minimax filtering problems, with® additive disturbances.
Remark 3.3: Consider the scalar risk-sensitive estimation problem

z(0) ER
y(0)=0€e R

dx, = f(x,) dt + dw,
de =Tt dt + (],’I‘f, + dbf

wheni* is a law minimizing (4), and (x) is a solution of the Riccati
equationD,. f(x) + f(z)? = quadratic inz. Following Benes [1],
let f(x) = De¢(x), ¢(z) = log w(x). By (20)

%Did)(;v) + %Dx(,b(.z:)z = %(C:);L’z + 2 + 6)

D2w(z) = w(x)(Qa® + 2ma + ).

Hence, ifw(z) > 0 then f(z) = D,w(z)/w(zx), and Theorem 3.1
applies. The function
_ Aexp(x) — B exp(—x)

Y exp(l’) + B eXp(—;L’)’ A€ §R, BeRr

fw) (33)

satisfiesD, f(x) + f(#)> = 1, with 6 = 1, Q = 0, m = 0,

so Theorem 3.1 holds wittf;, = Q; = m, = 0, Hy = 1,

o =G, =N, =1,6 = 1. For4 = B, f(z) = tanh(zx).
Thus, Theorem 3.1 generalizes the class of finite-dimensional Benes
filters (see [1]), from observationsy; = x: dt + db¢, to the more
general casey, = w, dt + dx, + db,.
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Proof of Theorem 3.1:The equation governing! is Certainly, the finite-dimensional minimization problem (28), sub-
01 D _ 0 ject to (23), can be solved using the martingale approach introduced
dg =5 TG GD 2a;) dt = Dy (ai (Fir + g(t, ))) dt by Kumar and van Schuppen. Alternatively, one can derive a Hamil-
=+ ﬂ |Q}/2(x — ivL)|2q$df, + (H,x + h(t, l»))qf c; Y dy, ton—Jacobi equation satisfied by the optimal risk-sensitive conditional
2 cost (see [11]).

— D, (¢/Gra)Cy " dyr, ¢” (2, 0) = g5 (). (34) Lemma 3.4: Let
Introduce the gauge transformation Wz, t) = exp ¢(a, t)
G/ = exp(—o(x, 1)) x ¢ . (35) thenW, = W(x. t) is a solution of the PDE
gg\tl);tgll;t;n;;y ((3;5) into (34) we easily deduce the following equation E);’:} + Ir (GG DIWy) + Fir. D, W,
4§ = L Tr(GGD2g}) dt — D, (Fradl) dt = % Wil Qua. w + 21t + 81} (398)
+ 010 e = P dt + Hordd G dy, Define

[(x, t) i%At;r. xz+x.C+ e,
A0, T = R77, G0, T = R 00, T) — R

—D..(§{ GO dy,
+[GiG D¢y — g(t, x)]. Dagf dt

+ [A(t, ) _mG’qu’)f]gf,q—‘ dys If there exists a) < # < 6* such thatH;C;'H, — 6Q! > 0,
9 vt € [0, T], then the Feynman—Kac information stat-) admits
+ 5 o1+ = Tr(GtCLDI(Qt) explicit representations, at least for the following two classes of
nonlinear functiong(-), A(-).
+ L1 D.¢i. GiGDrpy — Fix. D,y Class 1—Rational NonlinearitiesSupposel'(x, t) > 0, V(u, t)

€ R" x [0, T]. A solution of (38) isWi(x, t) = I'(«, t), which

. ~0
—9(t, 2). D26 — TH(Dag(t, x))| 40 dt, implies ¢(-), k() should be of the form

~6 ~0 1/
e 0) = (). GG
q (‘]’7 0) qo(r) g(f ;II) = lA — j_’f - + (ALI =+ gt)
By A1l), this equation reduces to e ;'Qt "
ey
1 ; h(t, r) = Ayr
gl :—Tr(GfG;Dz(jf)dt_D.r-(Ffm(‘i?)df (t ) A w4 G+ e (Ber+ @)
L1012~ )Pl ar where _ ~
Ap + FIA + AcF =64
+Ht=l'(b‘ Ct d'Jt - (Gt‘jfo“:‘)cildyt ' ' f f/ f j f
P / G+ FiG=6G
* |: 61‘ —TI’(G CfD @L) T2 |G Ds (DL| 771% + %TF(G,,G;A#) :anf
~Fia. Dmf} il dt. (36) Q=0
ﬁlt :0

Since the potential term of the above equation is a quadratic function

; &, = arbitrary.
of z, due to (20), we obtain

Class 2—Exponential NonlinearitiesSupposeq , Y3 [0, T] —

dgy =—Tr(GtC D2y dt — D, (Fagy) dt R. A solution of (38) is Wa(x.t) = -~} exp(D(x,t)) +
12, ~vi exp(=I(x, t)), which implies thatg(-), h(-) should be of
<|Q x— i) - —Qfl x the form
1 2
1. 1:Y\.0 £y =t exp(l'(2, 1)) = % exp(=I'(z, 1))
) 2w — 9 {Sf’)qt at 9lt, =) vt exp(T(a, t)) + 47 exp(=T(z, t))
+ Htu]f C’fl dyy — Dy. ((ijt(k;)C;l dy, GfCt(Afl’ +G)
¢’ (x, 0) =G5 (x). (37) h(t, 2) = v exp(D(x, 1)) — vt exp(=T'(x, 1))

)
R exp(l“( 1)+ ¢ exp(=T(w, 1))

When Q; = 0, m: = 0, & = 0, (37) is the Feynman—Kac
Q¢ M t (37) Y 'OéLGt(Asz-l-Q)

information state equation of the risk-sensitive filtering problem
dry = Firvedt + Gedwe, dys = Hixe dt + o dwe + Ntl/2 dby, where

where z(0) is a Gaussian random variable qnd, thus, an explicit A, FFA 4 AF, =0

solution is available (see [11] and [15]). Whén # 0, m, # 0, . .

and é; # 0, these terms contribute to the quadratic potential term G+ FiG =0

and so (37) is again explicitly solvable. By the invertibility of the . 1 , 1d Vi
gauge transformation an explicit representation §pris obtained e+ P) T(GiGiA) = 2 dt <l° ' _f)

and this can be verified by substituting (22) into (34). 01 = AGLGLA
The last equality in (28) is obtained by introducing the ~f e ! ¢

Radon—Nikodym derivativel’/dP = exp(c;) on F} ,. Note that my = MGG G

iyis also absolutely continuous with respect Fowhen restrictDed B = C1GLGLG + %(log iq2).
0,t" f
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Proof: Substitute the solutions into the evolution equation of For the purpose of this section, let us rewrite our model as follows:

W() oro(). o
Example 3.5:Let z: € R, z € R, y: € R, and consider the duy = (Frxy + g% (t, x,)) dt + /eGy dw,
risk-sensitive estimation problem 2°(0) = 2(0) 4 /=£°, z°(0) € R"
dr, = tanh(z,) dt + dwi,  2(0) € R dy, = Hyw, dt + /=N db,
dze = w dt + 2 dt + dw?, z(0) eR y(0)=0eR".

dy =z dt + z, dt + dxy + dby, y(O) =0eR Here IE(O) has mean’:(o‘).

where&* is a law minimizing (4). Settingf'(t) = [}7], G(t) = A3)

[09], A =0, ¢ =[], » = 1, in the equations of Class 2 o
nonlinearities, thedVs (x, ) = exp(x) + exp(—=x) is a solution of g (t, ©) =eGiGi D" (, t)
(38), withQ+ = 0, s =0, 6 = 1, and so Theorem 3.1 holds with (b)) = 1 3 (. t 1
H =11, a; = [10]. o, 1) =2 07w, D) +o(l)

Similarly, the risk-sensitive estimation problem . . . .
and ¢°(x, t) is a solution of the following PDE:

Az
dry = — rf dt + 1— dt + dw
J . D2g°
2 sAzT.x 41 aq’)’(w t)+%fTr(GtC 2% (x, 1))
x(o)eﬁ,a>0,A>0 ’ ; .
k + 1 2|GiD 0" (, D|? + Fre. Dy o (, )
dzy = ¢ dt + 24 dt, z(0) eR 1
Ay A(Qt,r.m—l—thT—l—ﬁt)
dys = x¢ dt + z¢ dt + 17(77‘—1—(111' + db 2e
sAr. 2+ 7
A4)

y(0)=0€eR

with & = a, ¢ = 0, v = (1/2a)A is finite-dimensional. a3 (r) = exp(¢°(x, 0)
Remark 3.6: Consider once more the risk-sensitive estimation « OXP(—Po' (-?7 —&).(x=8)),

problem (17) and (18) when the cost to be minimized, namely (4), (2m)"/2| P51/

is replaced by lim = PU =Py, lm}] 2°(0) = =(0).

=—0

(41)

(42)

(43)

(44)

(45)

(46)

; - 2l >}
E — — &)+ Ll(s, zs)] ds 39
{ekp </ Qs = 2] (s )] ds (39) AB) ¢°(-, -) satisfies a Lipschitz and linear growth condition

and/(: [0, T] x R" — R is Borel measurable with at most quadratic

growth in the space variable. In the srpal_l noise context, the risk-sensitive cost (under
If A1) and A2) hold with¢(-) a solution of the modified second- measurer’) is
order PDE et i 9 -t L 2y a7
R = exp — (xs — 2s)|"ds | 5.
aa o+ = TF(G GvD ,(Pt) %|G;Dr¢)t|2 + Fix. Doy (#0)) { P 2e </0 SA ) >} “7)
—— (qu. @+ 2w+ 8) + Q (t, ) (40) Note thatf has been replaced Iy'=. Now we introduce two
2 2 consecutive measure transformations by defining measures
then Theorem 3.1 applies. This demonstrates that different choices P and P’ in such a way that undeP, the measurement
of ((-) yield different solutions of (40) and, consequently, different process becomes a Wiener process independent of the state
nonlinear drift and observation functiop$ ), /(-) for which explicit process, while the state process remains unchanged, and under
solutions of the Feynman—Kac information state equation are avail- P’, the state process becomes a Wiener. Using appropriate
able. Whert > 0, this method enables us to derive estimators having expressions for the Radon—Nikodym derivativldé/dﬁ and
finite L*-gain because (39) is always an upper bound @f(-)). For dP'/dP, one can easily show that the risk-sensitive esti-
example, if f(z) is a monotonically increasing nonlinearity, then mation problem is equivalent to minimizing ovéx-) the
the scalar risk-sensitive estimation problem, = f(x¢) dt + dwy, Wiener functional
dyt—.Ltdt—l—st—l—dbt,Wlth((t, L) —~1/9|f( )2+ (1/8)D, f(x), - o
is finite-dimensional. Heré) = m = § = 0. g log J70(@()
IV. SMALL NOISE LiMITS =g log E {e"p </ Q% (s = )] ds)
. 0
In this section, we present small noise limit results. It is well known a1

that, at least for linear systems, as the noise covariances tend to X exp - </0 (Hoao)' N, dy,
zero, the risk-sensitive cost is, within a logarithmic transformation, 1
equivalent to a deterministic linear-quadratic minimax estimation ~5 / |_,\"8_1/21EL;1:5|2 ds)
problem with additiveL? disturbances. Similar results for nonlinear 0

uniformly on closed and bounded sets[0f 7] x R".

systems are derived in [9]. In this case the risk-sensitive estimator X exp l</t(FSIS+g5(s7ms))’(GsG;)_ld;rs

becomes a minimax estimator. We wish to derive similar connections

for the risk-sensitive estimators considered earlier. Our methodology Y A - 2
which differs from that is applicable to general nonlinear systems. We _5/ |G (s + g7 (5. 22))] ds)}
keep our treatment simple by considering the uncorrelated version of

(1) and (2); the correlated case can be treated in an analogous manner. where E’ denotes expectation with respect to measitre
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Note that under” we have Remark 4.1: Finally, we point out that when the risk-
. sensitive cost (47) includes in the exponent the additional term
v =2°(0) + \/3/ G. dw. (1/25)f0t {(s, 25) ds, then the right side of (44) includes the term
0 (8/2)((t, ). In this case, the small noise limit yields (49) and
[ N2 g (50), with the terms(8/2)((t, x), (1/29)[0‘[(3, z,)ds entering
Y _‘/:/0 e 3 their right sides, respectively. Thus, wheén> 0, this leads to

-t well-
var(z,) = var*(0)) + & / GG ds
0

ot
varn(y:) :s/ N, ds.

0
(1]

If we now assume existence of a unique viscosity solution of

the second-order PDE (44), then [

lim 6°(x. 1) = (. 1) <

lin%J g (t, 2) = GG, D, o(x, 1) (48)

(4]
uniformly on compact sets 8" x [0, T, whereg(-) is the [5]
unique viscosity solution of the first-order PDE

ER [6]
ot ¢

= % ((:)L;E. z+ 2mx + (i)

(e, 1)+ 3 [G1DL5(, OF + Fir. Do, 1)

49) M

From large deviations results of functionals of Wiener pro-
cesses (see [16]), one obtains 8]
1< E ,0  ~% .

lim 2 J77(27(+) -

= min sup sup sup
20) geLz(fo, 1); %) s€L2([0, 1] R") wER?

1 Lop=1/20 o2 (0]
{9 o(x, 0) 54 | Py " (x — 2(0))]
~t
4 [ 10— s 1
1 e - ,
— — | [IGS s — Fary — GG Do (5, 5))|° [12]
21 Jo
HINT (g, - H.qml’z]ds}. [13]

Hence, in the limit as= — 0, the risk-sensitive estima-
tion problem is logarithmically equivalent to the minimax[14]
dynamic game

.]0’9(;%*(-)) = min sup sup sup (18]
l() deLZ([O,J'};%d) wdELz([O,T];ﬁ%m) zERT
L Lop=(/2, . one
: {5 Q("Lﬂ 0) — 5 |PD (LL - QL(()))| [16]

ot
+ ‘5/ QY2 (s — #0)|* ds
0

1 /‘L di2 d12 }
- ws|” + |bS]7] ds (50)
3 |, Bt + 102
subject to dynamics and observations
iy =Fay + GG Dyo(x, 1) + Gow?, x(0) € R"
go=Hoeo+ N y0)=0e v (51)

Here ¢(-, -) is a solution of (49). One may now proceed
to show that this minimax dynamic estimation problem is
finite-dimensional.

defined estimators which have finifé’-gain.

REFERENCES

V. Benes, “Exact finite-dimensional filters for certain diffusions with
nonlinear drift,” Stochasticsyol. 5, pp. 65-92, 1981.

2] S. Dey and J. Moore, “Risk-sensitive filtering and smoothing for hidden

Markov models,”Syst. Contr. Lett.yol. 25, no. 5, pp. 361-366, 1995.

D. Jacobson, “Optimal stochastic linear systems with exponential per-
formance criteria and their relation to deterministic differential games,”
IEEE Trans. Automat. Contryol. 18, pp. 124-131, Feb. 1973.

P. Whittle, “A risk-sensitive maximum principle,Syst. Contr. Lett.,
vol. 15, pp. 183-192, 1990.

—, “Arisk-sensitive maximum principle: The case of imperfect state
observations,IEEE Trans. Automat. Contrvol. 36, pp. 793-801, July
1991.

A. Bensoussan and J. H. van Schuppen, “Optimal control of partially ob-
servable stochastic systems with an exponential-of-integral performance
index,” SIAM J. Contr. Optimiz.yol. 23, no. 4, pp. 599-613, 1985.

W. H. Fleming and W. M. McEneaney, “Risk-sensitive control and
differential games,” inStochastic Theory and Adaptive Contrdl, E.
Duncan and B. Pasik-Duncan, Eds. New York: Springer-Verlag, 1992,
pp. 185-197.

M. James, J. Baras, and R. Elliott, “Risk-sensitive control and dynamic
games for partially observed discrete-time nonlinear systehiEE
Trans. Automat. Contryol. 39, pp. 780-792, Apr. 1994,

C. Charalambous, “The role of informations state and adjoint in relating
nonlinear output feedback risk-sensitive control and dynamic games,”
IEEE Trans. Automat. Contryol. 42, pp. 1163-1170, Aug. 1997.

C. Charalambous, D. Naidu, and K. Moore, “Solvable risk-sensitive
control problems with output feedback,” BBrd IEEE Conf. Decision
and Control,Lake Buena Vista, FL, Dec. 1994, pp. 1433-1434.

C. Charalambous, “Partially observable nonlinear risk-sensitive control
problems: Dynamic programming and verification theoremgEE
Trans. Automat. Contryol. 42, pp. 1130-1138, Aug. 1997.

A. Bensoussan and R. Elliott, “General finite dimensional risk sensitive
problems and small noise limitslEEE Trans. Automat. Contrvol. 41,

pp. 210-215, Feb. 1996.

C. Charalambous and R. Elliott, “Certain nonlinear stochastic optimal
control problems with explicit control laws equivalent to LEQG/LQG
problems,” IEEE Trans. Automat. Contryol. 42, pp. 482-497, Apr.
1997.

P. Kumar and J. H. van Schuppen, “On the optimal control of stochastic
systems with an exponential-of-integral performance indéx,Math.
Analysis and Appl.yol. 80, pp. 312-332, 1981.

C. Charalambous and J. Hibey, “Minimum principle for partially ob-
servable nonlinear risk-sensitive control problems using measure-valued
decompositions,Stochastics and Stochastics Repl, 57, pp. 247-288,
1996.

D. W. Stroock, An Introduction to Large Deviations TheoryNew
York: Springer-Verlag, 1984.

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 04,2021 at 14:22:45 UTC from IEEE Xplore. Restrictions apply.



