
Proceedings of the American Control Conference 
Philadelphia, Pennsylvania June 1998 

ON STEADY-STATE PROPERTIES OF CERTAIN MAX-PLUS PRODUCTS 

L. Shue, B. D. 0. Anderson and S. Dey 

Department of Systems Engineering and Cooperative 
Research Centre for Robust and Adaptive Systems, RLSISE, 

The Australian National University, Canberra ACT 0200, Australia 

Abstract: The asymptotic properties of inhomogeneous products in 
the max-plus algebra context have been investigated. In particular, for 
products involving matrices with the same unique critical circuit, we 
have obtained some sufficiency conditions under which the rank of the 
final product matrix is less than or equal to the length of the critical 
circuit of the matrices in the product. For a product comprising of ma- 
trices with the same unique critical circuit of length l, the asymptotic 
rankis 1. 
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1 Introduction 

In this paper we study the asymptotic behaviour of inhomoge- 
neous products of matrices in the max-plus context. Max-plus 
algebra allows the manipulation of matrices using the opera- 
tions of maximisation and addition, and is one of many possible 
methods of analysing problems in the area of discrete event dy- 
namical systems (DEDS). In particular, the question we would 
like answered is whether a sufficiently long product may be 
written as a sum of a small number of dyads'? As such, the 
'fundamental' equation under investigation is of the form: 

r ( k )  = Ak 63 Ak-1 63 4 - 2  6 3 . .  . 63 A I  (1.1) 

where each matrix on the right can be assumed to be chosen in 
some arbitrary manner from a (normally) finite set. The prob- 
lem is an extension of one for which there are existing results 
in [ 11, where analogous results for homogeneous products have 
been derived. 
It has been shown that for nonnegative matrices conforming 
to conventional laws of algebra, the results for homogeneous 
products -in effect the Perron-Frobenius theory - have an anal- 
ogous extension to inhomogeneous products [6]. Also, many 
of the ideas pertinent to nonnegative matrices obeying conven- 
tional laws of linear algebra, starting for example with the con- 
cepts of irreducibility and aperiodicity, apply to max-plus alge- 
bra; the concepts of the Perron-Frobenius eigenvalue and eigen- 
vector of a positive matrix have their parallels too and both con- 
cepts are helpful for studying powers of matrices in the max- 
plus context. Furthermore, under certain conditions, a limiting 
rank property exists for for homogeneous products (all Ai are 
identical) [ 11, which leads us to expect that a similar result for 
(1.1) should lead to a product matrix expressible as a single 
dyad, or a sum of a small number of dyads. 
What are some possible applications of our results? Let us men- 
tion one. The long term behaviour of a system described by 

'This is essentially a requirement of the product to have a certain rank, when 
adopting the notion of Schein rank in the max-plus context. 

max-plus algebra ideas is often encapsulated in the power of a 
matrix Ak,  where k becomes large. It is known that for a wide 
class of matrices, there exists a K such that for all k 2 K, the 
following relation holds 

( 1.2) 

for some vectors y, z. Here zT denotes matrix transpose, and in 
conventional algebra terms, (1.2) says (Ak)ij = kh + yi + z j .  
From (1.2) it follows the long term evolution of a system given 
some prescribed initial conditions can be characterised as 

(1.3) 

for all k 2 K. This indicates that the initial condition x(0) is 
forgotten after K time instants (apart from a probably inessen- 
tial scaling, zT 18 x(0)). Ralughly speaking, this would indicate 
for a manufacturing line or a train network defined by max- 
plus equations that there exists an insensitivity to certain initial 
parameter settings after a time K (this is potentially valuable). 
Further, if at some intermediate operating time, the values of 
certain variables are for some reason perturbed, the system after 
a further finite time reverts to a steady state form of operation, 
forgetting the perturbations. 
Now in a practical situation, the entries of the A matrix are 
subject at least to small fluctuations, and on occasions to big 
fluctuations. Consequently, instead of having the system be- 
haviour determined by Ak., it may be determined by r ( k )  = 
Ak 8 Ak- 1 €4. . . €4 A 1, where the Ai have entries very close to A 
(in the case of small fluctuations, which will be typical), or the 
Ai may have entries substantially different from A.  The ques- 
tion that naturally arises is, will the property of forgetting of 
initial conditions continue to hold in the inhomogeneous case? 
One is then seeking a result like 

Ak = hky €4 zT 

~ ( k )  = Akx(O:) = hky 63 (zT 63 ~ ( 0 ) )  

X(k) = Ak 8 &-I 8 . . . 63 A1 €4 X ( 0 )  

= y ( k )  63 (zT 63 X(0)) (1.4) 

The vector y ( k )  may be of the form h(k) €4 j ( k )  in which j ( k )  
is bounded for all k, and h(k) is a scalar governing the general 
growth of entries of x(k) .  
The paper is organised as follows. Section 2 outlines the max- 
plus algebra; Section 3 discusses some sufficient conditions for 
inhomogeneous products irivolving matrices with length- 1 crit- 
ical circuit. Section 4 offer!; some concluding remarks. 

2 Elackground 

We will now recall some {established results in the max-plus 
algebra, see [l, 21 for a more complete overview; in addition, 
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we will state some relevant graph theoretic concepts, adapted 
from analysis of nonnegative matrices [4]. 

2.1Max-plus Algebra 
Definition 2.1 (Max-plus Algebra) The max-plus algebra 
(W,,,, @, 8) is defined as follows: 

1. &a* EflR U {-CO}, where IR is the set of real numbers, 

2. x @ y= max(x, y),  and def 

def 3. x @ y = x + y .  
In particular, @ is commutative over &ax, and @ is distributive 

def - def over @. Furthermore E = CO and e - 0, so that x @ E = x and 
x @ e  = x V x  E W. 
For A = {aij} and B = {bij}, the following are defined: 
Definition 2.2 (Scalar multiplication) 

( C  @ A)ij = c @ aij = c + aij 

( A  @ B)ij = aij @ bij = max(aij, bij) 

(2.1) 

Definition 2.3 (Matrix sum) 

(2.2) 

Definition 2.4 (Matrix product) 

( A  @ B)ij (ail @ b l j )  e.. . (ain @ b n j )  

Definition 2.5 ((Schein) Rank of a matrix) Schein rank of an 
n x p matrix Z is the smallest integer k such that Z = B @ 
C, where B and C are n x k  and k x  p respectively, i.e. Z = 
U1 @ v: @ U2 @ v: @ . . . Cl3 uk @ v [ ,  where Ui and Vi 
denote column vectors and the superscript T denotes transpose 
in the n o m 1  sense. Various altematives to the dejinition of 
rank can be found in [2]; the definition adopted here is the most 
convenient for ourpapel: 
2.2Graph Concepts 
Definition 2.6 (Directed graph) A directed graph (or digraph 
for short) 8 is defined as a pair (V ,  &), where V is a set of 
elements called nodes, numbered from I to n, and & is the set 
of directed arcs joining any node pail: An arc joining nodes i 
and j is denoted as i -+ j .  
Definition 2.7 (Path) A path is dejined as a sequence of nodes 
(ii , i2, . . . , i,,) such that there is an arc from node ij- 1 to node 
ij for  j = 2,3, . . . , p. We will denote a path either infull as 
il += i2 -+ i3 + . + . -+ i,, or il -++ i,, indicating only the 
terminating nodes for short. 
Definition 2.8 (Circuit) A circuit is a path for which the initial 
and terminating nodes are identical. 
Definition 2.9 (Precedence graph of a matrix) The prece- 
dence graph G(A) corresponding to an n x n  matrix A is a 
weighted digraph with n nodes. Each arc in G(A) takes the 
value of aij (# E). 

Definition 2.10 (Weight and Length of Paths/Circuits) The 
weight w(p)  of a path p = il -+ i2 -+ . . . -+ il- 1 + il is the 
sum of the weights of the individual arcs. The length l (p )  of 
the same path is equal to the number of arcs in the path. The 
average weight of a path is its weight divided by its length: 
W ( P ) / ~ ( P )  = (aIlll-l + ail-ltl-2 + . . . + ai3t2 + at211)/(l - 1). 
The circuit mean is the average weight of a circuit. 

Definition 2.11 (Critical circuit) Any circuit of maximum av- 
erage weight is called a critical circuit. 

Definition 2.12 (Transition graph of a matrix) A transition 
graph T ( A )  associated with A depicts the node-to-node tran- 
sitions, (aij being the weight of the directed arc j -+ i), as 
shown in Fig. 1. 

node le 9;; mode 1 

mode 2 node 2e 

mode 3 

Figure 1: The transition graph of A, a (3x3) makix 

Remark 2.1 In view of Definitions 2.4, 2.9 and 2.12, the ma- 
trix product C = A @ B may be visualised as the concatenation 
of two transition graphs in the order shown in Fig. 2. 

‘?]I- onode 1 

-422- enode 2 

A _._... ..... .....___ B 
... _.. __.... . ..... 

node 10 $11 

9 1 2  node 20 ‘b21z 9 1 2  4 2 2  

Figure 2: Multiplication of two (2 x 2) matrices in max-plus algebra. 

Definition 2.13 (Geometrical Equivalence) We speak of geo- 
metrical equivalence between G(A) and G(B) ,  when the two 
graphs are identical in the number of nodes, the critical cir- 
cuit(s), and also in the distribution of €-elements. 
Definition 2.14 (Irreducibility, Strongly connectedness) A 
square matrix A is irredu_cible i f  no permutation matrix P 
exists such that the matrix A defined as 

A = P T @ A @ P  

has an upper triangular block structure. In the max- lus con- 
text, upper triangular means that the elements in the Ewer tri- 
angularportion all have the numerical value E = -CO. 

The precedence graph associated with an irreducible matrix A 
is called strongly connected, to reflect the consequence of irre- 
ducibility that there always exists an elementary path between 
nodes i and j ,  Vi, j .  The converse also holds. 
Definition 2.15 (Aperiodicity) An irreducible square matrix 
A is aperiodic2 if an N exists such that for all k 2 N and 
for all i, j ,  it holds that (Ak)ij # E. 

Lemma 2.1 An irreducible matrix A such that aii # E for at 
least one i, is aperiodic3. 
Proof: From the definition of irreducibility, there exists an 
integer M such that (A’)jk # E for each ( j ,  k )  pair. For a 
particular ( j ,  k )  pair, call the smallest of such values M ( j ,  k). 
Now, further suppose that node i contains a circuit of length 1, 
i.e. ail # E .  The finiteness of (AM(j*k))Ik is equivalent to the 
existence of a path from node k to node j , and M ( j ,  k )  then 
represents the minimum path length over all paths between the 
given nodes. However, (AM(j7k)+1)jk need not be finite in gen- 
eral. Now we can construct a path k -++ j by concatenating 
k -++ i ,  followed by i -++ j ,  so that (AN(j,k))jk # E ,  

where N ( j ,  k )  = M(i,  k )  + M ( j ,  i) .  The existence of  such a 
path is implied by the assumption of irreducibility. 

2Analogous to the notion of primitivity in conventional linear algebra. 
3This is sharper than a similar lemma in [ l ] ,  which requires every diagonal 

entry be finite. 
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NOW, as aii # E, the path lengths N ( j ,  k) + 1 ,  N ( j ,  k) + 2, 
etc. for paths joining nodes k to j ,  can be obtained by concate- 
nating a path k +-+ i of length M(i ,  k) and cycling through 
the length- 1 i -+ i circuit an appropriate number of times, and 
concatenating a path i ++ j of length M ( j ,  i ) .  This implies 
that there will always be a path from node k to node j of any 
length n 2: N ( j ,  k ) .  Consequently, (An)jk # E for all n 2: N 

We now state an extension to the concept of aperiodicity involv- 
ing product of different matrices. 

Lemma 2.2 Let X = {XI,  X2, . . . , XN} be a set of geomet- 
rically equivalent irreducible (n x n )  matrices, all have at least 
one commonly locatedjinite diagonal element, in the (1 ,  1) po- 
sition, say Consider a product of matrices chosen from this 
set in some arbitrary ordel: For a suflciently large number of 
terms in this product (the number being independent of thepar- 
ticular factors of the product), the resulting product matrix will 
consist exclusively ofjinite entries. 
proof: Similar to that of Lemma 2.1, since the argument relies 

for all j ,  k, where N = max(N(j, k)). 
1.k 

on the existence of paths, i.e. finite path weight. 

3 Single Critical Circuit of Length 1 
In this section we shall make the following assumptions: 

Assumption 3.1 The matrices Ai, i E { 1,2, . . . , k}, are cho- 
sen from a set X = (XI ,  X2, . . . , XN} of geometrically equiv- 
alent irreducible matrices, each with a unique critical circuit of 
length 1, at node I .  

Assumption3.2 The matrices Ai have a critical circuit 
weight of zero, for  all i .  
Each constituent matrix of the product in (1.1) has the same 
unique critical circuit of length 1. It follows that any homo- 
geneous product, i.e. power, of such a matrix has the same 
property. This motivates us to study a condition under which 
an inhomogeneous product of the type (1.1) also has the same 
critical circuit property as its constituents5. Note that while a 
power of a matrix with a unique critical circuit of length 1 also 
has such a critical circuit, it is not necessarily that the case that 
the power is geometrically equivalent to the original matrix, e.g. 
powers of an aperiodic matrix. By analogy, we are not seeking 
condition for all inhomogeneous products of a set of matrices 
to be geometrically equivalent to the original matrices. 
The set of matrices under consideration in this section will now 
be characterised accordingly. 

Lemma3.1 Consider a set of ( n x n )  matrices X = 
{XI ,  X 2 , .  . . , XN} obeying assumptions 3.1 and 3.2. Let 
Asup = X I  @ X 2  @ . . . @ XN. If Asup has a unique criti- 
cal circuit of length I ,  it is necessarily of average weight 0 at 
node I ,  and any product of terms chosen from X is guaranteed 
to have the same unique length-I critical circuit at node I as 
Asup. Conversely, ifany product of terms chosen from X has a 

property. 
unique length-1 critical circuit at node I ,  Asup must have this 

41f this is not the case, a given matrix can be 'normalised' by subtracting (in 

5As we shall see, this will ensure the rank 1 property for sufficiently long 
the conventional sense) the maximum circuit weight from it. 

inhomogeneous products 

Proof: Let us first observe: why, if Asup has a unique critical 
circuit of length 1,  it is necessarily of weight 0 at node 1. As 
each Xi E X has this property, every diagonal entry of every Xi 
(except for the (1,  1) entry) is negative, the definition of Asup 
ensures that (Asup)ll = 0, and (Asup)ii < 0 for i > 1. Hence 
if Asup is known to have a unique length- 1 critical circuit, it is 
necessarily of weight 0 at na'de 1. 
To complete the proof, we note that by the definition of Asup, it 
is clear that for all choices of Ak , . . . , A 1 selected from X 

However, the maximal weight path [.:up] 

a set of weights of the form 
is also the sum of 

mn 

which, for a particular choice of Ak, Ak-1, . . . , A I ,  leads to 

Therefore 

Consider an arbitrary product r ( k )  = Ak 63 Ak-1 63 . . . 63 Al .  
Since Asup has, at node 1, ai unique critical circuit of length 1 
and average weight 0, any powers of A,, has the same prop- 
erty, then we have 

0 = (A:up)ll 

2 W ) l l  

>a (k) i i  + a ( k - . l ) ~ ~ + . . . + a ( l ) l l  = O  

The first inequality follows because of (3.1), and the second 
because the weight of the path 1 + 1 + . . - + 1 is a lower 
bound on the maximum weight path 1 -+ -+ 1 of length k yield- 
ing r (k ) l l .  It follows that rI(k)ll = 0. 
Suppose for some choice OF the Ai there is a critical circuit 
i + il + . . . + ik-1 -+ i for r ( k ) .  Its weight is necessarily 
underbounded by r (k) 1 1 .  Then we would have 

However, Asup and all its powers have a unique critical circuit 

can hold only with ik-1 = ik-2 = . . . = il = i = 1, and it 
must hold with equality. This: establishes that r ( k )  has the same 
unique length- 1 critical circuit as Asup. 
For the converse, suppose (to obtain a contradiction) Asup has a 
critical circuit consisting of i + il . - -+ ij-1 -+ i ,  where 

of length 1 at node 1 ,  with weight 0. Hence the above inequality 
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either j > 1, i # 1 or both. Since A,, has a circuit 1 +-+ 1 
of weight 0, the total weight of the i ++ i circuit must be at 
least zero, that is, for some Xai 

0 I (Asup)iij-l + (Asup)ij-ii,-2 + . . . + (Asup)ili 

= (Xajliij-1 + (Xaj-l)ij-Iij-* + e  * + (Xal)ili 

I r ( j ) i i  (3.2) 

where r ( j )  = Xaj @ Xaj-1 8 . . . @ Xal. 
I f  i # 1 this shows that the particular r ( j )  in question has a 
critical circuit other than 1 ++ 1. Suppose i = 1 and j # 1 
so that il # 1, define 

F(j) = XaI 8 Xa, 8 . . . @  Xaz 

and observe that 

r ( j ) i l i l  2 (XaIIi11 + (Xa, )li,-1 + . . . + (Xa2)izil 

2 0  (3.3) 

Hence there is a circuit il ++ il for F ( j )  with weight at least 
0, and the actual critical circuit for F ( j )  is not a unique length- 
1 circuit at node 1. The hypothesis is contradicted, so it must 
be the case that Asup has a unique critical circuit of length 1 at 
node 1. 
In the statement of the following lemma, the term circuit is used 
to denote a path on a transition graph associated with an inho- 
mogeneous product, where the beginning and end nodes have 
the same index. A companion result to Lemma 3.1 is as follows. 
Lemma 3.2 Adopt the hypotheses as Lemma 3.1, and suppose 
that Asup has a unique critical circuit of length I at node 1, 
with weight 0. Consider a transition graph associated with a 
product of terms chosen arbitrarily from X ,  and let P be a path 
in the graph of arbitrary length, beginning and ending at node 
I ,  with no intermediate visits to node 1. Then there exists a 
positive constant 6 such that the average weight of P is over 
bounded by -6. 
ProoE Let thepath P be 1 -+ il -+ i2 -+ + .  . -+ i,-l + 1. 
If p = Z(P) 2 n ,  P necessarily contains a circuit. We can 
write P as the concatenation of P I ,  Pc, 4 ,  with P I :  1 -++ 
j ,  Pc: j ++ j and 9: j ++ 1, and l(P1) + l (P2)  < 
n. Now the weights of P I ,  Pc, 4, i.e.  PI), w(Pc) ,  ~ ( 9 ) .  
are overbounded by the weights of the same path computed for 
Asup. Call these weights wsUp(P1), etc. Thus 

w ( P )  = w(P1) + w(Pc)  + w(P2) 
5 wsup(P1) + WS"dPJ + wsup(P2) (3.4) 

Let Pred denote the path PI concatenated with 9. Then Pred is 
a circuit from 1 to 1 of length greater than 1 but no greater than 
n - 1 arcs. Since Asup has a unique critical circuit, with weight 
0 and length 1, 

wsup(pred) < 0 

The set of all such &d is a finite set, since any Pred has finite 
length. Hence there exists r]l i 0 such that 

wsup(P1) + wsup(P2) I V l  < 0 

for all possible PI, P2. 
Next, the unique critical circuit property of Asup guarantees that 
for any j E {2,3,  . . . , n }  

for some 412. Since l(P1) + l(P2) < n,  it follows easily that for 
some 6 > 0, 

A related result is as follows. 
Lemma 3.3 Consider a set of (n x n )  matrices X obeying As- 
sumptions 3.1 and 3.2, with A,, as defned in Lemma 3.1. Let 
P denote a path of length 1, in the transition graph associated 
with a product of terms chosen arbitrarily from X ,  starting and 
ending at node i, i E {2 ,3 ,  . . . , n}. Then any such P will have 
an average circuit weight of at most -6 -= 0, where -6 denotes 
either the maximum of the average circuit weight of all possi- 
ble 1 + + 1 circuits including nodes other than 1 but without 
intermediate visits to node I ,  or the maximum of the i + i 
length-I self-circuits, Vi E {2 ,3 ,  . . . , n}, depending on which 
is the larger 
Proof: To obtain a contradiction, we first assume the existence 
of an i + + i circuit Q,  of length E,, and having an average 
weight r]  > -6. We can proceed to construct a 1 ++ 1 
circuit by the following means: concatenating an elementary 
1 ++ i path of length ZI with t copies of the i ++ i circuit 
Q, followed by another elementary i ++ 1 path of length 12 
(Fig. 3). 
The new path Q, which does not visit node 1 except at the ends, 
has average weight [w( l  ++ i )  +t$, + w(i ++ 1 ) ] / ( 1 1  + 
tl, + 12). As t + CO, the average weight of Q approaches that 
of Q, r]  > -6. This contradicts the original assumption that the 
maximum average weight of any 1 +-+ 1 circuit which only 
includes node 1 at the end points has an average weight of less 
than -6. Consequently any i ++ i circuit, i E { 2 , 3 ,  . . . , n} ,  
must have an average weight of at most -6. 

node 1 - - - - - - - - - - - - - - - - + .node 1 

Figure 3; Forming a 1 --f--f 1 circuit by Concatenating f x Q circuirs. 

Corollary3.1 Adopt the same hypotheses as in Lemma 3.3. 
Consider the maximum weight path from node i to node I 
over all possible lengths with no intermediate visits to node 
I ,  i E {2 ,3 ,  . . . , n}. This path contains no circuits, and is 
also of bounded length of less than n. Similarly, the maximum 
weight path from node I to node i contains no circuits, and is 
of bounded length. 
Proof: Suppose the maximal weight i + + 1 path contains a 
circuit; then the circuit would involve nodes from {2 ,3 ,  . . . , n}. 
However, as shown in Lemma 3.3, the average weight of such 
a circuit is at most -6 < 0, hence by removing this circuit, the 
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path weight can be increased. This contradicts the assumption 
that the path is of maximum weight. Further, as the number 
of nodes is finite, absence of circuits means the path length is 
at most n - 1. The same arguments apply to 1 ++ j paths. 
Note that in the case of an i ++ i path, this upper bound is n 
instead of n - 1. 
In view of the above results, we can present our main result 
guaranteeing a rank 1 product as follows. 
Theorem3.1 Consider a max-plus product of the form: 
r(k) = A& 631 A&-1 8 ... 8 A I ,  where each Ai, 1 = 
1,2, . . . , k, is selected from a geometrically equivalent set 
X = { X i ,  X 2 ,  . . . , X N } ,  consisting of ( n x n )  irreducible ma- 
trices, obeying Assumptions 3.1 and 3.2. If 

w 

def 
Asup=Xt @ X2@ X 3 @ .  . . @ X N  

has a unique critical circuit of length 1 at node 1, with average 
weight of 0, then there exists a finite Kcrit such that for  all 
k 2 Kcrit, rank(r(k)) = 1, i.e. r ( k )  = U @ V I ,  where U 
is an (n x 1) column vectol; and V‘ is a (1 x n )  TOW vector: 
Proof: Step 1: We will show that r (k) i j  has a lower bound 
independent of k as k + 00, i ,  j E {1,2,. . . , n ] .  
Let P1 be any j ++ 1 path, and P3 any 1 ++ i path, of 
length I 1  and 13 (independent of k)  respectively. Consider a 
path P of length k from j to i consisting of three segments: P I ,  
P2, comprised of (k  - 11 - 12) repeated 1 + 1 transitions, and 
P3. Such a path exists for all k 1 11 + 12, and then 

r (k) i j  1: w ( P >  
= w ( P d  + 0 + w(P2) (3.5) 

Step 2: We will show that, for suitably large k, a maximal 
weight path of the transition graph for r ( k )  with weights sum- 
ming to r (k) i j  necessarily visits node 1. 
Suppose that for arbitrarily large k, there is a particular r ( k )  
such that the maximal weight path PI yielding r (k) i j  does not 
pass through node 1. The weight of such a path will be less 
than the weight wsup( P’)  of the same path in a transition graph 
for A:up. Let Asup denote A,, with the first column and row 
deleted, then the average weight 1 of the critical circuit(s) of 
jsUp is necessarily negative. It follows that all entries of Aiup 
for large k will be of order k i .  Now the path P’ for r ( k )  in 
AiuP does not visit node 1, and thus is also a path of Atup, so 
that r (k) i j  5 wsup(P’)  5 O ( k i )  for large k.  But this would 
imply r (k) i j  + -00 as k + 00, a contradiction. 
Step 3: We will show that for suitably large k, the path whose 
arc weights sum to r (k)ij starts with the maximum weight path 
from node j to node 1 of length 1; < n,  call it Prj ,  and ends 
with the maximum weight path from node 1 to node i of length 
l; < n, call it PG, and contains [k - ( l i  + I ; ) ]  arcs 1 + 1 in 
the middle. Note that ZT, 1; < n follows by Corollary3.1. 
Recall that fork suitably large, the maximal weight path P join- 
ing node j to i ,  i.e. r ( k ) i j ,  necessarily passes through node 1. 
Let Pi j be the segment of P from j to the first visit to node 1, 
P3i the last segment of P from the last visit to node 1 to node 
i, and P2 the segment of P between the first and last visits to 
node 1. Note for the time being, we have not stated any restric- 
tions regarding 9. The definitions of PTj and P$ ensure that 

w(P1j)  5 w ( P f j )  and w(&) 5 w ( P $ ) .  Also, ~ ( 9 )  5 0, 
since the path 1 + 1 4 + 1 of length l ( 4 )  is the unique 
maximum weight 1 ++ 1 circuit. Hence 

r (k) i j  F uj(P;j) + w ( P 4 )  

On the other hand, P* comprising of PTj, [k - (1; + l;)]  tran- 
sitions 1 + 1 and P$ defines one path of length k from node j 
to node i ,  and its weight necessarily underbounds r (k)ij ,  i.e. 

w(P;j)  + liu(P;) 5 r (k) i j  

It follow sthat r (k) i j  = W ( P ; ~ ) + W ( P ; ) ,  orinmatrixnotation 

4 Conclusion 
In this paper we have concentrated on the asymptotic proper- 
ties of inhomogeneous products, building upon previous results 
concerning homogeneous products of matrices [l]. It is seen 
that the graphical approach naturally lends itself to this type of 
problem, and we have derived some sufficiency conditions ac- 
cordingly. We are currently making progress towards tackling 
the problem of necessary ancl sufficient conditions. 
As shown in Section 3, there exists a finite ‘time’ for which 
the the final product will halve rank less than or equal to the 
length of the critical circuit. For a product consisting of ma- 
trices with the same single unique critical circuit of length l, 
this final rank is 1. However, by using some probabilistic argu- 
ments, it can be shown that for product with increasing length, 
the results for homogeneous and inhomogeneous products of 
matrices with length- 1 critical circuit, with suitable modifica- 
tions, e.g. grouping of tenrts in two’s, can be applied. That 
is, even products of matrices with the same critical circuit of 
length 2 will attain a rank of 1 with probability 1. Nevertheless, 
the finite-time result is possibly more useful in practice. 
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