
CHANGE DETECTION IN MARKOV-MODULATED TIME SERIES 

Subhrakanti Dey Steven I. Marcus 

Dept. of Systems Engineering, RSISE 

Australian National University 

Canberra ACT 0200 Australia 

subhra@s yseng. anu.edu. au 

Department of Electrical Engineering 

Institute for Systems Research 

University of Maryland, College Park 

MD 20742 USA 

ABSTRACT acterized by small changes of system parameters that 

In this paper, we address the problem of online change 

detection of Markov-modulated time series models. 

For simplicity, we look at Auto-regressive time-series 

models the parameters of which are modulated by 

a finite-state homogeneous Markov chain. We pro- 

pose a Cumulative Sum based statistical test to detect 

abrupt changes is such processes. Computation of av- 

erage run length functions, in particular, mean delay 

in detection and mean time between false alarms are 

particularly difficult to obtain in closed form for such 

processes. Although there are ways to approximate 

such computation, we do not address those issues in 

this paper. Simulation studies illustrate the detection 

capability of our proposed test. 

can potentially have devastating effects on the be- 

haviour of the system if accumulated over time. An 

asymptotic local approach to early detection of “slight” 

changes has been presented in [2] [3]. Most of the 

signals treated in [l] are time-series models (linear 

or nonlinear) and algorithms are presented that de- 

velop on-line methods for detecting changes of pa- 

rameters of such models. Recently, in [4], an algo- 

rithm for detection of parameter changes in a hidden 

Markov model using the log-likelihood function has 

been given. In the case of a hidden Markov model, 

a CUSUM-procedure is developed since although the 

observations are not independent before and after the 

change (generally speaking), one can easily calculate 

the log-likelihood function provided the parameters 

1. INTRODUCTION before and after the change are known. 

In our paper, we develop a similar method for 

detection of changes in Markov-modulated time se- 

ries models, where the parameters of the time-series 

are modulated by a Markov chain, in the sense that 

the time-series parameters are constant over segments 

with abrupt changes from segment to segment. Such 

so-called “segmentation” models are used in econo- 

Detection of abrupt changes in signals and systems 

is a topic of continued interest and has applications 

in fault detection in navigational systems, onset de- 

tection in seismic signal processing, segmentation of 

speech signals etc [l]. Such abrupt changes are char- 
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in [5]. Markov-modulated time-series models can be 

also viewed as random coefficient time-series which 

are used to model the stochastic stability of short 

run market equilibrium under variations of supply 

[6]. It is thus important that we develop an on-line 

method for detecting changes in the parameter sets 

and the underlying hidden Markov model modulat- 

ing the time-series. We present a brief analysis of our 

method in the next subsection under the assumption 

that we know the parameter sets before and after the 

change. 

As a remark for situations where the parameters 

after the change might not be known, we would like 

to add that one can consider extending the General- 

ized Likelihood Ratio (GLR) tests for such Markov 

modulated processes. 

2. SIGNAL MODEL AND ON-LINE 

CHANGE DETECTION ALGORITHM 

For simplicity, we take a Markov-modulated auto- 

regressive (AR) process as the basis of our analysis 

which is given by 

Yk = a1 ( s k ) Y k - l  + a Z ( S k ) Y k - Z + .  . . + a r n ( s k ) y k - m  +Vk 

(1) 
To make the analysis simple, we also assume that 

Y k ,  Vk E IR, Sk is a homogeneous first-order Markov 

chain belonging to a finite-discrete state space. Vk is 

a Normally distributed noise process with a density 

N ( 0 ,  U' ) .  The transition probability of the Markov 

chain is given by P = ( p i j )  where p i j  = P ( S k + 1  = i I 
sk = j ) ,  i ,  j E { 1 , 2 , .  . . , N } .  The initial probability 

distribution of SO is given by A such that P(so = 
i) = ~ ( i ) .  Hence, the complete parameter space of 

the Markov-modulated AR process can be specified 

by X = ( P , T , u , c )  where a = (a1 a2 . .. a,) where 

the dependence of ai on s k  has been suppressed. We 

assume that X can belong to two distinct parameter 

quadruple A H ,  XK . 

Remark 2.1 Note that deriving stationarity criteria 

for Markov-modulated time-series is a difficult prob- 

lem in the sense that two switching separately second 

order AR stationary processes can result in an un- 

stable system whereas two individually unstable AR 

processes can be stabilized when allowed to switch 

according to a Markov regime. For the sake of our 

analysis, we assume that our individual AR processes 

are stable and so is the switched process. 

Note from [4] that a sequential CUSUM-like pro- 

cedure in a manner similar to Page's recursive test 

can be written as a recursion in the test statistic 

T k ,  k E IN in the following manner: 

where TO = 0 and fK, fH denote the density function 

when X = XK or X = AH respectively. 

Obviously g( k) calculates the difference between 

the log-likelihood functions according to parameter 

quadruple XK and AH. Next, we present a formula of 

calculating this log-likelihood function which can be 

easily derived. 

Note that XK = (PK,7rK,aK,uK) and similarly 

AH can be expressed. Define 

BL = diUg(b'(yk, I), . . . , b ' ( y k , N ) )  where b ' ( y k , i )  

(yh -a ' 'Y;y ' )Z  
exP(- 2a12 ) denotes the probability density 

function of observing yk given that the state of the 

Markov chain is i under the parameter quadruple 

A' ,  I! = I(, H where Ykk_i" e ( Y k - 1 ,  . . . , y k - m ) ' .  

Define the following forward variable 

a: = (aL(l), . . . , aL(N))' where obviously a6 E EN, 
such that the following recursion in af, holds: 

A 

(3) 
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Figure 1: Plot of test statistic versus time for on-line detection of changes in Markov-modulated AR process 

Remark 2.2 Note that in the right hand side of the 

first equation in (3), is normalized to avoid nu- 

merical problems. 

I t  is easy to show that according to the above recur- 

sion, a i ( j )  is equal to the quantity ~ ' ( ~ ~ ~ ~ ~ ~ ~ ; : ~ y ~ ~ ~ ~ ~ ' ~ ' ) .  

Then it easily follows that fi(yk 1 yk-1,. . . ,yo),  I = 

I<, H is given by 

3. SIMULATION RESULTS 

In this subsection, we present some simulation results 

with a second order Markov-modulated time-series 

modulated by a Markov chain that can take values 

in a 4-dimensional state space. We assume that the 

time-series changes from a parameter quadruple XH 

to XK after the first 500 points and then changes back 

to AH after the next 200 points. We choose two differ- 

ent transition probability matrices P H ,  P K ,  two very 

different AR parameter sets a H ,  aK and two different 

noise variances u~ , n K 2 .  
2 

Here are the details of the simulations: sk E { 1,2,3,4}, 

0.2 0.4 0.2 0.7 

0.4 0.2 0.3 0.1 

0.2 0.3 0.2 0.1 

0.2 0.1 0.3 0.1 

3.7 0.15 0.12 0.2 

D . l  0.7 0.1 0.1 

0.1 0.05 0.68 0.1 

0.1 0.1 0.1 0.: 

The AR parameters are given by the following ma- 

trices A', I = H ,  Ii' where Aij = a j ( i )  given X = Xi. 

and 
0.2 0.8 

0.8 0.2 

-0.5 0.5 

0.2 0.6 

(7) 
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Also, uH = 1.0, uK = 3.0. 

The following figure shows the plot of the test 

statistic with time clearly showing the changes a.t 

k = 500 and IC = 700. 

4. CONCLUSIONS AND FUTURE WORK 

We did not address the issue of computation of mean 

time between false alarms or mean delay in detec- 

tion (more generally the average run length (ARL 

function)) because closed form computation of these 

quantities are virtually impossible when the obser- 

vations are dependent. However, simulation studies 

can be performed to obtain empirical values of these 

quantities like in [4]. We believe that the behaviour of 

these quantities as a function of the detection thresh,- 

old will be similar to those in [4]. 
There is also a need to  obtain algorithms for change 

detection for more complicated Markov-modulated c r  

semi-Markov processes or even long-range dependent 

processes. These issues are currently under investiga- 

tion. 
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