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Abstract 

Classification problems using compressed data are be- 
coming increasingly important in many applications 
with large amounts of sensory data and large sets 
of classes. These applications range from aided tar- 
get recognition (ATR), to medical diagnosis, to speech 
recognition, to fault detection and identification in 
manufacturing systems. In this paper, we develop and 
analyze a learning vector quantization (LVQ) based 
algorithm for the combined compression and classifi- 
cation problem. We show convergence of the algo- 
rithm using techniques from stochastic approximation, 
namely, the ODE method. 
Index Terms- Learning vector quantization, classi- 
fication, stochastic approximation, compression, 
non-parametric 

1 Introduction 

Quite often in applications, we are faced with the prob- 
lem of classifying signals (or objects) from vast amounts 
of noisy data. Equally often, the number of different 
distinct signals (classes) that we have in the problem 
may be quite large. If we could compress each observa- 
tion (observed signal) significantly without distorting 
or annihilating the most significant features used for 
classification, we can achieve significant advantages in 
two directions: 
(i) We can reduce significantly the memory required for 
storing both the on-line and class model data; 
(ii) We can increase significantly the speed of search- 
ing and matching that is essential in any classification 
problem. 

Furthermore, performing classification on compressed 
data can result in better classification, due to the fact 
that compression (done correctly) can reduce the noise 

more than the signal [l]. For all these reasons, it is 
important to develop methods and algorithms to per- 
form classification of compressed data, or to analyze 
jointly the problem of compression and classification. 
In [2] and [3], vector quantization methods have been 
used for minimizing both the distortion of compressed 
images and errors in classifying their pixel blocks. 

There is yet another significant advantage in investigat- 
ing the problem of combined compression and classifi- 
cation. If such a framework is developed, we can then 
analyze progressive classification schemes, which offer 
significant advantages for both memory savings and for 
speeding up searching and matching. Progressive clas- 
sification uses very compressed representations of the 
signals at first to perform many simple (and therefore 
fast) matching tests, and then progressively perform 
fewer but more complex (and therefore slower) match- 
ing tests, as needed for classification. In the last four 
years, we have analyzed such progressive classification 
schemes on a variety of problems with substantial suc- 
cess. The structure of the algorithms we have developed 
has remained fairly stable, regardless of the particular 
application. This structure consists of a multiresolution 
preprocessor followed by a tree-structured classifier as 
the postprocessor. Sometimes a nonlinear feature ex- 
traction component needs to be placed between these 
two components. Often the postprocessor incorporates 
learning. 

To date, we have utilized wavelets as the mul- 
tiresolution preprocessor and Tree-structured-vector- 
quantization (TSVQ) as the clustering postprocessor. 
We have applied the resulting WTSVQ algorithm to 
various ATR problems based on radar [4] [5] [SI, ISAR 
and face recognition problems [7]. We have established 
similar results on ATR based on FLIR using polygo- 
nization of object silhouettes [SI [9] as the multireso- 
lution preprocessor. Incorporation of compression into 
these algorithms is part of our current research. 
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As a first step towards developing a progressive classi- 
fication scheme with compression, we need to develop 
an algorithm for combined compression and classifica- 
tion at a fixed resolution. As opposed to the algorithm 
described in [3] that achieves this with a-poste&ri es- 
timation of the probability models underlying the dif- 
ferent ChSSeS Of Signals, our goal is to develop an algo- 
rithm that is nonparametric, in the sense that it does 
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not use estimates of probability distributions of the un- 
derlying sources generating the data. In this paper, 
we achieve that goal by using a variation of Learning 
Vector Quantization (LVQ), that cleverly takes into ac- 
count the distortion present. LVQ as described in [lo] 
[ll], although primarily designed to perform classifica- 
tion, achieves some compression as a byproduct since 
it is inherently a vector quantization algorithm (an ob- 
servation also made in 121 131). However, our algorithm 
is designed to obtain a systematic trade-off between its 
compression and classification performances by mini- 
mizing a linear combination of the compression error 
(measured by average distortion) and classification er- 
ror (measured by Bayes risk) using a variation of LVQ 
based on a stochastic approximation scheme. The con- 
vergence analysis of this algorithm essentially follows 
similar techniques as presented in [12] and as used in 
[13]. However, our treatment is considerably simpler 
since to start with, we recognize that the algorithm is 
a special class of the Robbins-Monro algorithm. 

In Section 2, we describe the LVQ-based algorithm for 
combined compression and classification. In Sections 
2.1 and 2.2, we provide analysis and convergence of the 
algorithm using stochastic approximation techniques 
and the so-called ODE method. Section 3 presents some 
concluding remarks. 

2 Classification using compressed data and 
learning vector quantization 

Learning vector quantization (LVQ) introduced in [ll] 
is a nonparametric method of pattern classification. AS 
opposed to parametric methods, this method does not 
attempt to obtain a-posteriori estimates of the under- 
lying probability models of the different patterns that 
generate the data to be classified. As noted in 1141 
(p. 266), classification is easier than density estima- 
tion. So an algorithm such as ours offers considerable 
advantages over algorithms that use Bayes rules based 
on estimated class densities. LVQ simply uses a set of 
training data for which the classes are known in a super- 
vised learning algorithm to divide the data space into a 
number of Voronoi cells represented by the correspond- 
ing Voronoi vectors and their associated class decisions. 
Using the training vectors, these Voronoi vectors are 
updated iteratively until they converge. The algorithm 
involves three main steps: 

1. 

2. 

Find out which Voronoi cell a given training vec- 
tor belongs to by the nearest-neighbor rule. 

If the decision of the training vector coincides 
with that of the Voronoi vector of this particular 
cell, move the Voronoi vector towards the train- 
ing vector, else, move it away from the training 
vector. 

3. 

This 

All the other Voronoi vectors are not changed. 

Obtain the next training vector and perform the 
first two steps. 

process is usually carried out in multiple passes 
of the finite set of training vectors. A detailed descrip- 
tion of this algorithm with a preliminary analysis of its 
convergence properties using stochastic approximation 
techniques of [12] has been given in [13]. A sketch of 
a proof for the convergence of the classification error 
achieved by the LVQ algorithm was described in [13]. 
If we have N training pairs ( ( X i ,  dxi), i = 1 , .  . . , N } ,  
we denote by KN the number of Voronoi vectors (or 
the number of sets in the corresponding partitions in 
Etd). It was noted in [13] that as K N  + 00, if the 
Voronoi vectors are initialized according to a uniform 
partition of Etd, then the LVQ algorithm does not move 
the vectors from their initial values. As a result, the 
error associated with initial conditions dominates the 
overall classification error. By considering the LVQ al- 
gorithm for large KN without learning iterations, it can 
be shown as sketched in [13] that the classification er- 
ror in LVQ converges to the optimal Bayes error as 
long as the volume of the Voronoi cells goes to zero as 
KN + 00, provided we have that limN+a, KN + 00 

while limN+oo % + 0. More complete results on the 
weak and strong consistency of the error of classifica- 
tion rules based on partitions (including data depen- 
dent clustering partitions) can be found in Theorem 
21.2 (p. 368) and Theorem 21.5 (p. 379) of [14]. We 
will discuss the second theorem in Section 2.1 a little 
more. These results hold for general distributions for 
( X ,  d) (i.e., pairs of data and class labels) with compact 
support and general functions measuring data proxim- 
ity, satisfying the typical conditions given here and in 
~ 3 1 .  

Although its primary goal is to classify the data into 
different patterns, the LVQ algorithm compresses the 
data in the process into a codebook of size equal to the 
number of Voronoi cells, where each Voronoi vector is 
the codeword representing all the vectors belonging to 
that cell. 

In what follows, we present a simple variation of the 
LVQ algorithm in [13], that achieves the task of com- 
bined compression and classification. We present a con- 
vergence analysis of this algorithm much along the lines 
of [13]. However, we present a simpler analysis by recog- 
nizing that the algorithm is a special case of the Rob- 
bins Monro algorithm. Also, simulation results show 
that as a certain parameter is increased, the compres- 
sion error gradually decreases compared to the error 
achieved by the standard LVQ (represented by the value 
zero of this parameter). 
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In the next subsection, we introduce our notation and 
describe the algorithm. 

Algorithm for combined compression and clas- 
sification 
Consider a complete probability space (Cl, 3, P) .  Let 
Xi E lRd, 1 = 1,2 , .  . . , N ,  represent the training vec- 
tors defined on this space, generated by either of the 
two patterns 1 or 2. The a-priori probabilities of the 
two patterns are T I  and 7r2 respectively and the corre- 
sponding pattern densities are PI(.) and p z ( z )  respec- 
tively such that 

where O(n) = (&(n), . . . , e~ (n ) ) '  and e,(n) is the n-th 
iterate of e,, n 2 0. Also 1~ is the indicator function 
that takes the value 1 if A is true and 0 otherwise. 

Definition 2.2 
1 N  

{ 2 otherwise 

1 if C,=l lx,€VB.(n)ldXt=l > 
& ZK1 'XjEv8,(n)'dX3=2 (4) gZ(@(n);N) = 

Remark 2.1 Note that g,(Q(n); N )  above denotes the 
decision associated with the i-th Voronoi cell according 
to the majority vote rule. 

With the above definitions and assumptions, we can 
now write the following multi-pass combined compres- 
sion and classification algorithm for (scalar) X 2 0, 

P(Xi E B )  = TI L p l ( z ) d z  + 7r2 L p Z ( z ) d z  

We also assume that Xl is independent of X, , j  # 1. 

The Voronoi vectors are represented by 8, E IRd, i = 
1,2,  . . . , K and the corresponding Voronoi cells are rep- 
resented by Ve,. Let the decision associated with the 
training vector Xl be represented by d x ,  and that of 
the cell Ve, by de,, where dx,, de, E {1,2}.  

Consider a non-increasing sequence of positive real 
numbers E,,, n = 1,2, .  . ., such that 

Assumption 2.1 e, = ca . 

Consider also a proximity metric function p(8, x) which 
satisfies the following assumptions: 

(1 )  

1. Initialization: The algorithm is initialized with 
O(0) usually found by running a vector quantiza- 
tion algorithm, e.g., LBG [15] algorithm over the 
set of training vectors. 

2. n= 0. 

3. Assigning the training vectors to  their respec- 
tive cells: Find il = argmin, le,(n) - XlI2, 
1 = 1,2, . . . , N .  Then Xi belongs to Ve,, (,I. 

4. Cell decisions: Calculate g , ( e ( n ) ; N ) ,  i = 

5 .  Updating the Voronoi vectors: For i E 

Assumption 2.2 p(8 ,x )  is a twice continuously dif- 
ferentiable function of 0 and x and for every f i e d  
x E R ~ ,  it is a convex f inction of e. 

Assumption 2.3 For any jked  z, i f  IB(b)( + 03, as 

1,2 ,..., K .  

{ I , % .  . . , K } ,  

4(n  + 1)  = e&) + En+l(-~lX,,+l~Ve,(n, + 
7(dxn+, ,g@(n); NI, Xn+l, Q(n>>> 

IC + 00, then p(B(IC), z) + 00. 

Vep(0, &+I) Ie=e.(,,) (5) 
Assumption 2.4 For every compact set Q c Rd, 
there exist constants C1 and q1 such that for all 6 E Q,  

6. n t n + l .  

7. If n < N ,  repeat Steps 3-6. If n = N ,  repeat 
lVep(e,x)l  < + Izlq1) (2) 

Steps 3-4. 

In Assumptions 2.2-2.4, 1.1 is the Euclidean norm in 
R d  (whenever the quantity inside is a vector, and this The above algorithm can be executed for multiple 
should be obvious from the context). An example of a the size Of the 
proximity function that satisfies the properties above is training set using the from the 

passes over the Same training set (in 

m-th pass to initialize the algorithm for the (m+l)  -th 
pass, until m = M where M is the maximum number 
of passes. 

p(e,x)  = le - 
Define further the following quantities: 

Definition 2.1 Remark 2.2 Note that Step 5, i.e., updating of the 
Voronoi vectors, can be written in the following simpli- 
fied manner: 7(~!~.,+11de;(n),Xn+1, @(n)) = -1Xn+1EV8;(n) 

('dX,,+,='-f8i(m) - ' d X n + l # d 8 ; ( n ) )  (3) If Xn+i E Vei(,), then 
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For j # i, Oj(n + 1) = ej(n). 

2.1 Analysis of the combined compression and 
classification algorithm 
In this subsection, we present a summary of the analysis 
of the above algorithm using the “mean ODE” method 
of [12]. For the complete analysis we refer to [20]. 

Denote the vectors 

and 

Note that this is a special case of the general stochastic 
approximation algorithm of 1121, quoted in Section 2, 
(131. 

Define 

Due to the assumption that {Xt}, 1 = 1,2,. . . , is a 
sequence of i.i.d. random vectors and the fact that 
they are distributed inde- 
pendently of @(Z), the transition probability function 

l-Ie(n)(AXn) = P(Xn+1 E A I Fn) is given by 4-41 = 
J,P(Z)&, where 3 n  = u{@(O), Xo, . . . @(n), Xn) 
(the r-algebra generated by these random variables). 
This makes the above algorithm a special case of the 
Robbins-Monro algorithm with the transition probabil- 
ity function being independent of @(n). 

Now, we introduce the following definitions: 

A 

A 

One can now prove the following Lemma: 

Lemma 2.1 

Hi(e(n),Xn+i) = hi(e(n)) + (i(n), i = 1,2, .  . . , K , 
(12) 

where {(i(n)} is a 3n-adapted martingale difference se- 
quence such that 

(13) hi(e(n)) = Ea[Hi(e(n),X,+i) I Fn], Vi . 

Here, E a  denotes expectation under Pa where Pa de- 
notes the probability distribution for {Xn, e(n)}, 
n 2 0 where e(0) = a. Note that since (Xn) is a 
sequence of 2.i.d. random vectors, Pa is functionally 
independent of Xo . 
We write the mean ODE associated with (8) as 

e = h@) ,  0 ( 0 )  = a , (14) 

where 

since in this case {X , }  is a sequence of i.2.d. random 
variables where P(Xn+l E A I 3,) is independent of 
e@), k 5 n. 

It is hard to establish a convergence result for general 
h ( 8 )  and often it is assumed that (14) has an attractor 
e*, whose domain of attraction is given by D* (121. If 
Q is a compact subset of D* and 8(0) = a E Q, one 
can show that for any b > 0, 

P{m.I lQ(n)  -@(altn)lI > 6) < c(a,Q)C~z 
n 

(16) 
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where t ,  = and Q(a,t,) is the solution to (14) 
for t = t,, and C(a,Q) is a constant dependent on a 
and Q (see Theorem 4, page 45, [12]). Here, we have 
assumed Assumption 2.1. 

One could also derive the following corollary (see Corol- 
lary 6, page 46, [12]), which states that under the as- 
sumptions (16) is true, for the set of trajectories {O(n)}  
that visit Q infinitely often, we have 

O ( n )  -+ 0*, Pa - a s .  (17) 

P(1imsup IlQ(n) - @(a,  tn)ll > 6) = 0 . (18) 
n+oo 

Note that for a complete theory, it is essential to prove 
that the desired points of convergence O* are indeed 
the stable equilibrium points of (14). One way to do 
this is to find a potential function .I(@), if it exists, 
such that hi(@) = -Ve,J(O). Then one can apply 
results from Lyapunov stability to establish results for 
stable equilibrium by studying the local minima of J(.) 
and their domains of attraction. Although, we refrain 
from such pursuits for the time being, we do notice that 
(see as N --j 00, %(Q; N )  -+ sign(&, q(%)dx)  
and using the mean value theorem when the size of 
each Voronoi cell is small, one can write that hi(@) is 
approximately equal to 

which is the negative gradient of the cost function 

class label) pairs) which have compact support in Rd. 
Let DN denote the sequence of N training pairs of 
data { ( X i , d i ) ;  i = 1 ,..., N } .  We generate a se- 
quence of partitions { ~ ( K N ) }  each partition utilizing 
KN Voronoi vectors, and the associated cells using the 
general proximity function p .  We iteratively pass the 
training data through the algorithm (6) of updating the 
Voronoi vectors Q(n,  K N )  where n is the iteration in- 
dex. The limit of this sequence as n + 00, Q*(KN) 
provides one member of our family of paritions. We 
then increase the number of Voronoi sectors to KN + 1 
and repeat the process, etc. The general convergence 
problem for our algorithm, refers to limits of (20), and 
of Q ( n , K N )  as n -+ 00, KN -+ 00, N -+ 00. The 
most appropriate framework to investigate this gen- 
eral convergence with respect to K N ,  N ,  is the con- 
vergence of classification error (in our case it would be 
combined classification and compression errors) based 
on Voronoi type partitions, using as starting methods 
those of chapter 21 (Vapnik-Cervonenkis ideas) of De- 
vroye et al [14], see for instance Theorem 21.5 on page 
378 of [14]. In the latter Theorem it is shown that for 
distributions of x with compact support in IRd, and a 
majority rule classification based on a Voronoi- type 
partition with KN cells and Euclidean proximity func- 
tion, the classification error converges to the Bayes er- 
ror with probability one, when KN -+ 00 in such a way 
that K$ log N / N  + 0 as N -+ 00. 

Similar results can be obtained for our algorithm, but 
they are beyond the scope (and space) of the present 
paper and will be pursued elsewhere. There is also a 
rich set of related problems regarding general proximity 
metrics, empirical errors, and computational complex- 
ity reductions that could be investigated. 

Here we concentrate on the convergence of @(n, KN) as 
a function of n, for fixed KN; this being the first step in 

convergence (w.r.t. n) is the subject of the next section. 

For those readers who are more oriented towards intu- 

the inspiration for obtaining the combined compression 
and classification algorithm given above. The reason 

itive reasoning, we comment here that this was indeed the general convergence analysis outlined above. This 

for this intuition is that under general conditions, it 
can be shown following the sketch of the proof given 
in [13], and the methods and results in chapter 21 of 
Devroye et a1 [14], that for the LVQ algorithm the first 
part of the integrand in (20) converges to the Bayes 
classification error when the number of Voronoi vectors 
tends to infinity. Details of this analysis are outside the 
scope and size of the present paper. The second part 
of (20) is clearly the average distortion. 

2.2 Convergence analysis of the combined com- 
pression and classification algorithm. 
The convergence analysis for a class of learning vector 
quantization algorithm was presented in [13] following 
the analysis in [12] (see Part 11- Chapter 1). However, 
as we noted before, since the algorithm under investiga- 
tion is a special case of the Robbins-Monro algorithm, 
where the transition probability function is independent 
of 8, we can simplify the set of assumptions needed 

The proof sketched in [13] can be used and extended 
to establish such a convergence as long as KN -+ 
00, N + 00, with K N / N  -+ 0, as already men- 
tioned in the introduction to section 2. The conver- 
gence of the algorithm is concerned with a sequence of 
partitions of Etd,  or of a compact subset of Rd. The 
strongest convergence results can be obtained for gen- 
era1 probability distributions for ( X ,  d) pairs ((data, 

greatly* 

Consider again the algorithm: 

Q(n + 1) = O ( n )  + en+iH(@(n), Xn+l),  n 2 0 (21) 

Suppose Assumption 2.1 holds. Also, let US make the 
following additional assumptions that will be sufficient 

368 1 

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 18,2021 at 12:07:55 UTC from IEEE Xplore.  Restrictions apply. 



for our analysis: Assumption 2.8 There exists a such that C E ~  < CO. 

Assumption 2.5 For any compact subset Q of D,  
there exist constants c1, r1 such that 

(22) 

Assumption 2.9 There exists a positive jbnction U of 
class C2 on D such that U ( Q )  + C 5 00 if 0 + dD 
or 181 + 00 and U ( 0 )  < C for Q E D satisfying 

IH(e,Z)I I G ( 1 +  14r1) 

( U ' ( 0 ) , h ( 0 ) )  5 0, V 8  E D . (26) 
Remark  2.3 Note that for our choice of H ( 0 , z )  de- 
scribed in the previous section, (22) is satisfied if As- 
sumption 2.3 is satisfied. 

Remark  2.5 Note that if there is such a point 0* in 
D which is a point of asymptotic stability for the mean 

any solution of (14) for a E D indefinitely remains in D 
and converges to 8* as t + CO. It can then be shown 
that (see (161, Th. 5.3, p.31) there exists a function 
U ( Q )  which satisfies the conditions mentioned in As- 

A 2'6 h(e) = (hl(e),  ' ' * 9 hk(Q))' where ODE (14) with domain of attraction D, this means that 
hi(Q) given by (13) is locally Lipschitz. 

Assumption 2.7 For any q 2 1, 3 a constant M < 00 

such that 

We use the following notation: 

Remark 2.4 Since (X,,} is a sequence of i.i.d. ran- ~ ( c )  = {Q; v(e) 5.1 
dom vectors, one can simply write (23) as ~ ( c )  = inf(n; e(n) 4 K ( c ) )  (27) 

(24) 

With these notations and assumptions, we have estab- 
lished the following theorem (with arguments similar to 
those in p21, pp. 301-304): 

Theorem 2.2 Consider (21)* 

compact set such that 

w e  Present next a theorem that gives an bound 
on the L, norm of the distance between the actual iter- 
ate Q(n) and O(a, tn)  which is the solution to (14) for 
t = t,,. In other words, this result gives an upper bound 
on the quality of approximation by the mean trajectory 

to space limitations (see [20] for the complete proof). 

Theorem 2.1 Consider the update equation (21) and 
(14). Suppose Assumptions 2.1, 2.5, 2.6, 2.7 hold. Sup- 
pose Q1 c Q 2  are compact subsets of D,  and q > 2. 
Then there exist constants Bl(q),E2 (E2 is the Lips- 
chitz constant for h in Q 2 ) ,  such that for all T > 0 
(that satisfy the condition that for all a E Q1, all t T ,  

SupPOse Assumptions 
represented by (14). We do not provide the proof due 2.1, 2.5, 2.6, 2.7, 2.8, 2.9 hold and W'Pose that F is a 

F = {Q; U ( 0 )  5 CO) 2 {Q; U'(Q).h(Q) = 0) 

for some CO < C where C is defined in Assumption 2.9. 
Then, for any compact subset Q of D,  and q 2 qo(a), 
there exists a constant B2(q) such that for all a E Q: 

&(@(TI )  converges to  F )  2 1 - B2(q) CE;'~ (28) 
d ( 8 ( a ,  t ) ,  Q;) 2 60 > O), all d < do, all a E &I, i> 1 

Pa{ sup p(n) - Q(a,tn)lq 2 6) 5 
nSm(O,T) 

3 Conclusions and future research 
" 

i=l 
We have developed an algorithm based on learning vec- 
tor quantization (LVQ) for combined compression and 
classification. We have shown convergence of the algo- 
rithm for fixed numer of Voronoi vectors, under reason- 
able conditions, using the ODE method of stochastic 
approximation. Examples illustrating the performance 
of the algorithm can be found in [20]. The sensitivity 
of the performance of the algorithm with respect to the 

We now present an asymptotic result without proof that 
states that @(TI )  asymptotically converges to a compact 
subset of D, based on the assumption that the mean 
ODE has a point of asymptotic stability 0* in D with 
domain of attraction D. We need the following addi- 
tional assumptions: 
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weight parameter X indicates that the compression er- 
ror decreases with increasing X whereas the increase in 
classification error is relatively insignificant. 

The immediate future research problem is to establish 
convergence of the algorithm as N and KN --+ 00, and 
related performance evaluation problems as described 
at the end of Section 2.1. Another important future re- 
search problem that we are currently working on is the 
extension of the algorithm when the VQ is replaced by 
TSVQ. In this extension, we use and extend the meth- 
ods and analysis of [19]. With this extension, we will be 
able to treat the performance of the WTSVQ algorithm 
of [4] [5] [6], [7] analytically including compression of the 
wavelet coefficients. 
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