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New Finite-Dimensional Risk-Sensitive
Filters: Small Noise Limits

Charalambos D. Charalambous, Subhrakanti Dey,
and Robert J. Elliott

Abstract—This paper is concerned with continuous-time nonlinear
risk-sensitive filters. It is shown that for large classes of nonlinearities
entering both the dynamics and measurements, these filters are finite-
dimensional generalizations of the Benes filters. Specific examples are
discussed. The small noise limiting analog is discussed using change of
probability measures.

Index Terms—Filtering, finite-dimensional, risk-sensitive.

I. INTRODUCTION

Risk-sensitive estimation optimizes the expectation of an expo-
nential of quadratic (or a more general convex) cost criterion.
Compared with minimum variance estimation, which achieves the
minimization of a quadratic error criteria, risk-sensitive estimation
robustifies the estimator against noise uncertainties by penalizing
all the higher order moments of the estimation error energy. For
example, it has been shown in [2], that discrete-time risk-sensitive
filters for hidden Markov models with finite-discrete states perform
better than standard filters in situations involving uncertainties in the
noise statistics. Also, in the small noise limit, risk-sensitive problems
are shown to be related to estimation/control problems, formulated
as deterministic minimax dynamic games (H

1 estimation/control
problems for linear/nonlinear systems) [3]–[9].

It is well known that the conditional density of continuous-
time partially observed stochastic systems satisfies the Dun-
can–Mortensen–Zakai (DMZ) equation. Aside from the case of
linear systems, solutions of this equation are rare. In fact, the only
success is that noted by Benes [1] and the subsequent generalizations
again with linear measurements.

Motivated by the finite-dimensional solutions of the DMZ equation
and its Feynman–Kac version, it was recently noted independently
by Charalambous–Naidu–Moore [10], Charalambous [11], and Ben-
soussan–Elliott [12] that the existence of finite-dimensional filters
for nonlinear systems is closely related to the existence of finite-
dimensional controllers for nonlinear partially observed stochastic
optimal control problems. The most general extensions are given
in [13], where the nonlinearities are also allowed to enter the
measurements.

The main result of this paper is the derivation of finite-dimensional
risk-sensitive filters when nonlinearities enter the dynamics and
measurement equations. In all the existing literature on nonlinear
filtering, finite-dimensional filter estimates are computed based on
the model of Benes (see [1]), which assumes nonlinear dynamics
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and linear measurements. Here we show that when the measurements
include the increments of the state process, and are thus nonlinear, the
risk-sensitive filter is finite-dimensional. In principle, this is expected
from the finite-dimensionality of the analogous control problems
treated in [13]. However, because the formulation of the risk-sensitive
cost criterion is different from the formulation of the information state
of [13], and finite-dimensional filters are essentially nonexistent, these
filters should be treated separately. Another reason for treating these
filters separately is their connection to analogous finite-dimensional
minimax filters, which we explore in this paper.

In Section II, we introduce the class of signal models we are
dealing with and formulate the risk-sensitive filtering problem. Using
change of probability measure techniques, an unnormalized measure
(also known as the information state), is defined that satisfies a
Feynman–Kac version of the DMZ equation. The optimal risk-
sensitive estimate is given as the minimizing argument of an integral
involving this information state. This minimization can be recast as a
pointwise minimization by employing dynamic programming to de-
rive a Hamilton–Jacobi equation with infinite-dimensional state space.
Section III presents finite-dimensional risk-sensitive filtering results.
Section IV includes some discussions on small noise limits which
enable us to obtain finite-dimensional deterministic minimax filters.

II. PROBLEM STATEMENT AND METHODOLOGY

Let [0; T ]; T 2 < denote the time interval, and let(
; A; ~P ) be a
complete probability space that carries the standard Wiener processes
fwt; t 2 [0; T ]g, fbt; t 2 [0; T ]g which take values in<m; <d,
respectively, and the random variablex(0). Throughout this paper
it is assumed that these Wiener processes andx(0) are mutually
independent under measure~P .

On the probability space(
; A; ~P ), the processesfxt; t 2
[0; T ]g, fyt; t 2 [0; T ]g are solutions of the stochastic differential
equations

dxt = f(t; xt) dt+Gt dwt; x(0) 2 <n (1)

dyt =h(t; xt) dt+ �t dxt +N
1=2
t dbt

y(0) = 0 2 <d: (2)

Here t ! Gt, �t, N
1=2
t are knownn � m, d � n, d � d, real-

valued matrices, respectively, continuous int, and GtG
0

t � 0;
Nt

:
= N

1=2
t N

1=2;
t > 0. Also, jf(t; x)j � K(1 + jxj), jh(t; x)j �

K(1+jxj), andf(�; x); h(�; x) are continuous int. fxt; t 2 [0; T ]g
is a Markov diffusion process, and so for anyC2

x function �:
<n ! <, with compact support, its generator is defined by

A(t)�(x)
:
=

Tr
2

(GtG
0

tD
2

x�(x)) + f(t; x).Dx�(x) (3)

whereDx
:
= (@=@x1 @=@x2 � � � @=@xn)

0 and�. �
:
= �0� denotes

the scalar product in<n.
xt is the state of the system at timet, which is not directly

measurable. Rather, the only information available forxt is through
the observations processfys; 0 � s � t < Tg. Unlike the minimum
variance estimation problem which minimizes the expected value
of the square of the error at timet given fys; 0 � s � tg, the
problem to be discussed here is the so-called risk-sensitive estimation
problem. This aims to minimize the expected value of an exponential-
of-integral of the error, given the past and present measurements
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fys; 0 � s � t < Tg. More precisely, lettingfFy
0; t; t 2 [0; t]g

denote the complete filtration generated by the observation�-algebras
�fys; 0 � s � tg, the risk-sensitive estimation problem is to
find a random process which is a nonanticipative functional of the
observations process namely,fx̂�t = ��(t; fys; 0 � s � tg)

t 2 [0; T ]g such that

x̂�(�)
:
= arg min

x̂(�)
J(x̂(�))

where

J(x̂(�)) = ~E exp
�

2

t

0

jQ1=2
s (xs � x̂s)j

2 ds

Qt =Q0
t
:
= Q

1=2
t Q

1=2
t > 0: (4)

HereQ is Borel measurable and bounded,� > 0, and ~E denotes
expectation with respect to measure~P . That is, for eacht > 0,
an admissible risk-sensitive estimator isFy

0; t measurable. Thus, if
there exists anFy

0; t measurable density function~q�t � ~q�(x; t)

such that ~Ef�(xt) exp(�=2)(
t

0
jQ

1=2
s (xs � x̂s)j

2 ds)jFy
0; tg =

<
�(x)~q�(x; t) dx, then (4) is expressed as

J(x̂(�)) = ~E ~E exp
�

2

t

0

jQ1=2
s (xs � x̂s)j

2 ds jFy
0; t

= ~E
<

~q�(x; t) dx : (5)

In our case such density functions exist and they are unique
provided � is sufficiently small. Note that~q�t is by construction
an infinite-dimensional information state and so formally we may
write x̂t = �(t; fys; 0 � s � tg) = ~�(t; ~q�t ), 8 t 2 [0; T ].
Moreover, if ~q�t is expressed in terms of a finite number of quantities
such that the dependence of~q�t on fx̂s, � s � tg is only through
them, then these finite-number quantities are sufficient statistics for
the risk-sensitive estimation problem; that is,fx̂�t t 2 [0; T ]g is a
finite-dimensional risk-sensitive estimator, which is a functional of
the sufficient statistics.

Toward introducing an equation governing~q�t , or some version
of it, recall that (2) is also equivalent todyt = (h(t; xt) +

�tf(t; xt)) dt + �tGt dwt + N
1=2
t dbt, so we may conveniently

rewrite

dyt =~h(t; xt) dt+ ~�t dwt +N
1=2
t dbt

~h(t; x) =h(t; x) + �tf(t; x); ~�t = �tGt: (6)

Certainly, we shall need results for correlated risk-sensitive problems;
these are drawn from [11] and [15]. To this end introduce

~Ct = ~�t ~�
0
t +Nt; ~Dt = Im � ~�0t ~C

�1
t ~�t: (7)

From the linear growth off(t; x) and h(t; x), (assumingx(0)
has finite second moment), the measure~P (under which the system
(1) and (2) is defined) is absolutely continuous with the measureP

defined by the system

dxt =(f(t; xt)�Gt ~�
0
t
~C�1
t

~h(t; xt)) dt+Gt
~D
1=2
t d ~wt

+Gt ~�
0
t
~C
�1=2
t d~yt; x(0) 2 <n (8)

dyt =�tGt dwt +N
1=2
t dbt; y(0) = 0 2 <d (9)

where

d~yt
:
= ~C

�1=2
t dyt

d ~wt
:
= ~D

�1=2
t fdwt � ~�0t ~C

�1
t dytg: (10)

In fact the Radon Nikodym derivative onFy
0; t � Fw

0; t � Fx(0)

(Fw
0; t

:
= �fw(s); 0 � s � tg, Fx(0) :

= �fx(0)g) is given by

d ~P

dP

:
=�0; t

= exp
t

0

~h(s; xs). ~C
�1=2
s d~ys

� 1
2

t

0

j ~C�1=2
s

~h(s; xs)j
2 ds : (11)

Note that under measureP , f~yt; t 2 [0; T ]g and f ~wt t 2 [0; T ]g
are independent standard Wiener processes. Consequently, denoting
E the expectation with respect to measureP we have

J(x̂(�)) = ~E exp
�

2

t

0

jQ1=2
s (xs � x̂s)j

2ds

=E �0; t exp
�

2

t

0

jQ1=2
s (xs � x̂s)j

2 ds

=E E �0; t exp
�

2

�
t

0

jQ1=2
s (xs � x̂s)j

2 ds jFy
0; t : (12)

Define

q�(x; t)dx
:
=E Ix 2dx�0; t exp

�

2

�
t

0

jQ1=2
s (xs � x̂s)j

2 ds jFy
0; t : (13)

Then by (5), (12), and (13) we have the alternative representation

J(x̂(�)) = ~E
<

~q�(x; t) dx

=E
<

q�(x; t) dx : (14)

Here q�t � q�(x; t) is the unnormalized version of the conditional
density~q�(x; t), which is a solution of the Feynman–Kac version of
the DMZ equation (see [11] and [15]), namely

dq�(x; t) =A(t)�q�(x; t) dt+
�

2
jQ

1=2
t (x� x̂t)j

2q�(x; t) dt

+ ~h(t; x)q�(x; t). ~C�1
t dyt

�Dx. (q
�(x; t)Gt~�

0
t) ~C

�1
t dyt;

(x; t) 2 <n � (0; T ]; (15)

q�(x; 0) = q�0(x); x 2 <n: (16)

HereA(t)� is the formal adjoint ofA(t) defined in (3).

III. FINITE-DIMENSIONAL RISK-SENSITIVE FILTERS

In this section, we present the finite-dimensional risk-sensitive
filtering results. Note that under uniqueness of solutions of (15)
and (16), the finite-dimensionality of the information state implies
finite-dimensionality of the risk-sensitive estimatex̂(�). Define

Ct
:
=�t�

0
t +Nt; Q�

t
:
= Qt �

1

�
~Qt

~Qt = ~Q0
t; m�

t
:
= �

1

�
~mt; ��

:
= �

1

�
~�t
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where ~Q = ~Q0, ~m aren�n, 1�n, Borel measurable, bounded, real-
valued matrices, respectively, and~� is a Borel measurable, bounded,
real-valued function.

Theorem 3.1:Consider the risk-sensitive estimation problem

dxt =(Ftxt + g(t; x))dt+Gtdwt; x(0) 2 <n (17)

dyt =Htx dt+ h(t; x) dt+ �t dwt +N
1=2
t dbt

y(0) = 0 2 <d (18)

where we have the following.

A1) The nonlinear drift and observation functions are gradients
of some potential function

g(t; x) =GtG
0

tDx�(x; t)

h(t; x) =�tG
0

tDx�(x; t)

� 2C2; 1
x; t (<

n � [0; T ]) (19)

and �t � �(x; t) is a solution of the second-order partial
differential equation (PDE)

@

@t
�t +

1

2
Tr(GtG

0

tD
2

x�t) +
1

2
jG0

tDx�tj
2 + Ftx.Dx�t

= 1

2
( ~Qtx. x + 2 ~mtx+ ~�t): (20)

A2) The random variablex(0) has density

q�0(x) = exp(�(x; 0))� q̂�0(x)

q̂�0(x) =
exp(�P�1

0
(x� �). (x� �))

(2�)n=2jP0j1=2
; P0 = P 0

0 � 0: (21)

Suppose there exists some0 < � � �� such thatH 0
tC

�1

t Ht�
�Q�

t � 0, 8 t 2 [0; T ]. Then a solution of the Feynman–Kac
information state equation is given by

q�t = exp(�(x; t))�
exp � 1

2
jP

�1=2
t (x� rt(x̂))j

2

(2�)n=2jPtj1=2

� exp(c0; t(x̂) + �0; t(x̂))

= exp(�(x; t))� q̂�t (22)

where r: [0; T ] � 
 ! <n, P = P 0: [0; T ] ! <n�n,
Pt � 0, 8 t 2 [0; T ], c: [0; T ]�
! <, �: [0; T ]�
! <
are the sufficient statistics given by

drt(x̂) = (Ft + �PtQ
�
t )rt(x̂) dt� �PtQtx̂t dt+ �Ptm

�;
t dt

+ (PtH
0

t +Gt�
0

t)C
�1

t (dyt �Htrt(x̂) dt)

r(0) = � (23)
_Pt =FtPt + PtF

0

t + �PtQ
�
tPt

� (PtH
0

t +Gt�
0

t)C
�1

t (HtPt + �tG
0

t)

+GtG
0

t; P (0) = P0 (24)

c0; t(x̂) =
t

0

Hsrs(x̂).C
�1

s dys

� 1

2

t

0

jC�1=2
s Hsrs(x̂)j

2 ds (25)

�0; t(x̂) =
�

2

t

0

[Q�
srs(x̂). rs(x̂) +Qsx̂s. x̂s � 2Qsx̂s. rs(x̂)

+ 2m�
s . rs(x̂) + ��s + Tr(PsQ

�
s)] ds: (26)

Moreover, letting

'̂(r; t) =
2

�
log

<

exp(�(x; t))

�
exp � 1

2
jP

�1=2
t (x� r)j2

(2�)n=2jPtj1=2
dx (27)

the risk-sensitive estimation problem is equivalent to finding
an x̂�(�) minimizing the expression

J(x̂(�)) = ~E
<

~q�(x; t) dx

=E
<

exp(�(x; t))� q̂�(x; t)dx

= Ê exp
�

2
('̂(rt(x̂); t))� exp(�0; t(x̂)) (28)

where under measurêP , b̂t
:
= yt �

t

0
Hrs(x̂) ds is the

innovations process.
If, instead of (18), we consider observationsdyt =

Htxt dt+�t dxt+N
1=2
t dbt, then the following modifications

need to be introduced in the above equations:

�t ! �tGt; Ht ! Ht + �tFt: (29)

Remark 3.2: Let g(t; x) = 0, h(t; x) = 0 in Theorem 3.1 so (17)
and (18) specialize to the linear case

dxt =Ftxt dt+Gt dwt; x(0) 2 <n

dyt =Htxt dt+ �t dxt +N
1=2
t dbt; y(0) = 0 2 <d:

Then,q�t is given by (22) with�(x; t) = 0, ~Qt = 0, ~mt = 0, and
~�t = 0, and, therefore by (28), the risk-sensitive estimatorx̂�(�) is
obtained by minimizing the expression

J(x̂(�)) = Ê exp
�

2

t

0

[jQ1=2
s (rs(x̂)� x̂s)j

2

+Tr(PsQs)]ds : (30)

Consequently,̂x�t = rt, 8 t 2 [0; T ], where

dx̂�t =Ftx̂
�

t dt+ (PtH
0

t +Gt�
0

t)C
�1

t db̂t

db̂t = dyt �Htx̂
�

t dt; x̂�(0) = � (31)
_Pt =FtPt + PtF

0

t + �PtQtPt

� (PtH
0

t +Gt�
0

t)C
�1

t (HtPt + �tG
0

t)

+GtG
0

t; P (0) = P0: (32)

These are precisely the filtering equations of deterministic linear-
quadratic minimax filtering problems, withL2 additive disturbances.

Remark 3.3: Consider the scalar risk-sensitive estimation problem

dxt = f(xt) dt+ dwt; x(0) 2 <

dyt =xt dt+ dxt + dbt; y(0) = 0 2 <

whenx̂� is a law minimizing (4), andf(x) is a solution of the Riccati
equationDxf(x) + f(x)2 = quadratic inx. Following Benes [1],
let f(x) = Dx�(x), �(x) = log w(x). By (20)

1

2
D2

x�(x) +
1

2
Dx�(x)

2 = 1

2
( ~Qx2 + 2 ~mx+ ~�)

D2

xw(x) =w(x)( ~Qx2 + 2 ~mx+ ~�):

Hence, ifw(x) > 0 thenf(x) = Dxw(x)=w(x), and Theorem 3.1
applies. The function

f(x) =
A exp(x)�B exp(�x)

A exp(x) +B exp(�x)
; A 2 <; B 2 < (33)

satisfiesDxf(x) + f(x)2 = 1, with ~� = 1, ~Q = 0, ~m = 0,
so Theorem 3.1 holds withFt = ~Qt = ~mt = 0, Ht = 1,
�t = Gt = Nt = 1, ~�t = 1. For A = B, f(x) = tanh(x).
Thus, Theorem 3.1 generalizes the class of finite-dimensional Benes
filters (see [1]), from observationsdyt = xt dt + dbt, to the more
general casedyt = xt dt + dxt + dbt.
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Proof of Theorem 3.1:The equation governingq�t is

dq�t = 1

2
Tr(GtG

0

tD
2

xq
�
t ) dt�Dx. (q

�
t (Ftx+ g(t; x)))dt

+
�

2
jQ

1=2
t (x� x̂t)j

2q�t dt+ (Htx+ h(t; x))q�t .C
�1

t dyt

�Dx. (q
�
tGt�

0

t)C
�1

t dyt; q
�(x; 0) = q�0(x): (34)

Introduce the gauge transformation

q̂�t = exp(��(x; t))� q�t : (35)

Substituting (35) into (34) we easily deduce the following equation
governing q̂�(�):

dq̂�t = 1

2
Tr(GtG

0

tD
2

xq̂
�
t ) dt�Dx. (Ftxq̂

�
t )dt

+
�

2
jQ

1=2
t (x� x̂t)j

2q̂�t dt+Htxq̂
�
t .C

�1

t dyt

�Dx. (q̂
�
tGt�

0

t)C
�1

t dyt

+ [GtG
0

tDx�t � g(t; x)].Dxq̂
�
t dt

+ [h(t; x)� �tG
0

tDx�t]q̂
�
t .C

�1

t dyt

+ �
@

@t
�t +

1

2
Tr(GtG

0

tD
2

x�t)

+ 1

2
Dx�t.GtG

0

tDx�t � Ftx.Dx�t

�g(t; x).Dx�t � Tr(Dxg(t; x)) q̂�t dt;

q̂�(x; 0) = q̂�0(x):

By A1), this equation reduces to

dq̂�t =
1

2
Tr(GtG

0

tD
2

xq̂
�
t ) dt�Dx. (Ftxq̂

�
t ) dt

+
�

2
jQ

1=2
t (x� x̂)j2q̂�t dt

+Htxq̂
�
t .C

�1

t dyt �Dx. (Gtq̂
�
t�

0

t)C
�1

t dyt

+ �
@

@t
�t �

1

2
Tr(GtG

0

tD
2

x�t)�
1

2
jG0

tDx�tj
2

�Ftx.Dx�t q̂�t dt: (36)

Since the potential term of the above equation is a quadratic function
of x, due to (20), we obtain

dq̂�t =
1

2
Tr(GtG

0

tD
2

x~q
�
t )dt�Dx. (Ftxq̂

�
t )dt

+
�

2
jQ

1=2
t (x� x̂t)j

2 �
1

�
~Q�
tx. x

�
1

�
2 ~mtx�

1

�
~�t q̂�t dt

+Htxq̂
�
t .C

�1

t dyt �Dx. (q̂
�
tGt�

0

t)C
�1

t dyt

q̂�(x; 0) = q̂�0(x): (37)

When ~Qt = 0, ~mt = 0, ~�t = 0, (37) is the Feynman–Kac
information state equation of the risk-sensitive filtering problem
dxt = Ftxt dt + Gt dwt, dyt = Htxt dt + �t dwt + N

1=2
t dbt,

where x(0) is a Gaussian random variable and, thus, an explicit
solution is available (see [11] and [15]). When~Qt 6= 0, ~mt 6= 0,
and ~�t 6= 0, these terms contribute to the quadratic potential term
and so (37) is again explicitly solvable. By the invertibility of the
gauge transformation an explicit representation forq�t is obtained
and this can be verified by substituting (22) into (34).

The last equality in (28) is obtained by introducing the
Radon–Nikodym derivativedP̂ =dP = exp(ct) on Fy

0; t. Note that
P̂ is also absolutely continuous with respect to~P when restricted
Fy
0; t.

Certainly, the finite-dimensional minimization problem (28), sub-
ject to (23), can be solved using the martingale approach introduced
by Kumar and van Schuppen. Alternatively, one can derive a Hamil-
ton–Jacobi equation satisfied by the optimal risk-sensitive conditional
cost (see [11]).

Lemma 3.4: Let

W (x; t) = exp �(x; t)

thenWt � W (x; t) is a solution of the PDE

@Wt

@t
+

Tr
2

(GtG
0

tD
2

xWt) + Ftx.DxWt

=
1

2
Wtf ~Qtx. x+ 2 ~mtx+ ~�tg: (38)

Define

�(x; t)
:
= 1

2
�tx. x+ x. �t + �t;

�:[0; T ]! <n�n; �:[0; T ]! <n; �:[0; T ]! <:

If there exists a0 < � � �� such thatH 0

tC
�1

t Ht � �Q�
t � 0,

8 t 2 [0; T ], then the Feynman–Kac information stateq�(�) admits
explicit representations, at least for the following two classes of
nonlinear functiong(�); h(�).

Class 1—Rational Nonlinearities:Suppose�(x; t) > 0, 8(x; t)
2 <n � [0; T ]. A solution of (38) isW1(x; t) = �(x; t), which
implies g(�); h(�) should be of the form

g(t; x) =
GtG

0

t
1

2
�tx. x+ x. �t + �t

(�tx+ �t)

h(t; x) =
�tG

0

t
1

2
�tx. x+ x. �t + �t

(�tx+ �t)

where

_�t + F 0

t�t +�tFt = ~�t�t

_�t + F 0

t�t = ~�t�t

_�t +
1

2
Tr(GtG

0

t�t) = ~�t�t

~Qt =0

~mt =0

~�t = arbitrary:

Class 2—Exponential Nonlinearities:Suppose
1, 
2: [0; T ] !
<. A solution of (38) is W2(x; t) = 
1t exp(�(x; t)) +

2t exp(��(x; t)), which implies that g(�), h(�) should be of
the form

g(t; x) =

1t exp(�(x; t))� 
2t exp(��(x; t))


1t exp(�(x; t)) + 
2t exp(��(x; t))

�GtG
0

t(�tx+ �t)

h(t; x) =

1t exp(�(x; t))� 
2t exp(��(x; t))


1t exp(�(x; t)) + 
2t exp(��(x; t))

� �tG
0

t(�tx+ �t)

where

_�t + F 0

t�t +�tFt =0

_�t + F 0

t�t =0

_�t +
1

2
Tr(GtG

0

t�t) =
1

2

d

dt
log


1t

2t

~Qt =�tGtG
0

t�t

~m0

t =�tGtG
0

t�t

~�t = � 0tGtG
0

t�t +
d

dt
(log 
1t 


2

t ):
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Proof: Substitute the solutions into the evolution equation of
W (�) or �(�).

Example 3.5: Let xt 2 <, zt 2 <, yt 2 <, and consider the
risk-sensitive estimation problem

dxt = tanh(xt)dt+ dw1

t ; x(0) 2 <
dzt =xt dt+ zt dt+ dw2

t ; z(0) 2 <
dyt =xt dt+ zt dt+ dxt + dbt; y(0) = 0 2 <

where x̂� is a law minimizing (4). SettingF (t) = 0

1

0

1
, G(t) =

1

0

0

1
, �t = 0, �t = 1

0
, �t = 1, in the equations of Class 2

nonlinearities, thenW2(x; t) = exp(x) + exp(�x) is a solution of
(38), with ~Qt = 0, ~mt = 0, ~�t = 1, and so Theorem 3.1 holds with
Ht = [1 1], �t = [1 0].

Similarly, the risk-sensitive estimation problem

dxt =
�

2
xt dt+

�xt
1

2
�x. x + �

dt+ dw1

t

x(0) 2<; � > 0; � > 0

dzt =xt dt+ zt dt; z(0) 2 <
dyt =xt dt+ zt dt+

�xt
1

2
�x. x+ �

dt+ dw1

t + dbt

y(0) = 0 2 <
with ~�t = �, �t = 0, �t = (1=2�)� is finite-dimensional.

Remark 3.6: Consider once more the risk-sensitive estimation
problem (17) and (18) when the cost to be minimized, namely (4),
is replaced by

~E exp
�

2

t

0

[jQ1=2
s (xs � x̂s)j2 + `(s; xs)] ds (39)

and`: [0; T ]�<n ! < is Borel measurable with at most quadratic
growth in the space variable.

If A1) and A2) hold with�(�) a solution of the modified second-
order PDE

@

@t
�t +

1

2
Tr(GtG

0

tD
2

x�t) +
1

2
jG0tDx�tj2 + Ftx.Dx�t

=
1

2
( ~Qtx. x+ 2 ~mtx+ ~�t) +

�

2
`(t; x) (40)

then Theorem 3.1 applies. This demonstrates that different choices
of `(�) yield different solutions of (40) and, consequently, different
nonlinear drift and observation functionsg(�); h(�) for which explicit
solutions of the Feynman–Kac information state equation are avail-
able. Wheǹ � 0, this method enables us to derive estimators having
finite L2-gain because (39) is always an upper bound ofJ(x̂(�)). For
example, if f(x) is a monotonically increasing nonlinearity, then
the scalar risk-sensitive estimation problemdxt = f(xt) dt + dwt,
dyt = xt dt+dxt+dbt, with `(t; x) = 1=�jf(x)j2+(1=�)Dxf(x),
is finite-dimensional. Here~Q = ~m = ~� = 0.

IV. SMALL NOISE LIMITS

In this section, we present small noise limit results. It is well known
that, at least for linear systems, as the noise covariances tend to
zero, the risk-sensitive cost is, within a logarithmic transformation,
equivalent to a deterministic linear-quadratic minimax estimation
problem with additiveL2 disturbances. Similar results for nonlinear
systems are derived in [9]. In this case the risk-sensitive estimator
becomes a minimax estimator. We wish to derive similar connections
for the risk-sensitive estimators considered earlier. Our methodology
which differs from that is applicable to general nonlinear systems. We
keep our treatment simple by considering the uncorrelated version of
(1) and (2); the correlated case can be treated in an analogous manner.

For the purpose of this section, let us rewrite our model as follows:

dxt =(Ftxt + g"(t; xt)) dt+
p
"Gt dwt

x"(0) =x(0) +
p
"�"; x"(0) 2 <n (41)

dyt =Htxt dt+
p
"N

1=2
t dbt

y(0) = 0 2 <d: (42)

Here x"(0) has meanx(0).

A3)

g"(t; x) = "GtG
0

tDx�
"(x; t)

�"(x; t) =
1

"
~�"(x; t) + o(1) (43)

and�"(x; t) is a solution of the following PDE:

@

@t
�"(x; t) +

1

2
"Tr(GtG

0

tD
2

x�
"(x; t))

+ 1

2
"jG0tDx�

"(x; t)j2 + Ftx.Dx�
"(x; t)

=
1

2"
( ~Qtx. x + 2 ~mtx+ ~�t): (44)

A4)

q�0(x) = exp(�"(x; 0))

� exp(�P ";�1

0
(x� �). (x� �))

(2�)n=2jP "
0
j1=2 ; (45)

lim
"!0

1

"
P "
0 =P0; lim

"!0

x"(0) = x(0): (46)

A5) g"(�; �) satisfies a Lipschitz and linear growth condition
uniformly on closed and bounded sets of[0; T ] � <n.
In the small noise context, the risk-sensitive cost (under
measure~P ) is

J"; �(x̂(�)) = ~E exp
�

2"

t

0

jQ1=2
s (xs � x̂s)j2 ds : (47)

Note that� has been replaced by�=". Now we introduce two
consecutive measure transformations by defining measures
P and P 0 in such a way that underP , the measurement
process becomes a Wiener process independent of the state
process, while the state process remains unchanged, and under
P 0, the state process becomes a Wiener. Using appropriate
expressions for the Radon–Nikodym derivativesdP=d ~P and
dP 0=dP , one can easily show that the risk-sensitive esti-
mation problem is equivalent to minimizing over̂x(�) the
Wiener functional

"

�
log J"; �(x̂(�))

=
"

�
log E0 exp

�

2"

t

0

jQ1=2
s (xs � x̂s)j2 ds

� exp
1

"

t

0

(Hsxs)
0N�1

s dys

�1

2

t

0

jN�1=2
s Hsxsj2 ds

�exp
1

"

t

0

(Fsxs+g
"(s; xs))

0(GsG
0

s)
�1dxs

� 1

2

t

0

jG�1

s (Fsxs + g"(s; xs))j2 ds

whereE0 denotes expectation with respect to measureP 0.
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Note that underP 0 we have

xt =x"(0) +
p
"

t

0

Gs dws

yt =
p
"

t

0

N1=2
s dbs

var(xt) = var(x"(0)) + "
t

0

GsG
0
s ds

var(yt) = "
t

0

Ns ds:

If we now assume existence of a unique viscosity solution of
the second-order PDE (44), then

lim
"!0

~�"(x; t) = ~�(x; t)

lim
"!0

g"(t; x) =GtG
0
tDx

~�(x; t) (48)

uniformly on compact sets of<n� [0; T ], where~�(�) is the
unique viscosity solution of the first-order PDE

@

@t
~�(x; t) +

1

2
jG0

tDx
~�(x; t)j2 + Ftx.Dx

~�(x; t)

= 1
2
( ~Qtx. x+ 2 ~mtx+ ~�t): (49)

From large deviations results of functionals of Wiener pro-
cesses (see [16]), one obtains

lim
"!0

"

�
J"; �(x̂�(�))

= min
x̂(�)

sup
_y2L ([0; T ];< )

sup
_x2L ([0; T ];< )

sup
x2<

� 1

�
~�(x; 0)� 1

2�
jP�1=2

0 (x� x(0))j2

+ 1
2

t

0

jQ1=2
s (xs � x̂s)j2 ds

� 1

2�

t

0

[jG�1
s ( _xs � Fsxs �GsG

0
sDx

~�(xs; s))j2

+jN�1=2
s ( _ys �Hsxs)j2] ds :

Hence, in the limit as" ! 0, the risk-sensitive estima-
tion problem is logarithmically equivalent to the minimax
dynamic game

J0; �(x̂�(�)) = min
x̂(�)

sup
b 2L ([0; T ];< )

sup
w 2L ([0; T ];< )

sup
x2<

� 1

�
~�(x; 0)� 1

2�
jP�(1=2)

0 (x� x(0))j2

+ 1
2

t

0

jQ1=2
s (xs � x̂s)j2 ds

� 1

2�

t

0

[jwd
s j2 + jbds j2] ds (50)

subject to dynamics and observations

_xt =Ftxt +GtG
0
tDx

~�(x; t) +Gtw
d
t ; x(0) 2 <n

_yt =Htxt +N
1=2
t bdt ; y(0) = 0 2 <d: (51)

Here ~�(�; �) is a solution of (49). One may now proceed
to show that this minimax dynamic estimation problem is
finite-dimensional.

Remark 4.1: Finally, we point out that when the risk-
sensitive cost (47) includes in the exponent the additional term
(1=2")

t

0
`(s; xs) ds, then the right side of (44) includes the term

(�=2")`(t; x). In this case, the small noise limit yields (49) and
(50), with the terms(�=2)`(t; x), (1=2�)

t

0
`(s; xs) ds entering

their right sides, respectively. Thus, when` � 0, this leads to
well-defined estimators which have finiteL2-gain.
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