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Abstract

This paper focuses on a spectrum-sharing-based fading cognitive radio broadcast channel (BC) with a single-antenna
secondary base station (SBS) andM single-antenna secondary receivers (SRs) utilizing the same spectrum band with a
delay-sensitive primary user (PU). The service-quality requirement for the primary user is set by an outage probability
constraint (POC). We address the optimal power allocation problem for the SBS ergodic sum capacity (ESC)
maximization in the secondary BC network subject to POC and a transmit power constraint at SBS specified by either a
long-term or a short-term power constraint. The optimality conditions reveal that in each joint channel state, the SBS
allocates transmission power to the only one selected SR with the highest value of a certain metric consisting of the
ratio of the SR’s direct channel power gain and the sum of interference power and noise power at the SR. Then, the
secondary network throughput scaling analysis as the number of SRs becomes large, is also investigated, showing
that if PU applies a truncated channel inversion (TCI) power policy, the SBS ESC scales like εp log(logM) where εp is
the PU outage probability threshold. To reduce the amount of channel side information (CSI) transferred between the
two networks, we propose a suboptimal transmission scheme which requires only 1-bit feedback from the
delay-sensitive PR (partial CSI). We show that the new power control policy is asymptotically optimal, i.e. the SBS ESC
under this reduced feedback scheme still scales like εp log(logM).

Keywords: Cognitive radio; Power control; Ergodic capacity; Outage probability; Throughput scaling; Fading
broadcast channels

1 Introduction
Inefficiency of spectrum usage has become one of the
main concerns in wireless communications technology
today as most of the exclusively allocated spectrum
remains underutilized by licensed/primary users (PUs)
[1]. This has inspired the concept of cognitive radio (CR)
technology, which was originally proposed in [2]. The
rationale is that unlicensed/secondary users (SUs) are
allowed to use the same spectrum with PUs as long as
the quality-of-service (QoS) of the primary transmission
is protected. To date, there are three main approaches for
CR to manage resultant interference: interweave, overlay,
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and underlay [3]. In the underlay paradigm which is
the paradigm of interest in this paper, SUs can share
the spectrum regardless of the ON/OFF status of the
primary network, providing that the QoS of primary
link is still guaranteed. To protect the service quality
of the primary transmission in underlay paradigm, sev-
eral types of constraints have been proposed in litera-
ture including peak/average interference power constraint
(PIPC/AIPC), primary capacity loss constraint, and pri-
mary outage probability constraint (see [4] and references
therein).
Optimal power allocation strategy for non-cognitive BC

has been extensively investigated under various perspec-
tives, such as achievable ergodic capacity [5] and outage
capacity [6] regions in fading broadcast channels or the
optimal power allocation for maximizing ergodic sum
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downlink capacity in non-cognitive BC [7]. However, in
a multi-user cognitive environment, optimal power allo-
cation problems are even more challenging because of
the strict guarantee of the QoS constraint in primary
networks, especially in delay-sensitive applications. Fur-
thermore, the asymptotic behaviour of the secondary sum
downlink throughput scaling under the optimal power
allocation policy, termed as optimal throughput scaling,
when the number of secondary receivers grows large,
has not been previously addressed under a primary out-
age probability constraint. Thus motivated, our first aim
is to provide an analysis of optimal throughput scal-
ing with full channel side information (CSI) at the sec-
ondary transmitter. While the requirement of full CSI at
the SU transmitter, in particular, those of the primary
channels is impractical. Nonetheless, these results will
constitute a benchmark for assessing the performance
of any other suboptimal power allocation scheme which
may be designed in practical scenarios with partial chan-
nel side information about primary and secondary chan-
nels. Indeed, our second aim in this paper is to analyze
secondary throughput scaling with a suboptimal power
allocation scheme that only requires partial information
about the channels involving only the primary terminals
(see Section 6 for further details).

1.1 Contributions
In this paper, we focus on a single-input single-output
(SISO) fading cognitive broadcast channel (C-BC) withM
SUs, co-existing with a delay-sensitive primary link under
average and peak transmit power constraint at the sec-
ondary base station (SBS). The novel contributions of this
paper can be summarized as follows:

1. We derive the optimal power control policy for the
ergodic sum capacity (ESC) maximization problem
under a PU outage probability constraint (POC),
under both long-term and short-term power
constraints at the SBS transmitter assuming perfect
knowledge of all involved channel gains at the SBS
along with the PU’s transmission power control
policy. (A typical PU is oblivious to the secondary
network and thus its power control policy only
depends on the direct gain between primary
terminals rather than interferences from the
secondary network.)

(a) Since the primary outage probability
constraint has no closed-form expression in
general, the MAC-BC duality result from [8]
cannot be applied directly. Different from
[8,9], we propose a novel technique to
establish the optimality of an opportunistic
scheduling structure that maximizes the SBS

ergodic sum rate. This result is then used to
transform the originally non-convex ESC
maximization problem to a convex
optimization problem.

(b) We solve the transformed convex
optimization problem by a probabilistic
power allocation technique [10,11]. Our
optimal power control solutions can be
adapted to any arbitrary power control
employed by the primary network.

2. We derive asymptotic scaling laws (also known as
multi-user diversity gains) for the SBS ergodic sum
capacity as the number of SUs, M, becomes large
when SBS employs the optimal power allocation
policy, assuming all channels undergo independent
Rayleigh fading. In this part, we additionally presume
that the delay-sensitive PU uses a truncated channel
inversion (TCI) policy. The significance of choosing
TCI policy is that it minimizes the primary outage
probability in the absence of the secondary network
(see [12]). Under either long-term or short-term
power constraint at the SBS, we show that the SBS
ESC scales according to εp log(logM) with a pre-log
factor εp, where εp is the maximum allowable outage
probability at the primary receiver in the presence of
the SU network.
It is worth mentioning that the current paper is
different from [13] in three aspects. First, we assume
that the delay-sensitive primary user employs an
optimal power control policy for minimizing outage
probability, i.e. truncated channel inversion power
control policy. Second, we derive the optimal power
control policy at the SBS under two different
scenarios, i.e. SBS employs (i) a long-term power
control policy or (ii) a short-term power control
policy. Third, for each scenario, we study throughput
scaling behaviour of the secondary network under
the optimal power allocation policy at the SBS. Also,
our throughput scaling results differ from [13] in a
pre-log factor. This pre-log factor captures the effect
of the optimal power control policy at the primary
side on the throughput scaling behaviour of the
secondary network.

3. We also propose a suboptimal transmission scheme,
namely, a 1-bit primary feedback scheme, which
substantially decreases the cooperation between the
primary and the secondary networks compared to
the optimal power allocation scheme. More
specifically, we show that the secondary network just
needs 1-bit feedback from the primary receiver to
guarantee the QoS in the primary, while the
multi-user diversity gain of the suboptimal scheme
remains the same as the optimal one.
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1.2 Outline of the paper
The remainder of this paper is organized as follows.
Related previous works are discussed in Section 2. The
description of our system model is presented in Section 3.
Under the assumption of full channel side information at
SBS and PU’s power strategy being known to SBS, the
optimal power control policies for ESC maximizing prob-
lem with POC and either long-term transmit power con-
straint (LTPC) or short-term transmit power constraint
(STPC) are presented in Section 4. In Section 5, we derive
the optimal throughput scaling law of εp log(logM) under
additional assumptions that all channels involved in the
problem undergo independent and identically distributed
(iid) Rayleigh fading and the PU employs a TCI power
control policy. A suboptimal transmission scheme for pri-
mary feedback reduction and the associated throughput
scaling law are rigorously derived in Section 6. Numeri-
cal results are presented in Section 7 followed by some
concluding remarks in Section 8.

1.3 Notations
Here is a list of important notations used in this paper. E[ .]
denotes the statistical expectation. Pr{.} represents proba-
bility. The cumulative density function (CDF) of a random
variable Z is given by FZ(z) whereas FZ(z|Y ) expresses
the conditional CDF of Z given Y. Let Xw be a Bernoulli
random variable such that Xw = 1 with probability w
and Xw = 0 with probability 1 − w. π(i) denotes a per-
mutation function from {1, 2, . . . ,M} to {1, 2, . . . ,M}. �+
represents the set of positive real numbers. ∂y

∂x∗ denotes
the partial derivative of y with respect to x, evaluated at
x = x∗. min (a, b) = a if a ≤ b. pT represents the trans-
pose of vector p. Sc represents the complement of the set
S . We also use the notation f (x) = O(g(x)) to imply that
lim supx→∞ | f (x)

g(x) |< ∞, f (x) = o(g(x)) to imply that
lim
x→∞ | f (x)

g(x) |= 0 and f (x) = �(g(x)) as x → ∞ to imply
that there exist positive constants K1 and K2 such that
K1 <| f (x)

g(x) |< K2.

2 Related works
For a single-user SISO cognitive underlay paradigm, POC
was introduced in an ergodic capacity maximization prob-
lem [14], assuming that the delay-sensitive PU uses a
constant power control (which is not energy-efficient
from the primary user’s perspective). However, this result
cannot be generalized to downlink channels due to non-
convexity in the expression of ESC for a C-BC.
Information theoretic capacity notions for non-

cognitive SISO fading broadcast channels were investig-
ated in, e.g. [5,7]. In [7], the authors showed that the base
station allocates a given time slot (over which the fading
channel remains invariant) to the user with the strongest
reception only so as to maximize the total throughput,

implying that an opportunistic scheduling or the so-called
dynamic time-division-multiple-access (D-TDMA) is
optimal. The amount of transmission power is allocated
according to a water-filling policy. Using the duality result
from [8], the authors of [9] investigated the optimal power
control for ESC maximization in the SISO fading C-BC
under both average/peak transmit power constraints and
PIPC/AIPC, proving that opportunistic scheduling is the
optimal scheme for achieving the ESC in C-BC. However,
the optimal power allocation policy under POC (which is
a more suitable metric to assure the quality of service for
a delay-sensitive PU) has not been addressed so far in the
existing literature.
Opportunistic user selection strategies have also moti-

vated researchers to analyze how the ESC scales as the
number of usersM increases. The analysis for throughput
scaling in non-cognitive multiple-input multiple-output
(MIMO) BC is provided in [15]. For underlay cognitive
radio networks, there are a number of works studying
multi-user diversity. For example, in [16], the authors
studied the cognitive multiple-access (C-MAC) system
under a peak transmit power constraint at each secondary
transmitter and a peak interference power constraint at
the primary receiver and analyzed capacity scaling as the
ratio of the transmit power to the interference power
approaches infinity. In [17], secondary capacity gains in
C-MAC are investigated with the user selection criterion
based on the strongest secondary direct channel and the
weakest interference channel under a peak interference
constraint. Later in [18], the multi-user interference diver-
sity is examined for three types of cognitive networks,
including C-MAC, C-BC, and cognitive parallel access
channel (C-PAC), under peak transmit power and peak
interference power constraints. Later in [19], the authors
investigated ergodic sum capacity scaling in SISO C-MAC
under a hybrid scheduling policy, i.e. by first selecting a
set of eligible secondary transmitters which do not vio-
late the interference quota and then choosing secondary
transmitters that can be active. The same authors gen-
eralized the result in [19] to multi-user multi-antenna
cognitive networks [20] with peak transmit power con-
straint at the secondary network, and peak interference
power constraint at the primary receivers for both uplink
and downlink channels was examined.
In order to make asymptotic analyses more tractable,

the multi-user diversity has been studied mainly under
suboptimal power allocation schemes, e.g. in [15,19-21].
Note that these results under suboptimal power alloca-
tion schemes simply provide lower bounds and do not
necessarily reflect the optimal throughput scaling of the
network. To establish a benchmark for justifying the effi-
ciency of any suboptimal scheme, such as those based
on partial CSI, it is crucial to derive throughput scaling
under the optimal transmission power allocation scheme.
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Recently, the multi-user diversity gain under optimal
power control in C-MAC under average transmit and
average interference power constraints with various types
of fading channels was investigated in [22].

3 Systemmodel
We consider a C-BC with a secondary base station trans-
mitting data to M secondary receivers (SRs), sharing the
same spectrum as a primary transmitter-primary receiver
(PT-PR) pair. All terminals involved are equipped with
a single antenna. Let hi, g, αi, and β denote the chan-
nel power gains from SBS to the ith SR, PT to PR, PT
to the ith SR, and SBS to PR, respectively, as illustrated
in Figure 1. Let χχχ represent the joint channel state vec-
tor, i.e. χχχ = {

g,β , h1, . . . , hM,α1, . . . ,αM
}
. All channel

gains involved in this cognitive radio network are assumed
to be mutually independent block-fading additive white
Gaussian noise (BF-AWGN) channels with continuous
CDFs [12]. Indeed, the BF-AWGN channel model has a
long history of being used for both non-cognitive and cog-
nitive radio networks. In particular, block-fading models
have been used successfully in [23] for non-scalable video
coding and data partitioning using H.264/AVC encoder
in conversational applications, and a multi-resolution
video/image data transmission system using hierarchical
constellation was investigated in [24] under block-fading
channel model. Authors in [25] analyzed the performance
of multi-user multi-access wireless video communication
in block-fading channel by using H.264/AVC encoder. In
cognitive radio literatures, there is a great deal of litera-
ture assuming block-fading model [11,14,26-29]. In [29],
the authors used the block-fading model for both primary
and secondary channels. Typically, a primary transmitter
disregards the existence of secondary networks and there-
fore adapts its transmission power based on a predefined
power allocation policy which is not a function of the

interference from the secondary networks (e.g. [11,14]).
Hence, we assume that the PU allocates its transmis-
sion power based only on the direct gain g between PT
and PR, regardless of the interference from the secondary
downlink channels [11]. The PU and the SBS are pre-
sumed to use random Gaussian codebook [11,14,30,31].
We also assume that a frequency division duplexing (FDD)
scheme is implemented in both primary and secondary
networks, i.e. CSI of primary and secondary direct chan-
nels is available at the corresponding transmitters via
receiver feedback. In the first instance, SBS is assumed to
have knowledge of perfect CSI on χχχ and primary user’s
power policy so that it also knows the primary user’s
power allocation policy for every realization of χχχ .

Remark 1. Clearly, the knowledge of full CSI at SBS of
the channels involving the primary terminals is not easy to
achieve. In recent literature, some practical schemes have
been suggested for obtaining such information at the ST
in [32]. For ST-PR channels in FDD, it is suggested that
the CSI at the PR is fed back to the SBS from the primary
base station (PBS) (which is in communication with its
PR) through an error-free backhaul link of negligible delay.
Indeed, just as base station cooperation has become a real-
ity via coordinated multi-point (CoMP) technology in the
long-term evolution (LTE) systems, it is not unimaginable
that the cooperation between SBS and PBS will become
common, especially because it assists both the PUs and
SUs in their interference management endeavour. It is also
envisaged that some financial incentives may be used to
encourage the primary service provider to facilitate such
information exchange with the secondary service provider
[33]. For PT-PR channels, various suggestions have been
made including that of eavesdropping on PR feedback to
PT [34] and receiving feedback from a cooperative SU
node employed near the PR [35], while information about

Figure 1 Systemmodel for C-BC.
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PT-SR and ST-SR channels can be obtained via classical
channel feedback and training schemes based on pilot sig-
nals from the PT and ST, respectively. Finally, note that
the analysis of throughput scaling in Section 5 based on
full CSI serves the important purpose of a benchmark for
any schemes based on imperfect CSI, such as the one with
a 1-bit primary feedback scheme proposed in Section 6.

In this work, we assume that the QoS guarantee of the
delay-sensitive PU with a target rate r0p allows a maximum
primary outage probability of εp. In a typical wireless fad-
ing environment, even in the absence of interference from
the secondary network, the PU may not be able to avoid
an outage event when the PT-PR channel is in deep fade.
For example, with an average or peak transmit power con-
straint, the PU cannot meet the target rate for a Rayleigh
fading channel if it falls below a certain threshold [12]. We
further presume that the PU’s power policy is designed to
allow for a maximum PU outage probability of ε0p ≤ εp
in the absence of the secondary interference. Thus, the
secondary network is allowed to cause an additional out-
age with probability εp − ε0p . Furthermore, let Pp(g) define
the transmission power policy at the PU. (As mentioned
earlier, it is typical to assume that transmission power
allocation policy at the PU is based on the direct gain g
only.).
Let P(χχχ) = [P1(χχχ), . . . ,PM(χχχ)]T be the mapping from

�2M+2+ to �M+ , where Pi(χχχ) denote the SBS’s transmit
power allocated for the ith SR. The PU’s instantaneous
rate expression can be written as

rp(χχχ ,P(χχχ)) = log

⎛
⎜⎝1 + gPp(g)(

β
M∑
i=1

Pi(χχχ)

)
+N0

⎞
⎟⎠ (1)

The delay-sensitive primary network has an POC with a
target rate r0p and amaximumoutage probability threshold
εp, such that

Pr
{
rp(χχχ ,P(χχχ)) < r0p

}
≤ εp (2)

The power budget at the SBS can be either LTPC or STPC
as shown in (3) and (4), respectively.

E
[ M∑
i=1

Pi(χχχ)

]
≤ Pav (3)

M∑
i=1

Pi(χχχ) ≤ PO (4)

In this paper, we focus on solving the ergodic sum
capacity maximizing problem in the secondary downlink
subject to (2) and either (3) or (4). The maximum ergodic

sum capacity achieved by the secondary network in this
problem can be written as follows:

CBC
s = max .

P(χχχ)∈F
E
[
rBCs (χχχ ,P(χχχ))

]
s.t. (2) and either (3) or (4)

(5)

where F is the space of all mappings from �2M+2+ to
�M+ . At each joint channel state χχχ , the instantaneous sum
capacity of secondary broadcast channels, rBCs (χχχ ,P(χχχ)), is
given by

rBCs (χχχ ,P(χχχ)) =
M∑
i=1

log

⎛
⎜⎝1 + zπ(i)Pπ(i)(χχχ)

1+zπ(i)
M∑

k=i+1
Pπ(k)(χχχ)

⎞
⎟⎠ (6)

where π(.) is the permutation that specifies the optimal
decoding order, i.e. zπ(M) > zπ(M−1) > · · · > zπ(1) and
zi = hi

αPp(g)+N0
. In other words, zi represents the signal-

to-interference-plus-noise ratio (SINR) of the ith user
whereas zπ(i) is the SINR of the π(i)-th user based on the
optimal decoding order π(i). Note that the sum-capacity
expression can be obtained by successive decoding with
interference cancellation [8,36]. Also, note that we drop
the constant 1

2 in the instantaneous rate expressions in (6)
and use natural logarithm for simplicity. We also assume
that the AWGN variance in each SR is given by N0. Obvi-
ously, rBCs (χχχ ,P(χχχ)) is not concave over P(χχχ). In the next
section, we first establish the optimality of an opportunis-
tic scheduling structure in our setup which allows us to
reformulate (5) as a convex optimization problem.

4 Optimal power strategies
In this section, we focus on the optimal power alloca-
tion strategy in the secondary network which maximizes
ESC under POC at the primary link with a limited power
budget at the SBS. The transmission power resource is
confined by either LTPC (average transmit power con-
straint) or STPC (peak transmit power constraint). First,
we look at the ESC maximizing problem subject to POC
when the transmission power at the SBS is limited by
LTPC in Section 4.1. Later, the ESC maximizing problem
under POC and STPC will be considered in Section 4.2.

4.1 Optimal power policy for LTPC
The secondary ergodic sum capacity maximization prob-
lem under POC and LTPC is defined as follows:

CBC
s = max .

P(χχχ)
E
[
rBCs (χχχ ,P(χχχ))

]
s.t. (2) and (3) (7)

The optimal power policy solving (7) is given by
Theorem 1.
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Theorem 1. The optimal power control solution for (7) is
P∗(χχχ) = Xw∗(χχχ)p∗

1(χχχ)+ (1−Xw∗(χχχ))p∗
2(χχχ), p∗

1(χχχ), p∗
2(χχχ)

and w∗(χχχ) are defined as follows:

p∗
1,i(χχχ) =

{
min(p∗

WF(χχχ), p∗
RP(χχχ)), w∗(χχχ) = 1, i = i∗

0, otherwise
(8)

p∗
2,i(χχχ) =

{
p∗
WF(χχχ), w∗(χχχ) = 0, i = i∗

0, otherwise (9)

w∗(χχχ) =
{
1, BB

1,χχχ > BB
2,χχχ

0, BB
1,χχχ < BB

2,χχχ
(10)

where i∗ = argmax
m∈I zm, p∗

WF(χχχ) = ( 1
	∗ − 1

max zm )+,

p∗
RP(χχχ) = 1

β

(
gPp(g)

exp(r0p)−1 − N0

)+
, BB

1,χχχ = rBCs (χχχ ,p∗
1(χχχ)) −

	∗1Tp∗
1(χχχ)+S∗ andBB

2,χχχ = rBCs (χχχ ,p∗
2(χχχ))−	∗1Tp∗

2(χχχ).
The Lagrange multipliers 	∗ and S∗ are the solutions

to E
[ M∑
i=1

P∗
i (χχχ)

]
= Pav and E [w∗(χχχ)] ≥ 1 − εp.

�

Proof. The proof relies on the optimality of an oppor-
tunistic scheduling structure as first proved in Appendix 1
(see Lemmas 1 and 2). Based on this result, the proof of the
optimal power control policy as presented by Theorem 1
above is given in Appendix 2. �

Theorem 1 implies that the optimal power control pol-
icy of the problem (7) possesses an opportunistic schedul-
ing structure in each joint channel state χχχ , i.e. the SBS
allocates non-negative power, say P̆(χχχ), to only the ith SR
with i = argmax

m∈I zm and zero power to other remain-

ing SRs. Although P̆(χχχ) does not explicitly depend on the
index of each ith secondary receiver, it intrinsically rep-
resents the power allocated to the scheduled user in each
specific joint channel stateχχχ . For simplicity, define zmax =
max
m

zm. By the opportunistic scheduling structure, the
original non-convex problem in (7) can be converted to
(11) as follows:

max .
P̆(χχχ)≥0

E
[
rs(χχχ , P̆(χχχ))

]
s.t. Pr

{
log(1 + gPp(g)

N0+βP̆(χχχ)
) < r0p

}
≤ εp, E

[
P̆(χχχ)

] ≤ Pav
(11)

where rs(χχχ , P̆(χχχ)) = log(1 + P̆(χχχ)zmax) represents the
instantaneous sum-capacity expression of the secondary
broadcast channels by using the opportunistic scheduling
structure, and the objective function in (11) is concave
over P̆(χχχ).

Theorem 1 also reveals that the optimal power pol-
icy of the problem (7) can be constructed by utilizing
two deterministic power allocation schemes with oppor-
tunistic scheduling structure, i.e. P∗(χχχ) = p∗

1(χχχ) in (8)
if w∗(χχχ) = 1 and p∗

2(χχχ) in (9) if w∗(χχχ) = 0. The intu-
itive explanation of the optimal power control policy is
that for a given joint channel state χχχ , the SBS can design
the power control policy under only two options, i.e. by
either putting the PU in outage or not putting the PU not
in outage. The deterministic power policy p∗

2(χχχ) in (9)
represents the optimal power policy which the PU is in
outage, i.e. the SBS allocates power p∗

2,i(χχχ) = p∗
WF(χχχ) for

the ith SR with i = argmax
m∈I zm according to the well-

known water-filling power policy and zero power to the
other remaining SRs. Note that the solution is similar to
the optimal power policy of the sum capacity maximiz-
ing problem in non-cognitive broadcast channels [7] since
the SBS decides to put the PU in outage. On the other
hand, p∗

1(χχχ) denotes the optimal power policy when the
SBS ensures the service quality in the primary link. In
this case, the SBS still allocates a transmission power with
water-filling power policy to the scheduled user as long
as p∗

WF(χχχ) ≤ p∗
RP(χχχ) =. However, if p∗

WF(χχχ) > p∗
RP(χχχ),

the transmission power is p∗
RP(χχχ) since p∗

RP(χχχ) is the max-
imum transmission power from the SBS that can ensure
that the PU is not in outage, i.e. the primary rate equals
the primary target rate. Therefore, the water-filling power
policy is capped by p∗

RP(χχχ). Between these two deter-
ministic power policies, the SBS utilizes the policy which
returns the highest benefit, i.e. if the benefit functionBB

1,χχχ
of the power policy p∗

1(χχχ) is greater than the benefit func-
tion BB

2,χχχ of the power policy p∗
2(χχχ), then w∗(χχχ) = 1. If

BB
1,χχχ < BB

2,χχχ , w∗(χχχ) = 0, implying that the SBS uses the
power policy p∗

2(χχχ).

4.2 Optimal power policy for STPC
The secondary ergodic sum capacity maximization prob-
lem under POC and STPC is defined as follows:

CBC
s = max .

P(χχχ)
E
[
rBCs (χχχ ,P(χχχ))

]
s.t. (2) and (4) (12)

The optimal power policy solving (12) is given by
Theorem 2. See Appendix 3 for a detailed proof.
Theorem 2. The optimal power control solution for (12)
is P∗,st(χχχ) = Xw∗,st

1
(χχχ)p∗,st

1 (χχχ)+ (1 − Xw∗,st
1

(χχχ)) p∗,st
2 (χχχ),

where p∗,st
1 (χχχ), p∗,st

2 (χχχ) and w∗,st(χχχ) are defined as follows:

p∗,st
1i (χχχ) =

{
min(PO, p∗

RP(χχχ)), w∗,st(χχχ) = 1, i = i∗

0, otherwise
(13)
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p∗,st
2i (χχχ) =

{
PO, w∗,st(χχχ) = 0, i = i∗

0, otherwise
(14)

w∗,st(χχχ) =
{
1, BB,st

1,χχχ > BB,st
2,χχχ

0, BB,st
1,χχχ < BB,st

2,χχχ
(15)

where ‘st’ in the superscript stands for ‘short-term’ and
i∗ = argmax

m∈I zm. Also, BB,st
1,χχχ = rs(χχχ ,p∗,st

1 (χχχ)) −
	∗,st(χχχ)1Tp∗,st

1 (χχχ) + S∗,st and BB,st
2,χχχ = rs(χχχ ,p∗,st

2 (χχχ)) −
	∗,st(χχχ)1Tp∗,st

2 (χχχ). Lagrange multipliers	∗,st(χχχ) and S∗,st

are the solutions to
M∑
i=1

P∗,st
i (χχχ) ≤ PO and E

[
w∗,st(χχχ)

] ≥
1 − εp. �
Similar to Theorem 1 in LTPC case, Theorem 2 implies

that an opportunistic scheduling structure is optimal in
each joint channel state χχχ for which the SBS schedules
the SR with the maximum zi only. Thus, the original non-
convex problem in (12) can be converted to (16) as follows:

max .
P̆st(χχχ)≥0

E
[
rs(χχχ , P̆st(χχχ))

]
s.t. Pr

{
log(1 + gPp(g)

N0+βP̆st(χχχ)
) < r0p

}
≤ εp, P̆st(χχχ) ≤ PO.

(16)

Similar to Section 4.1, it can be shown that the objective
function in (16) is concave over P̆st(χχχ).
For the STPC, Theorem 2 reveals that the SBS also

chooses one of the two deterministic power allocation
policies, i.e. the SBS can either decide to ensure the QoS in
the primary link by using the power policy p∗,st

1 (χχχ) in (14)
or ignore the PU’s QoS requirement by using the power
policy p∗,st

2 (χχχ) in (14). This decision relies on w∗,st(χχχ)

in (15). However, the SBS allocates transmission power
based on the constant power control with peak power PO
to the scheduled SR in the STPC case instead of using the
water-filling power policy in the LTPC case.

Remark 2. As opposed to the result in [14] where the PU
utilizes a constant power policy, the optimal power alloca-
tion strategies in Theorems 1 and 2 are applicable to any
arbitrary PU power allocation policy as long as the pri-
mary user is oblivious to the secondary network, i.e. the
PU’s power allocation policy is not a function of the SBS’s
transmission power allocation function.

5 Throughput scaling with truncated channel
inversion policy at PU

In this section, we derive asymptotic scaling laws of the
SBS ergodic sum capacity when the number of SUs grows
large, under the assumption that all channel power gains
are independent and identically distributed and they are

also presumed to be exponentially distributed with unity
mean. Also, we focus on the case where the PU uses the
TCI policy. The motivation behind the assumption of a
TCI power policy at the PU is that TCI is the optimal
power allocation policy for minimizing the information
outage probability under a long/short transmit power
constraint for a delay-sensitive user. More specifically, the
TCI power control policy employed at the PU in this paper
can be described as follows: PU’s transmit power adapts
according to the direct channel gain g when the PU is ON

with transmission power Pp(g) = (er
0p−1)N0
g when g ≥ gT

and Pp(g) = 0 otherwise. Note also that gT is chosen such
that for Pr(g < gT ) = ε0p .
Given that the PU employs a TCI power policy, in

Section 5.1, we present the optimal channel partitioning
structures dictated by the optimal power allocation strate-
gies in Theorem 1 for LTPC and in Theorem 2 for STPC.
We show that the space of joint channel states χχχ ∈ �2M+2+
can be separated into three regions for the ESC maximiz-
ing problem subject to POC and either LTPC or STPC.
Aided by these results in Section 5.1, the optimal through-
put scaling laws of the SBS ergodic sum capacity under
POC and LTPC will be derived in Section 5.2. Finally,
Section 5.3 will present the optimal throughput scaling
laws of the SBS ergodic sum capacity under POC and
STPC.

5.1 Optimal channel state partitioning structure
Assuming a TCI policy at the PU, the space of joint
channel states χχχ ∈ �2M+2+ can be divided into three
regions when the SBS employs the optimal power alloca-
tion policy. First, we summarize the details of the three
channel state regions for LTPC in Table 1 together with
the power allocation policy, outage status at the PU, and
the probability of each channel state region.
Table 1 reveals the intuitive explanation of the transmis-

sion mechanism at the SBS for the LTPC case. In region
1, the PU stops transmitting as g < gT and faces an out-
age even if there is no interference from the secondary
network. In this case, the SBS will allocate power based

Table 1 Three possible channel state regions for the
fading channel stateχχχ for LTPC

Region Channel Optimal Outage Probability
state power at PU
region control

1 g < gT p∗
WF Yes (PU turns OFF) ε0p

2 g ≥ gT , BB
1,χχχ ≤ BB

2,χχχ p∗
WF Yes εp − ε0p

3 g ≥ gT , BB
1,χχχ > BB

2,χχχ p∗
RP = 0 No 1 − εp
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on water-filling power policy to the scheduled SR. Also
note that there is no interference from the primary trans-
mitter to the secondary network as the PU turns off in
this case. When g ≥ gT , the PU is ON with Pp(g) = k1

g

where k1 =
(
er

0
p − 1

)
N0 and thus, any positive trans-

mission power from the SBS can put the PU in outage.
Therefore, the SBS must switch OFF if the SBS decides to
protect the service quality in the primary link. In region
2, the SBS still decides to transmit because the power pol-
icy that puts PU in outage (p∗

2) returns a higher profit than
the power policy that protects the primary transmission
(p∗

1), i.e. B
B
1,χχχ ≤ BB

2,χχχ . The SBS then allocates power p∗
WF

to the scheduled SR. In region 3, the SBS knows that it is
more profitable to stop its data transmission and ensure
the service quality in the PU’s link, i.e. BB

1,χχχ > BB
2,χχχ .

In the ESC maximizing problem subject to POC and
STPC, the optimal power control strategy according to
Theorem 2 can be utilized to separate the space of joint
channel statesχχχ ∈ �2M+2+ into three distinct channel state
regions as summarized in Table 2. Also note that the inter-
pretation from Table 2 is quite similar to Table 1, except
for using a constant power control at the peak power PO
rather than the water-filling power policy.

Remark 3. Note that if S∗ = 0 in the LTPC case (or
S∗,st = 0 in the STPC case), the SBS can transmit with
p∗
WF (water-filling) in the LTPC case or PO in the STPC

case without making the POC active, as if the primary
network never existed. This scenario then simplifies to a
non-cognitive broadcast channel, and it has been shown
in [15] that in this case the ergodic sum rate scales accord-
ing to log(logM) as M becomes large. In this paper, we
will analyze the throughput scaling laws only for the case
when S∗ > 0 for LTPC and S∗,st > 0 for STPC.

5.2 Throughput scaling for the LTPC case
In this section, we focus on the derivation of throughput
scaling when the SBS employs the optimal power allo-
cation policy according to Theorem 1 (LTPC case). The

Table 2 Three possible channel state regions for the
fading channel stateχχχ for STPC

Region Channel Optimal Outage Probability
state power at PU
region control

1 g < gT PO Yes (PU turns OFF) ε0p

2 g ≥ gT , B
B,st
1,χχχ ≤ BB,st

2,χχχ PO Yes εp − ε0p

3 g ≥ gT , B
B,st
1,χχχ > BB,st

2,χχχ p∗
RP = 0 No 1 − εp

main result of this section is summarized in Theorem 3, a
detailed proof of which is provided in Appendix 4.

Theorem 3. When PU uses TCI power control policy, the
asymptotic scaling law of the SBS ergodic sum capacity
under a POC and a LTPC with optimal power control is
given by

lim
M→∞

CBC∗
s

log(logM)
= εp

The intuitive explanation for Theorem 3 is that when
PU uses a TCI power control, the SBS is forced to turn
off for the channel fading states in which the PU link
QoS can be compromised since the SBS transmission
results in the violation of POC. Since the primary outage
probability threshold is εp, the SBS is allowed to trans-
mit with probability εp which leads to the pre-log factor
term.

5.3 Throughput scaling for the STPC case
In this section, we will derive the throughput scaling
result due to the optimal power allocation in Theorem 2
(STPC). The main result of this section can be summa-
rized in Theorem 4, a detailed proof of which is provided
in Appendix 5.

Theorem 4. When PU uses the TCI power control policy,
the asymptotic scaling law of the SBS ergodic sum capacity
under a POC and a STPC with optimal power control is
given by

lim
M→∞

CBC∗
s

log(logM)
= εp

The intuitive reason for the appearance of the pre-log
factor εp is similar to the LTPC case with TCI power
control at PU.

6 Suboptimal transmission schemewith feedback
reduction

In the optimal power policy, the SBS requires the infor-
mation of the entire channel state χχχ which includes g and
β in order to schedule the SR as well as compute the
optimal outage region of the PU and the optimal trans-
mission power. As mentioned earlier, the SBS can obtain
the perfect CSI of the interference gain β between the
SBS and the primary receiver by measuring the received
power of signals transmitted by the PR. For PT-PR chan-
nels, it is suggested that the SBS can eavesdrop on PR
feedback to PT [34] or receive the feedback from a coop-
erative SU node employed near the PR [35]. Both ST-PR
and PT-PR link information can also be obtained via back-
haul links from a cooperative PBS possibly via pricing
[33]. In this section, we propose a new suboptimal scheme
which can further reduce the cooperation between the
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primary receiver and the secondary network by receiv-
ing just only 1-bit feedback from the PR, or if the SBS
can feedback from PR, no cooperation is required. In this
scheme, the PU predefines the PU outage region (subop-
timal) based on the direct gain g only, so the outage/non-
outage status of the PU can be realized at the SBS by
using just 1-bit feedback from the PR. The correspond-
ing opportunistic scheduling and power allocation policy
for either LTPC or STPC are also proposed. It is impor-
tant to note that by using this scheme, the SBS ESC still
scales like εp log(logM) as M grows large (asymptotically
optimal). The details of the suboptimal scheme are as
follows:

• Initially, the channel state for the direct channel gain
g between the PT and the PR is divided into two
regions: the non-outage region g ∈[gT , g̃T ], where the
secondary network must not transmit in order to
guarantee the primary link’s service quality, and the
outage region, g ∈ Goutage = [0, gT ]

⋃[
g̃T , ∞),

where the secondary network can transmit. The value
g̃T is chosen such that εp − ε0p = 1 − FG(g̃T ), so that
the outage probability in the primary link is ensured
to be less than εp. Further note that gT and g̃T depend
on the distribution of the channel gain g rather than
their instantaneous values.

• Feedback policy The primary receiver sends a
feedback of ‘0’ to its transmitter (and the SBS if
cooperating) if g /∈ Goutage to halt the transmission
activity in the secondary network, whereas it sends a
feedback of ‘1’ if the SBS is allowed to transmit when
g ∈ Goutage.

• Opportunistic scheduling policy In the perfect CSI
case, the SBS will schedule the SR with maximum

hm
αmPp(g)+N0

which requires the knowledge of Pp(g).
However, in the new scheme, we can assume that the
SBS is pessimistic by always assuming that
Pp(g) = Pp(g̃T ), i.e. the PU transmits the maximum
power of the range g ∈ Goutage. Therefore, the SBS will
schedule the SR with maximum ρ̃m = hm

αmPp(g̃T )+N0
and the ergodic sum rate can be expressed as

CBC
Partial=Pr

{
Goutage

}
E
[
log(1+PPartial(χχχ)ρ̃max)

∣∣Goutage
]

(17)

where ρ̃max = max
m

ρ̃m and PPartial(χχχ) is the SBS’s
transmission power allocated to the SR with
maximum ρ̃max. Note that the statistical behaviour of
ρ̃m is independent of g.

• Power allocation policies and throughput scaling
results For STPC, the power allocation policy at the
SBS is straightforward. The SBS transmits with the

maximum power PO when g ∈ Goutage. The ergodic
sum rate for STPC becomes

CBC, STPC
Partial = Pr

{
Goutage

}
E
[
log(1 + POρ̃max)

∣∣ Goutage
]

= εpE
[
log(1 + POρ̃max)

]
(18)

For LTPC, we have to solve the following
optimization problem:

max
PPartial(χχχ)

Pr
{
Goutage

}·E [log(1+PPartial(χχχ)ρ̃max)
∣∣Goutage

]
s.t. Pr

{
Goutage

}
E [PPartial(χχχ)| Goutage

] ≤ Pav.
(19)

It is easy to show that the solution to the
optimization problem in (19) is still water-filling, i.e.
PPartial(χχχ) =

(
1

	Partial
− 1

ρ̃max

)+
for g ∈ Goutage and

PPartial(χχχ) = 0 for otherwise. Note that 	Partial
satisfies LTPC with equality.
Therefore, the ergodic sum rate for LTPC becomes

CBC, LTPC
Partial =Pr

{
Goutage

}·E [log( ρ̃max
	Partial

)1{	≥Partialρ̃max}
∣∣∣Goutage

]
= εpE

[
log( ρ̃max

	Partial
)1{ρ̃max≥	Partial}

]
(20)

It is easy to show that both E
[
log(1 + POρ̃max)

]
in

the STPC case and E
[
log( ρ̃max

	Partial
)1{ρ̃max≥	Partial}

]
in

the LTPC case scale according to log(logM).
Therefore, the ergodic sum capacity scales according
to εp log logM for LTPC as well as STPC under this
suboptimal scheme.

7 Numerical results
In this section, we present some numerical results on the
performance of the proposed optimal power policies for
the capacity maximization problem with POC and LTPC
or STPC. All channel gains involved are assumed to be
Rayleigh fading, and the corresponding channel power
gains are taken to be exponentially distributed with unit
mean. Noises at PR and all SRs are presumed to be equal
and AWGN with unit variance, i.e. N0 = 1. Note that this
allows the transmit power at the primary and secondary
transmitters to be interpreted as signal-to-noise ratio at
the transmitter side. Unless specified otherwise, PU’s tar-
get rate is r0p = 1.25 nat/channel use and the primary
outage probability threshold εp = 0.1. For the primary
TCI power policy, we set ε0p = 0.05. For convenience,
we further assume that all secondary receivers are iden-
tical. The simulation results are based on a Monte Carlo
method averaged over 105 channel realizations.
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7.1 The effect of POC on the ergodic sum capacity of C-BC
In this section, we observe the effect of POC on the SBS
downlink sum capacity when PU uses a TCI power pol-
icy through Figure 2 in both LTPC and STPC cases. For
a fixed number of secondary receivers M = 4, Figure 2
shows that with a decreasing PU’s outage probability
threshold for a fixed target rate, SBS downlink sum capac-
ity decreases for both LTPC and STPC when PU applies
the TCI power strategy, as expected. The same feature
is also noticed when PU’s outage probability threshold is
fixed with an increasing rate. The results are due to the
fact that the POC becomes stricter when the PU’s out-
age probability threshold is reduced or the target rate is
increased.

7.2 Throughput scaling results with TCI power policy at
the PU

In this part, we will discuss how the SBS ergodic sum
capacity behaves as the number of secondary receivers
grows under the optimal power policy in Theorem 2 for
STPC. In this problem, there are also a number of param-
eters which affect the SBS sum ergodic capacity from the
optimal power policy in Theorem 2 for STPC, includ-
ing ε0p , the PU’s target rate r0p, PU’s outage probability
constraint εp, and the secondary network’s power budget
(PO for STPC). The results for the LTPC case are similar
and excluded to save space. From Figure 3, a decrease in
the secondary power budget significantly reduces the SBS
sum throughput i.e. when PO is decreased, the through-
put scaling is shifted downwards. Next, a decrease in ε0p
makes the sum throughput drop because the truncated
threshold gT = − log(1 − ε0p) (for the Rayleigh fading

model) is also reduced. Although the additional outage
caused by the secondary network is increased, SBS stops
transmitting if it decides to protect the PU when the PU
is active in the TCI case. Further, suppose that ε0p,1 > ε0p,2,
then gT ,1 > gT ,2. With ε0p = ε0p,2, SBS can transmit when
g ∈ [gT ,2 , gT ,1]. However, the interference from primary
transmitter to the secondary receivers is high in this addi-

tional range as the PU transmits with power (er
0p−1)N0
g .

This implies that the range g ∈ [gT ,2 , gT ,1] does not help
enhance the SBS sum throughput, resulting in a decline in
the sum throughput as ε0p is reduced. Finally, r0p affects the
throughput scaling via the POC as shown in Figure 3. As
r0p is increased to 4.00 nat/channel use, the POC becomes
stricter, thereby resulting in a decline in the SBS sum
throughput.
Next, we present the results for the normalized through-

put CBC*
s

log(logM)
as a function of the number of secondary

receivers M for both LTPC and STPC, when the PU
employs the TCI power policy. These simulations illus-
trate the throughput scaling results of Theorems 3 and
4. Also, the normalized throughput results due to the
proposed suboptimal transmission scheme with feedback
reduction are illustrated. For these simulations, Pav for
the LTPC case and PO for the STPC case are set to
1 dB. The results in Figure 4 clearly illustrate that the
normalized throughput converges to εp as M becomes
larger and larger. The results in Figure 4 also confirm
that 1-bit feedback from the PU is effective enough to
ensure that the normalized throughput of the proposed
scheme asymptotically converges to εp as M becomes
large.

Figure 2 SBS ergodic sum capacity against power budget ε0p = 0.05 andM = 4.
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Figure 3 The effect of related parameters on SBS sum throughput againstM for TCI with STPC.

8 Conclusions
In this paper, we have investigated the information the-
oretic results of the ergodic sum capacity in fading cog-
nitive broadcast channels, sharing the same frequency
band as a delay sensitive PU. Under an outage probabil-
ity constraint at the primary receiver, we have derived
optimal power allocation strategies to maximize the SBS
ergodic sum capacity, under an average (long-term) trans-
mit power constraint or a peak (short-term) transmit
power constraint. As the duality result is not directly
applicable, we established a new approach to show that
the opportunistic scheduling structure is also optimal
under the primary outage probability constraint. This

result allowed us to reformulate the ergodic sum capacity
expression as a concave function, and the corresponding
optimal power policies were derived by using a probabilis-
tic power allocation technique. Under these opportunistic
optimal power allocation schemes, we have also ana-
lyzed how the SBS sum throughput scales as the number
of secondary receivers goes to infinity when all relevant
channels undergo independent Rayleigh fading. These
asymptotic capacity scaling laws are derived under the
assumption that the PU uses a truncated channel inver-
sion policy. Rigorous theoretical analyses show that the
SBS sum throughput scales like εp log(logM). Further,
an asymptotically optimal reduced feedback scheme is

Figure 4 Normalized SBS sum throughput in TCI power policy at the PU.
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proposed. With only a 1-bit feedback from the primary
receiver, we have shown that the SBS sum throughput for
this suboptimal scheme retains like εp log(logM) scaling
property of the optimal schemes.

Appendix 1: opportunistic scheduling structure of
the optimal power policy
Prior to proving that the optimal power policy has an
opportunistic scheduling structure, the following Lemma
is required.

Lemma 1. For a non-negative vector x = [x1, x2,
. . . , xM]T and a non-negative vector γγγ =
[γ1, γ2, . . . , γM]T where γ1 < γ2 < . . . < γM, we have

M∑
i=1

log

⎛
⎜⎝1 + γixi

1+γi
M∑

k=i+1
xk

⎞
⎟⎠ < log

(
1 + γM

M∑
i=1

xi
)

(21)

Proof. Wewill prove (21) by using induction. ForM = 2,

log
(
1 + γ1x1

1+γ1x2

)
+ log(1+ γ2x2) = log

(
1 + γ1

2∑
i=1

xi
)

+
log
(
1+γ2x2
1+γ1x2

)
. Since log

(
1+γ2x2
1+γ1x2

)
is increasing in x2 as

γ2 > γ1, we have log
(
1+γ2x2
1+γ1x2

)
< log

(
1+γ2

∑2
i=1 xi

1+γ1
∑2

i=1 xi

)
.

Hence, we have log
(
1 + γ1x1

1+γ1x2

)
+ log(1 + γ2x2) <

log
(
1 + γ2

2∑
i=1

xi
)
.

Thus, (21) is true for M = 2. Now suppose that (21) is
true for M = K , we have to show that (21) is also true for
M = K + 1:

K+1∑
i=1

log

⎛
⎜⎜⎜⎝1 + γixi

1 + γi
K+1∑
k=i+1

xk

⎞
⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎣

K∑
i=1

log

⎛
⎜⎜⎜⎝1 + γixi

1 + γixK+1 + γi
K∑

k=i+1
xk

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

+ log(1 + γK+1xK+1)

=

⎡
⎢⎢⎢⎣

K∑
i=1

log

⎛
⎜⎜⎜⎝1 + γ ′

i xi

1 + γ ′
i

K∑
k=i+1

xk

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

+ log(1 + γK+1xK+1)

(22)

where γ ′
i = γi

1+γixK+1
. For a fixed xK+1, γ ′

i is an increasing
function of γi , so we have γ ′

i+1 > γ ′
i . Then, apply (21) for

M = K , we obtain

K+1∑
i=1

log

⎛
⎜⎜⎜⎝1 + γixi

1 + γi
K+1∑
k=i+1

xk

⎞
⎟⎟⎟⎠

< log
(
1 + γ ′

K

K∑
i=1

xi

)
+ log(1 + γK+1xK+1)

= log

⎛
⎜⎜⎜⎝1 +

γi
K∑
i=1

xi

1 + γixK+1

⎞
⎟⎟⎟⎠+ log(1 + γK+1xK+1)

= log
(
1 + γK

K+1∑
i=1

xi

)
+ log

(
1 + γK+1xK+1
1 + γKxK+1

)

< log
(
1 + γK+1

K+1∑
i=1

xi

)

(23)

Again, the last inequality is due to the fact that
log
(
1+γK+1xK+1
1+γKxK+1

)
is increasing in xK+1. Hence, it follows

that (21) is also true for M = K + 1, thus completing the
proof. �

Lemma 2. Let P̃(χχχ) be the optimal power policy of the
problem (5). Then, P̃(χχχ) has an opportunistic scheduling
structure; i.e. for each channel state χχχ , the SBS allocates
power only to the user with maximum zi and zero power to
other remaining users.

Proof. We will prove Lemma 2 by using contradiction.
Let i∗ = argmax zi. Suppose that the optimal power policy
P̃(χχχ) does not possess an opportunistic scheduling struc-
ture, i.e. the SBS allocates power to more than one users.
Then, we construct another power policy with an oppor-
tunistic scheduling structure P̃′(χχχ) such that P̃′

i∗(χχχ) =
M∑
i=1

P̃i(χχχ) and P̃′
i(χχχ) = 0 for i 
= i∗. It is worth noting

that
M∑
i=1

P̃′
π(i)(χχχ) =

M∑
i=1

P̃π(i)(χχχ). Therefore, the new power

policy P̃′(χχχ) does not affect the power consumption at
the SBS and the outage/non-outage status in the primary
link.
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The instantaneous sum-rate from both power poli-
cies P̃(χχχ) and P̃′(χχχ) are represented by rBCs (χχχ , P̃(χχχ)) and
rBCs (χχχ , P̃′(χχχ)). By using Lemma 1, we have

rBCs (χχχ , P̃(χχχ)) =
M∑
i=1

log

⎛
⎜⎝1 + zπ(i)P̃π(i)(χχχ)

1+zπ(i)
M∑

k=i+1
P̃π(k)(χχχ)

⎞
⎟⎠

< log
(
1 + zπ(M)

M∑
i=1

P̃′
π(i)(χχχ)

)

= rBCs (χχχ , P̃′(χχχ))

(24)

which contradicts the optimality of P̃(χχχ). Thus, it implies
that the following opportunistic scheduling structure is
optimal:

Pi(χχχ) =
⎧⎨
⎩
P̆(χχχ), i = argmax

m∈I zm

0, otherwise
(25)

(25) suggests that the SBS allocates the transmit power,
P̆(χχχ), to the SR with the maximum zm, where ties can be
broken arbitrarily. �

Appendix 2: optimal solution of P̆∗(χχχ) for LTPC
By the opportunistic scheduling structure shown in
Appendix 1, the original non-convex problem in (7) can be
converted to convex problem as shown in (11). However,
there is no closed-form expression of the primary outage
probability function in POC. Hence, the convex optimiza-
tion technique is not directly applicable. By using the same
technique as in [10,11], the following result in Lemma 3 is
required.
Lemma 3. The optimal solution of the problem (11) can be
expressed by P̆∗(χχχ) = w(χχχ)p̆1(χχχ)+(1−w(χχχ))p̆2(χχχ), where
E [w(χχχ)] ≥ 1 − εp, E

[
P̆∗(χχχ)

] ≤ Pav and rp(χχχ , p̆1(χχχ)) ≥ r0p
for all χχχ . �

Proof. Following a similar procedure to that
in [11], we will show that an optimal power
control for (11) can be constructed by random-
izing between two deterministic power allocation
schemes, i.e. p̆1(χχχ) = E

[
P̆(χχχ) | rp(χχχ , p̆(χχχ)) ≥ r0p

]
and

p̆2(χχχ) = E
[
P̆(χχχ) | rp(χχχ , p̆(χχχ)) < r0p

]
. The probabil-

ity of using the power policy p̆1(χχχ) is indicated by
the weighting function w(χχχ), which can be expressed
as w(χχχ) = Pr

{
rp(χχχ , P̆(χχχ)) ≥ r0p | χχχ

}
and therefore

the probability of using the power policy p̆2(χχχ) equals
1 − w(χχχ).

We first show that given an arbitrary feasible
probabilistic power scheme P̆(χχχ), we can always
construct another feasible scheme P̆′(χχχ) which is
randomized among deterministic power schemes
p̆k(χχχ), k = 1, 2 with a time-sharing factor w(χχχ)

and performs equally well or better than P̆(χχχ). Since
P̆(χχχ) is feasible, P̆(χχχ) satisfies all the constraints, i.e.
E[ P̆(χχχ)]≤ Pav and Pr

{
log(1 + gPp(g)

N0+βP̆(χχχ)
) < r0p

}
≤ εp.

Note that when rp(χχχ , p̆(χχχ)) ≥ r0p, it implies that

p̆(χχχ) ≤ 1
β

(
gPp(g)

exp(r0p)−1 − N0

)+
i.e. the possible

solution lies in a halfspace. Therefore, p̆1(χχχ) =
E
[
P̆(χχχ) | rp(χχχ , p̆(χχχ)) ≥ r0p

]
≤ 1

β

(
gPp(g)

exp(r0p)−1 − N0

)+
,

i.e. a convex combination of the possible solutions in
that halfspace weighted by the probability that each
solution can happen also lies in that halfspace. So,
log(1 + gPp(g)

N0+βp̆1(χχχ)
) ≥ r0p.

Thus, P̆′(χχχ) satisfies POC since Pr
{
P̆′(χχχ) = p̆1(χχχ)

|χχχ} = w(χχχ) and then it can be shown that
E
[
Pr
{
log(1 + gPp(g)

N0+βP̆′(χχχ)
) ≥ r0p |χχχ

}]
≥ E[w(χχχ)]≥ 1− εp.

Next, we can show that P̆′(χχχ) also satisfies LTPC since
E[ P̆′(χχχ)]= E[w(χχχ)p̆1(χχχ)+(1−w(χχχ))p̆2(χχχ)]= E[ P̆(χχχ)]≤
Pav.
Due to concavity of rs(χχχ , P̆(χχχ)) in (11), we can

apply Jensen’s inequality to arrive at the final result
that E[ rs(χχχ , P̆′(χχχ))]≥ E[ rs(χχχ , P̆(χχχ))], i.e. P̆′(χχχ) achieves
higher ergodic sum rate than P̆(χχχ). �

Reformulating (11) by using Lemma 3, we obtain the
following optimization problem:

max
p̆k(χχχ),w(χχχ)

E
[
w(χχχ)rs(χχχ , p̆1(χχχ)) + (1 − w(χχχ))rs(χχχ , p̆2(χχχ))

]
(26a)

s.t.E
[
w(χχχ)p̆1(χχχ) + (1 − w(χχχ))p̆2(χχχ)

] ≤ Pav (26b)

E [w(χχχ)] ≥ 1 − εp (26c)

w(χχχ)
[
Pp(g) − βp̆1(χχχ)

] ≥ 0 (26d)

p̆k(χχχ) � 0, ∀k ∈ {1, 2} (26e)

0 ≤ w(χχχ) ≤ 1 (26f)

Using a similar variable transformation technique as
in [10] and [11], the objective function can be proved
to be concave while the other constraints are linear.
Hence, the problem (26a) can be solved by the nec-
essary and sufficient Karush-Kuhn-Tucker (KKT) opti-
mality conditions. Applying the KKT conditions and
the fact that channel state is continuous, the optimal
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solutions of p̆∗
1(χχχ), p̆∗

2(χχχ), and w∗(χχχ) are expressed as
follows:

p̆∗
1(χχχ) =

{
p∗
WF(χχχ), w∗(χχχ) = 1, p∗

WF(χχχ) ≤ p∗
RP(χχχ)

p∗
RP(χχχ), w∗(χχχ) = 1, p∗

WF(χχχ) > p∗
RP(χχχ)

(27)

p̆∗
2(χχχ) = p∗

WF(χχχ), w∗(χχχ) = 0 (28)

w∗(χχχ) =
{1, rs(χχχ , p̆∗

1(χχχ))−	∗p̆∗
1(χχχ)+S∗ > rs(χχχ , p̆∗

2(χχχ))−	∗p̆∗
2(χχχ)

0, rs(χχχ , p̆∗
1(χχχ))−	∗p̆∗

1(χχχ)+S∗ < rs(χχχ , p̆∗
2(χχχ))−	∗p̆∗

2(χχχ)

(29)

where p∗
WF(χχχ) = ( 1

	∗ − 1
zmax

)+. Finally, by applying the
opportunistic scheduling structure shown in (25), we have
the result in Theorem 1.

Appendix 3: optimal solution of P̆∗,st(χχχ) for STPC
Similar to Section 4.1, the objective function in (11) is
concave over P̆st(χχχ). To apply the same technique as in
Appendix 3, the following result in Lemma 4 is required.

Lemma 4. The optimal solution of the problem (16)
can be expressed by P̆∗,st(χχχ) = wst(χχχ)p̆st1 (χχχ) + (1 −
wst(χχχ))p̆st2 (χχχ), where E

[
wst(χχχ)

] ≥ 1 − εp, P̆∗,st(χχχ) ≤ PO
and rp(χχχ , p̆st1 (χχχ)) ≥ r0p for all χχχ . �

Proof. Following a similar procedure to the proof
of Lemma 3, we can prove that an optimal power
control for (16) can be constructed by randomizing
between two deterministic power allocation schemes,
i.e. p̆st1 (χχχ) = E

[
P̆st(χχχ) | rp(χχχ , p̆st(χχχ)) ≥ r0p

]
and

p̆st2 (χχχ) = E
[
P̆st(χχχ) | rp(χχχ , p̆st(χχχ)) < r0p

]
. The proba-

bility of using the power policy p̆st1 (χχχ) is indicated by
the weighting function wst(χχχ), which can be expressed
as wst(χχχ) = Pr

{
rp(χχχ , P̆st(χχχ)) ≥ r0p | χχχ

}
, and therefore

the probability of using the power policy p̆st2 (χχχ) equals
1 − wst(χχχ). �

By Lemma 4, we can get the reformulated version of
(16). Following the same procedure as in the LTPC case
in Appendix 2, we can apply the necessary and sufficient
KKT conditions and the fact that the fading channel state
is continuous, use the opportunistic scheduling structure
in (25) and arrive at the optimal power policy summarized
in Theorem 2.

Appendix 4: proof of Theorem 3
Here the channel state partitioning result from Table 1
will be used first to derive some properties related to
the Lagrange multipliers 	∗ and S∗ as the M grows

large. As discussed before, we assume that S∗ > 0.
From Table 1, we can separate the regions represent-
ing fading channel sets 2 and 3 by setting BB

1,χχχ =
BB

2,χχχ , where BB
1,χχχ = S∗, BB

2,χχχ = log(1 + zmaxp∗
WF) −

	∗p∗
WF, and p∗

WF =
(

1
	∗ − 1

zmax

)+
. Thus, the bound-

ary between channel sets given by cases 2 and 3 is
given by

S∗ = log( zmax
	∗ ) − (1 − 	∗

zmax
) = − log(�) + � − 1 = t(�)

(30)

where � = 	∗
zmax

and 0 ≤ � ≤ 1. It is easy to show that
t(�) is a non-increasing function in � when 0 < � ≤ 1.
Thus, the channel sets for cases 1, 2, 3 in Table 1 can also
be expressed as follows:

S̃1 = {
g < gT

}
S̃2 = {

g ≥ gT , 0 ≤ � ≤ t−1(S∗)
}

=
{
g ≥ gT ,

	∗

t−1(S∗)
≤ zmax < ∞

}

S̃3 =
{
g ≥ gT , 0 ≤ zmax ≤ 	∗

t−1(S∗)

} (31)

where t−1(.) represents the inverse function of t.
Lemma 5. 	∗ ≤ εp

Pav and 	∗ is bounded away from 0 for
all M.

Proof. First, we investigate the upper bound of 	∗. As
the average power constraint is always met, we have

Pav =
2∑

k=1
Pr(Sk)E

[(
1

	∗ − 1
zmax

)+
|Sk

]

+ Pr(S3)E
[
p∗
RP(χχχ) |S3

]

≤
(

1
	∗

2∑
k=1

Pr(Sk)

)
+ 0 = εp

	∗

(32)

Now suppose that lim
M→∞ 	∗

M = 0. Then, for an arbitrar-
ily small ε > 0, there exists Mo such that for M ≥ Mo,
	∗

M ≤ ε. Therefore, ( 1
	∗

M
− 1

zmax
)+ ≥ ( 1

ε
− 1

zmax
)+. For

an M sufficiently large, 1
zmax

converges to 0 in probability,
implying that ( 1

ε
− 1

zmax
)+ converges to 1

ε
in probability.

Hence, ( 1
	∗

M
− 1

zmax
)+ ≥ 1

ε
with high probability. So, with

an arbitrary small ε, SU will violate the power constraint
with high probability if lim

M→∞ 	∗
M = 0. Consequently,

lim
M→∞ 	∗

M > 0.
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Next, we will show that when M is large enough, 	∗
M is

lower-bounded by ε0p
Pav .

Pav =
2∑

k=1
Pr(Sk)E

[(
1

	∗
M

− 1
zmax

)+
|Sk

]

> Pr(S1)E
[(

1
	∗

M
− 1

zmax

)+
|S1

]

= ε0pE
[(

1
	∗

M
− 1

zmax

)+
|S1

]

(33)

Also,

lim
M→∞E

[(
1

	∗
M

− 1
zmax

)+ |S1

]

= lim
M→∞

[
1

	∗
M

(1−FM
Z (	∗

M |S1))−
∞∫

zmax	∗
M

1
zmax

dFM
Z (zmax |S1)

]

= 1
	∗

M

(34)

Note that the last equality from (33) is because of
∞∫

zmax=	∗
M

1
zmax

dFM
Z (zmax | S1) and FM

Z (	∗
M | S1) approach

zero asM → ∞. �

Lemma 6. For εp > ε0p, 1
t−1(S∗) = �(logM).

Proof. First, notice that the SBS will allocate transmis-
sion power only to the user with zmax and max hi

k1
gT

αi+N0
≤

zmax ≤ max hi
N0

regardless the value of g. This fact allows
us to study how the upper and lower bounds of zmax scales
asM grows large. By using the results from [22,37], we can
show that zmax is upper-and-lower-bounded by logM as
M → ∞. Hence, zmax also scales as logM when M tends
to infinity.
Now we assume that 1

t−1(S∗) grows faster than logM
as M → ∞. This implies that for a large enough M,
Pr(S̃2) converges to 0, which contradicts the fact that
Pr(S̃2) = εp − ε0p > 0 for all M. Next, assume that

1
t−1(S∗) grows slower than logM. This implies that when
M is large enough, Pr(S̃3) converges to 0, which contra-
dicts the fact that Pr(S̃3) = 1 − εp > 0 for all M. Thus,

1
t−1(S∗) = �(logM). �

Observe that the SBS gains no throughput from the
region 3. We will show that the asymptotic throughput
achieved by the secondary network scales as εp log(logM),
where the optimal power control policy in the region
1 contributes ε0p log(logM) of the optimal throughput
scaling, while the remaining (εp − ε0p) log(logM) is
obtained from the optimal power control policy in the
region 2. In order to do so, the results derived above
will facilitate us to arrive at the result in Theorem 3
for both (1) when εp = ε0p (additional outage prob-
ability is not allowed) and (2) when εp > ε0p (the
delay-sensitive PU’s link can tolerate an additional
outage).

When εp = ε0p
In this case, region 2 shrinks to an empty set, i.e. Pr(S̃2) =
εp − ε0p = 0, and the overall optimal throughput scaling is
due to transmission power in region 1.
Clearly, as M becomes large, the optimal through-

put scaling is due to the effect of the scaling result of
zmax = hmax with the number of SRs in S̃1. Moreover,
we know that 	∗ ≤ εp

Pav and 	∗ is bounded away from
0 for all M (see Lemma 5.) Then, the SBS ergodic sum
capacity under optimal power allocation is expressed as
CBC∗
s = E

[
log( zmax

	∗ )1{zmax≥	∗, S̃1
}] = ε0pE

[
log( hmax

	∗ )
]

=
εpE

[
log( hmax

	∗ )
]
. As the maximum of M independent and

identically distributed exponentially distributed random
variables, hmax

logM converges in probability to 1. (see Exam-
ple 10.5.1 of [37]). Using this result and the rigorous
techniques used in [22] to show convergence in mean
from convergence in probability, we can conclude that
lim

M→∞
CBC∗
s

log(logM)
= εp.

When εp > ε0p
Note that the throughput CBC*

s can be written as

CBC*
s = E

[
log

zmax
	∗ 1{g<gT ,zmax≥	∗}

]

+ E
[
log

zmax
	∗ 1{g≥gT , zmax≥ 	∗

t−1(S∗)

}] (35)

Note that in the previous subsection, we showed
that E

[
log zmax

	∗ 1{g<gT , zmax≥	∗}
]

scales according to
ε0p log(logM) whenM → ∞. Now, we show that

E
[
log zmax

	∗ 1{g≥gT , zmax≥ 	∗
t−1(S∗)

}] scales according to (εp−
ε0p) log(logM).
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Upper bound An upper bound on E
[
log zmax

	∗

1{g≥gT , zmax≥ 	∗
t−1(S∗)

}] can be obtained as shown in (36).

E
[
log

zmax
	∗ 1{g≥gT , zmax≥ 	∗

t−1(S∗)

}]

= E
[
log

zmax
	∗ 1{zmax≤logM, g≥gT ,zmax≥ 	∗

t−1(S∗)

}]+
∞∑
i=1

× E
[
log

zmax
	∗ 1{i logM≤zmax≤(i+1) logM, g≥gT ,zmax≥ 	∗

t−1(S∗)

}]

≤ log(
logM
	∗ )Pr

(
zmax ≤ logM, g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)

+
∞∑
i=1

log(
(i + 1) logM

	∗ )

× Pr
(
zmax ≥ i logM, g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)

(a)≤ log(
logM
	∗ )Pr

(
g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)

+
∞∑
i=1

log(
(i + 1) logM

	∗ )Pr
(
zmax ≥ i logM

)

(b)≤(εp−ε0p)log
(
logM
	∗

)
+

∞∑
i=1

log
(
(i+1) logM

	∗

)
O
(

eO(i)

MiO(i)

)

∴ lim
M→∞

E
[
log zmax

	∗ 1{g≥gT , zmax≥ 	∗
t−1(S∗)

}]
log(logM)

(c)≤ (εp − ε0p)

(36)

The inequality (a) is from the fact that

Pr
(
zmax ≤ logM, g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)

≤ Pr
(
g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)
,

Pr
(
zmax ≥ i logM, g ≥ gT , zmax ≥ 	∗

t−1(S∗)

)

≤ Pr
(
zmax ≥ i logM

)
.

For (b), we use the result in [38] (see proof of Theorem 1
in [38]), i.e. Pr(zmax ≥ i logM) ≤ O( eO(i)

MiO(i) ) because zmax
grows as logMwhenM → ∞. In [38], it is also shown that

∞∑
i=1

log( (i+1) logM
	∗ )O( eO(i)

MiO(i) ) is finite, leading to the result

in (c). Thus, we have

lim
M→∞

CBC*
s

log(logM)
= lim

M→∞
E
[
log zmax

	∗ 1{g≥gT , zmax≥	∗}
]

log(logM)

+ lim
M→∞

E

⎡
⎣log zmax

	∗ 1{
g≥gT , zmax≥ 	∗

t−1(S∗)

}
⎤
⎦

log(logM)

≤ ε0p + (εp − ε0p)

= εp

(37)

Lower bound We use (38) to find a lower bound on

E
[
log zmax

	∗ 1{g≥gT , zmax≥ 	∗
t−1(S∗)

}] as follows:
E
[
log

zmax
	∗ 1{g≥gT , zmax≥ 	∗

t−1(S∗)

}]

≥ E
[
log(

1
t−1(S∗)

)1{g≥gT ,zmax≥ 	∗
t−1(S∗)

}]

= log(
1

t−1(S∗)
)Pr(S̃2)

=
(
εp − ε0p

)
log(

1
t−1(S∗)

)

(38)

Then, we have

lim
M→∞

CBC*
s

log(logM)
= lim

M→∞
E
[
log zmax

	∗ 1{g<gT , zmax≥	∗}
]

log(logM)

+ lim
M→∞

E

⎡
⎣log zmax

	∗ 1{
g≥gT , zmax≥ 	∗

t−1(S∗)

}
⎤
⎦

log(logM)

= ε0p + lim
M→∞

E

⎡
⎣log zmax

	∗ 1{
g≥gT , zmax≥ 	∗

t−1(S∗)

}
⎤
⎦

log(logM)

≥ ε0p +
(
εp − ε0p

)
lim

M→∞
log( 1

t−1(S∗)
)

log(logM)

= εp

(39)

Note that the last equality in (39) follows from Lemma 6.
Thus, it follows that lim

M→∞
CBC*
s

log(logM)
≥ εp.

Combining the upper and lower bounds, we have
the desired asymptotic throughput scaling result that
lim

M→∞
CBC*
s

log(logM)
= εp.

Appendix 5: proof of Theorem 4
As discussed before, we assume that S∗,st > 0. From
Table 2, we find the boundary between regions 2 and
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3 by setting BB,st
1,χχχ = BB,st

2,χχχ , where BzB,st
1,χχχ = S∗,st and

BB,st
2,χχχ = log(1+zmaxPO)−	∗,st(χχχ)PO. Note that for STPC,

	∗,st(χχχ) = zmax
1+zmaxPO if the power policy PO is applied.

This results in the following expression for the bound-
ary between regions corresponding to the fading channel
states representing regions 2 and 3:

S∗,st = log(1 + zmaxPO) − zmaxPO
1+zmaxPO = − log(ω) + ω − 1

= t(ω)

(40)

whereω = 1
1+zmaxPO and 0 ≤ ω ≤ 1. Further note that t(ω)

is a non-increasing function in ω for 0 < ω ≤ 1. Thus, the
regions corresponding to the various sets of the channel
fading state in Table 2 can also be expressed as follows:

S̃1 = {
g < gT

}
S̃2 = {

g ≥ gT , 0 ≤ ω ≤ t−1(S∗,st)
}

=
{
g ≥ gT ,

1
PO

(
1

t−1(S∗,st)
− 1

)
≤ zmax < ∞

}

S̃3 =
{
g ≥ gT , 0 ≤ zmax ≤ 1

PO

(
1

t−1(S∗,st)
− 1

)}
.

(41)

For STPC, the optimal throughput scaling is also con-
tributed by regions 1 and 2 because transmission in sec-
ondary network is halted in region 3. In what follows, we
show that ε0p fraction of the total optimal throughput scal-
ing is from the optimal power policy in region 1, whereas
the remaining (εp − ε0p) fraction is due to data transmis-
sion in region 2. We also use the result that zmax scales
like logM as M tends to infinity. The rest of the proof is
divided into two parts: (i) εp = ε0p and (ii) εp > ε0p .

When εp = ε0p
In this case, we have Pr(S̃2) = εp − ε0p = 0 and
zmax = hmax in S̃1. Then, the throughput from the SBS
is expressed as CBC∗

s = E
[
log(1 + zmaxPO)1{S̃1

}] =
ε0pE

[
log(1 + zmaxPO)

]
. By using the fact that zmax scales

as logM as M becomes large, we can conclude that
lim

M→∞
CBC∗
s

log(logM)
= εp.

When εp > ε0p
In this case, we also require the property that t−1(S∗)
scales as logM when M grows large (see Lemma 6). By
using the fact that both zmax and t−1(S∗) scale as logM, we
can show that the upper and lower bounds of the optimal
throughput in the secondary downlink network scale like

εp log(logM). Note that the SBS ESC with optimal power
allocation CBC∗

s can be expressed as

CBC∗
s = E

[
log(1 + zmaxPO)1{g<gT}

]

+E
[
log(1 + zmaxPO)1{g≥gT , 1+zmaxPO≥ 1

t−1(S∗)

}]
(42)

As shown previously, E
[
log(1 + zmaxPO)1{g<gT}

]
scales as ε0p log(logM). Now, we will show that

E
[
log(1 + zmaxPO)1{g≥gT , 1+zmaxPO≥ 1

t−1(S∗)

}] scales as

(εp − ε0p) log(logM).
Upper bound An upper bound on E

[
log(1 + zmaxPO) ·

1{g≥gT , 1+zmaxPO≥ 1
t−1(S∗)

}] is shown in (43):

E
[
log(1 + zmaxPO)1{g≥gT , 1+zmaxPO≥ 1

t−1 (S∗)

}]

= E
[
log(1 + zmaxPO)1{1≤zmax≤logM, g≥gT , 1+zmaxPO≥ 1

t−1 (S∗)

}]+
∞∑
i=1

× E
[
log(1 + zmaxPO)1{i logM≤zmax≤(i+1) logM, g≥gT , 1+zmaxPO≥ 1

t−1 (S∗)

}]

≤ log(1 + PO logM)Pr
(
1 ≤ zmax ≤ logM, g ≥ gT , 1 + zmaxPO≥ 1

t−1(S∗)

)

+
∞∑
i=1

log(1 + PO(i + 1) logM)

× Pr
(
i logM ≤ zmax ≤ (i + 1) logM, g ≥ gT , 1 + zmaxPO ≥ 1

t−1(S∗)

)

≤ log(1 + PO logM)Pr
(
g ≥ gT , 1 + zmaxPO ≥ 1

t−1(S∗)

)

+
∞∑
i=1

log(1 + PO(i + 1) logM)Pr
(
i logM ≤ zmax ≤ (i + 1) logM

)

(a)≤ (εp − ε0p) log(1 + PO logM) +
∞∑
i=1

log(1 + PO(i + 1) logM)O
(

eO(i)

MiO(i)

)

∴ lim
M→∞

E
[
log(1 + zmaxPO)1{g≥gT , 1+zmaxPO≥ 1

t−1 (S∗)

}]
log(logM)

(b)≤ (εp − ε0p)

(43)

In (43), (a) follows the from the fact that Pr(zmax ≥
i logM) ≤ O( eO(i)

MiO(i) ) because zmax grows like logM,

while (b) is from the fact that
∞∑
i=1

log(1 + PO(i + 1)

logM)O( eO(i)

MiO(i) ) is finite [38].
Lower bound A lower bound can be computed in a

similar fashion to (38) to yield



Limmanee et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:35 Page 18 of 18
http://jwcn.eurasipjournals.com/content/2014/1/35

E
[
log(1 + zmaxPO)1{g≥gT , 1+zmaxPO≥ 1

t−1(S∗)

}]

≥ (εp − ε0p) log(
1

t−1(S∗)
)

(44)

We then apply Lemma 6, the results from (43) and
(44), and the fact that E

[
log(1 + zmaxPO)1{g<gT}

]
scales

as ε0p log(logM) to show that lim
M→∞

CBC∗
s

log(logM)
is upper-

bounded and lower-bounded by εp, i.e. lim
M→∞

CBC∗
s

log(logM)
=

εp.
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