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Abstract

We derive the optimal power control strategy to maxi-
mize the sum rate of a multiple access channel with two
time-scale fading, where transmitters have access to each of
the other users’ ‘slow’ fading information and the statistics
of the ‘fast’ fading, but no knowledge of the instantaneous
fast fading states. Assuming identical fast fading distribu-
tions for all users, it is found that the optimal strategy is
to let at most one user transmit, with the user transmitting
the one with the ‘best’ slow fading conditions. An example
with users undergoing lognormal shadowing and Rayleigh
fast fading is considered, and capacity comparisons made.
Simple sub-optimal power control schemes which provide
close to optimal performance in certain favorable channel
conditions are also proposed and analysed.

1 Introduction

The time-varying fading channel provides considerable
challenges to communications engineers, who must try to
meet certain often conflicting performance requirements
such as low delay and high data rates. One commonly used
power control method to combat fading is channel inver-
sion, which aims to keep the power of the received signal
at a constant level, and is suitable for delay sensitive appli-
cations such as voice. However, for other applications such
as data where it is desirable to achieve high transmission
rates, channel inversion could be far from optimal. In such
situations, considering the long term average throughput or
ergodic capacity may be more appropriate.

The ergodic capacity of a single-user fading channel with
perfect channel side information at the transmitter and re-
ceiver was considered in [9]. The multi-user sum capacity
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was considered in [10], and a characterisation of the capac-
ity region for the multi-access fading channel was given in
[12]. Alternative situations including various different no-
tions of capacity studied by other authors are described in
[4].

Much of the previous work implicitly assumes however
that the fading is of a single time-scale, whether it be fast or
slow. In reality, fading is often due to multiple components,
some of which could vary on widely different time-scales
[13]. For example, we might have a slowly time-varying
component due to shadowing effects, together with a much
faster component due to multipath. In [6], power control
schemes to optimize the ergodic capacity, outage capacity
and capacity with outage constraints were derived, for a sin-
gle user channel with a two time-scale fading process. Here
the receiver is assumed to be able to track both the fast and
slow fading components, but the transmitter makes power
allocation decisions based on the slow fading component
only (plus some knowledge of the fast fading statistics).

In this paper we extend the ergodic capacity results of
[6] to a multi-access two time-scale fading channel. As-
suming the fast fading distributions to be identical for all
users, we find in Section 2 that the optimal strategy is, as
in [10], to let at most one user transmit, but now the user
transmitting is the one with the best slow fading conditions.
We thus still have a form of multiuser diversity, but now
we can only take advantage of channel fluctuations occur-
ring at a slower time scale. In Section 3 we look at a spe-
cific example, with lognormal shadowing and Rayleigh fad-
ing for the slow and fast fading components respectively, in
both the symmetric and asymmetric cases. In the symmet-
ric case, numerical comparisons are made with the capaci-
ties achievable for our scheme, together with schemes with
no power adaptation and power adaptation with full chan-
nel side information. The power allocation law derived here
does not take on a closed form, so in Section 4 we look at
two simpler sub-optimal schemes that are suitable for the
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symmetric users case, and which provides close to optimal
performance when the number of users or average received
SNR is high. Results relating the optimal and one of the
sub-optimal policies are proved in Section 5. Finally, Sec-
tion 6 presents some asymptotic results for the sum capacity
as the number of users goes to infinity.

2 Power control with two time-scale fading

2.1 System model

We will consider the uplink of a single cell multi-user
communications system, with frequency-flat fading. The
signal received by the base station at time n can be ex-
pressed as

Y (n) =
K∑

i=1

√
Gi(n)Fi(n)Xi(n) + Z(n).

Here K denotes the number of users in the cell and Xi(n)
the transmitted information of user i, with Xi(n) and Xj(n)
assumed to be independent for all i �= j, and each user sub-
ject to an average power constraint P . {Z(n)} is a white
Gaussian noise process, with zero mean and variance N0.
Gi(n) and Fi(n) will be regarded as the random slow and
fast channel fading gains respectively of user i, both as-
sumed to be continuous positive random variables with un-
bounded support and finite means, and with Fi(n) possibly
changing on a much faster time-scale than Gi(n). {Gi(n)}
and {Fi(n)} will be assumed to be jointly stationary and er-
godic for the time-scales concerned, with Gi(n) and Fj(n)
independent for all i and j, Gi(n) and Gj(n) independent
∀i �= j, and Fi(n) and Fj(n) independent ∀i �= j. In order
to derive the power control strategy in section 2.3, we make
the additional assumption that the fast fading distributions
for the Fi(n)’s are identical for all users i. For brevity, the
time index n will be suppressed in the ensuing discussions.

2.2 Problem formulation

This paper considers the situation where the base sta-
tion has perfect knowledge of the instantaneous slow and
fast fading gains for all of the users, whilst the transmitting
users have perfect knowledge of each of the users’ slow fad-
ing Gi’s, but no knowledge of any of the instantaneous fast
fading Fi’s. We do however assume that the transmitters
know the statistics of the Fi’s. Such a situation could oc-
cur either because the transmitter is unable to track all the
fast components or chooses not to do so, eg. computational
reasons. The aim then is to find the power control strategy
which will maximize the capacity in an information theo-
retic sense.

Let gi and fi represent realisations of Gi and Fi

respectively. Let G = (G1, G2, . . . , GK), g =
(g1, g2, . . . , gK), F = (F1, F2, . . . , FK), and f =
(f1, f2, . . . , fK). Denote the power control by µ(G) =
(µ1(G), µ2(G), . . . , µK(G)), where µi(G) is the power
control law for user i, a function (assumed to be non-
negative) of the slow fades G. We constrain the average
transmitted power of each user i to be no greater than P , ie.
EG[µi(G)] ≤ P , ∀i.

We use the notation EX[•] to denote the expectation with
respect to X, and EX|Y[•|Y] to denote the conditional ex-
pectation with respect to X given Y. pX(x) and PX(x)
will be used to represent the pdf and cdf respectively.

In this paper we will only address the problem of max-
imizing the sum rate, rather than dealing with general ca-
pacity regions as in eg. [12]. The following definition of
the sum capacity in two time-scale fading will be used.

Definition 1.

Ctts = max
µ(G)

EG

[
EF |G

[
1
2 log2

(
1 +

�K
i=1 µi(G)GiFi

N0

)]]

with EG[µi(G)] ≤ P and µi(G) ≥ 0 for i = 1, . . . , K .

Some motivation for Definition 1 is as follows. Suppose
the slow fading components for each user remains constant
over a block of say N symbols, but varies from block to
block. Then the maximum sum rate achievable over each
block, what might be termed the ‘block-ergodic sum ca-
pacity’ (a similar notion can be found in [6]), is given by

EF |G
[

1
2 log2

(
1 +

�K
i=1 µi(G)GiFi

N0

)]
, which is an expec-

tation over the fast fading F , given the slow fading G. The
expected value of this block-ergodic sum capacity, with the
expectation now taken over the slow fading G, then gives
us Definition 1.

We write more explicitly the equivalent optimization
problem:

max
µ(G)

EG

[
EF |G

[
ln

(
1 +

∑K
i=1 µi(G)GiFi

N0

)]]
(1)

subject to

EG[µi(G)] = P , i = 1, . . . , K (2)

µi(G) ≥ 0, i = 1, . . . , K (3)

We have changed the constraint (2) to an equality, but this
will not affect the optimal solution since allocating more
power will always increase the objective.

2.3 Optimal power control strategies

Here we will derive the solution to (1)-(3). Firstly, the
objective can be shown to be a concave function of µ, by
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using the concavity of the logarithm and noting that taking
expectations will retain the concavity (provided certain mild
technical assumptions on the distributions are satisfied). We
also have

∂

∂µi
EF |G

[
ln

(
1 +

∑K
i=1 µi(G)GiFi

N0

)]

= EF |G

[
∂

∂µi

(
ln

(
1 +

∑K
i=1 µi(G)GiFi

N0

))]

= EF |G

[
GiFi

N0 +
∑K

k=1 µk(G)GkFk

]

where taking the partial derivative inside the expectation is
justified because (see eg. [3])∣∣∣∣∣ gifi

N0 +
∑K

k=1 µk(g)gkfk

pF |G(f |g)

∣∣∣∣∣ ≤ gifi

N0
pF |G(f |g)

and EF |G
[

GiFi

N0

]
< ∞ (since E[Fi] < ∞ by assumption).

Introducing the Lagrange multipliers λi for each of the
constraints (2) and applying the Kuhn-Tucker optimality
conditions [11], we obtain for i = 1, . . . , K:

EF |G

[
GiFi

N0 +
∑K

k=1 µk(G)GkFk

]{
= λi, µi(G) > 0
≤ λi, µi(G) = 0

(4)
We now have the following results:

Lemma 1. At most one user should transmit during any
slow fading realisation g(n) ≡ g.

Proof. For a given slow fading realisation g, suppose that
user i is transmitting, ie. µi(g) > 0. Then from (4), we

have EF |g
[

giFi

N0+
�K

k=1 µk(g)gkFk

]
= λi or

gi

λi
EF |g

[
Fi

N0 +
∑K

k=1 µk(g)gkFk

]
= 1.

Consider another user j, where j �= i. Since the Gi’s
are continuous distributions, we will have gj

λj
�= gi

λi
almost

surely, and so

gj

λj
EF |g

[
Fj

N0 +
∑K

k=1 µk(g)gkFk

]

=
gj

λj
EF |g

[
Fi

N0 +
∑K

k=1 µk(g)gkFk

]

�= gi

λi
EF |g

[
Fi

N0 +
∑K

k=1 µk(g)gkFk

]

= 1

where the first equality comes from the Fi’s being identi-
cally distributed. From the optimality conditions (4), this
implies that user j cannot also be transmitting if user i is
transmitting.

Lemma 2. Necessary and sufficient conditions for user i to
transmit are that gi > N0

E[Fi]
λi and gi

λi
>

gj

λj
for all j �= i.

Proof. We prove sufficiency first. Given gi

λi
>

gj

λj
, ∀j �= i,

it is straightforward to show by a contradiction argument
that µj(g) = 0, ∀j �= i. The optimality conditions (4) for
user i therefore become

EFi|g

[
giFi

N0 + µi(g)giFi

] {
= λi , µi(g) > 0
≤ λi , µi(g) = 0 (5)

Assume that µi(g) = 0. Then from (5) we have gi

N0
E[Fi] ≤

λi or gi ≤ N0
E[Fi]

λi. Hence gi > N0
E[Fi]

λi ⇒ µi(g) > 0
(when gi

λi
>

gj

λj
, ∀j �= i), which proves sufficiency.

For necessity, let µi(g) > 0. We have from (4) and the
proof of Lemma 1 that

gj

λj
EF |g

[
Fi

N0 +
∑K

k=1 µk(g)gkFk

]

< 1

=
gi

λi
EF |g

[
Fi

N0 +
∑K

k=1 µk(g)gkFk

]

or gj

λj
< gi

λi
, ∀j �= i. Using (5) again, we obtain

λi = EFi|g

[
giFi

N0 + µi(g)giFi

]
< EFi|g

[
giFi

N0

]
=

gi

N0
E[Fi]

or gi > N0
E[Fi]

λi.

Now following [5], define

eg(µi) = EFi|g

[
giFi

N0 + µi(g)giFi

]
(6)

which equals λi when µi(g) > 0. It is easily seen that
for a given g, eg(µi) is monotonically decreasing in µi,
and hence that µi(g) = e−1

g (λi) exists. Combining all the
above results, we have thus shown the following.

Theorem 3. Under the assumptions of Section 2.1, the op-
timal power control law for user i, for the problem (1)-(3),
is of the form

µi(g) =
{

e−1
g (λi) , gi

λi
>

gj

λj
, gi > N0

E[Fi]
λi, ∀j �= i

0 , otherwise
(7)

where e−1
g (λi) is determined from (6) and λi is chosen to

satisfy the power constraint (2).
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This power control strategy, which states that at most one
user should be transmitting at any time, with the user who
is transmitting the one with the best slow fading conditions
(appropriately scaled by its corresponding Lagrange multi-
plier) and in addition is above a certain threshold, are anal-
ogous to the results of [10], which addressed the case where
perfect side information is available at both the transmitters
and receiver. As in [10], we also have a form of multi-
user diversity, except that now we can only take advantage
of channel flucuations which occur at a slower time scale.
Whether there is a large penalty to be paid will be consid-
ered next.

3 Lognormal-Rayleigh fading example

In this section we will look at a specific example, where
the fast components undergo Rayleigh fading (so that the
Fi’s are exponentially distributed), and slow components
undergo lognormal shadowing. We will take P = 1, N0 =
1, Fi ∼ exp(f∗), Gi ∼ lognormal(µdBi, σdBi), ∀i. The
pdfs (p’s) and cdfs (P ’s) are [8]:

pG(g) = 10
ln 10

√
2πσdBg

exp
[
−(10 log10 g−µdB)2

2σ2
dB

]
, g > 0

PG(g) = 1
2 + 1

2erf
[

10 ln g−µdB ln 10√
2σdB ln 10

]
, g > 0

pF (f) = 1
f∗ exp

(
− f

f∗

)
, f > 0

PF (f) = 1 − exp
(
− f

f∗

)
, f > 0.

We also choose the mean f∗ = 1 (ie. E[Fi] = 1, ∀i) and
σdBi = 8 dB, ∀i, and look at the effects on the sum capacity
for different values of the lognormal parameter µdBi (the dB
mean, which in effect controls the average received SNR)
and the number of users K .

Let us first derive a more explicit expression for calcu-
lating µi(g) = e−1

g (λi). Note that pFi|g(fi|g) = pFi(fi)
since we assumed Fi and Gj to be independent for all i and
j. Conditional on µi(g) > 0, we have from (6) that

λi = EFi|g

[
giFi

1 + µi(g)giFi

]

=
∫ ∞

0

gifi

1 + µi(g)gifi
exp(−fi)dfi

or

λi = gi

[
1

µi(g)gi
− 1

(µi(g)gi)2
exp

(
1

µi(g)gi

)
E1

(
1

µi(g)gi

)]
(8)

for i = 1, . . . , K , where E1(x) =
∫ ∞

x
e−t

t dt is the expo-
nential integral of the first order [1]. Properties relating to
Equation (8), such as uniqueness and limiting results, can be
found in [6] (the Lagrange multipliers are defined slightly

differently however). The constraint equations (2) take the

form
∫ ∞

λi
µi(g)pGi(gi)

∏
j �=i Pr

(
Gj

λj
< gi

λi

)
dgi = 1 or

∫ ∞

λi

µi(g)pGi(gi)
∏
j �=i

PGj

(
λj

λi
gi

)
dgi = 1, i = 1, . . . , K

(9)
The sum capacity (Definition 1), can be written more ex-
plicitly using the power control law (7) as the expression

Ctts =
K∑

i=1

1
2 ln 2

∫ ∞

λi

exp
(

1
µi(g)gi

)
E1

(
1

µi(g)gi

)

× pGi(gi)
∏
j �=i

PGj

(
λj

λi
gi

)
dgi (10)

3.1 Symmetric case

In the symmetric users case, we assume that all the slow
fading distributions Gi’s are identically distributed. By
symmetry, this implies that all the Lagrange multipliers are
equal, ie. λi = λ, ∀i. (8) reduces to the single equation

λ = gi

[
1

µi(g)gi
− 1

(µi(g)gi)2
exp

(
1

µi(g)gi

)
E1

(
1

µi(g)gi

)]
(11)

The constraint equations (9) also simplify to the single
equation ∫ ∞

λ

µi(g)pG(gi)PG(gi)K−1dgi = 1. (12)

Equations (11) and (12) can be used to determine λ and
µi(g), either numerically or via Monte Carlo methods.

We will compare the sum capacities for the following
three schemes.
1. Power control using slow fading information only
The sum capacity (10) simplies to

Ctts =
K

2 ln 2

∫ ∞

λ

exp
(

1
µi(g)gi

)
E1

(
1

µi(g)gi

)
× pG(gi)PG(gi)K−1dgi

where λ and µi(g) are determined using (11) and (12).
2. No power control
The sum capacity with no power control, Cnpc, can be ex-
pressed as

Cnpc = EG

[
EF |G

[
1
2

log2

(
1 +

K∑
i=1

GiFi

)]]

We are unable to simplify this expression, and direct nu-
merical integration seems to be very challenging, even for
K = 2, thus the results presented here were generated by
Monte Carlo methods.
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Figure 1. Capacity comparisons for K = 1, 4
and 16 users

3. Power control with full channel side information
Let Hi = GiFi, with hi being a realisation of Hi. In the
case where the fast and slow fading are known to both the
transmitters and receiver, the sum capacity is

Cfull =
K

2 ln 2

∫ ∞

η

ln
(

hi

η

)
pH(hi)PH(hi)K−1dhi

where η is determined from the constraint equation∫ ∞

η

(
1
η
− 1

hi

)
pH(hi)PH(hi)K−1dhi = 1.

Results for K = 1, 4 and 16 users, and various values
of µdB, are shown in Figure 1. Monte Carlo methods were
used to used to evaluate Cnpc, while Ctts and Cfull were
numerically evaluated using Mathematica. It can be seen
that Cnpc ≤ Ctts ≤ Cfull, which intuitively agrees with
the notion that having more channel side information at the
transmitters allows us to achieve better throughputs. For
K = 1, the difference between all three schemes is neg-
ligible at large values of µdB. For K = 4 and K = 16,
there is a noticeable gap between Ctts and Cfull at all val-
ues considered. However, when compared to the case with
no power control, the capacity gains of the scheme based
on slow fading only are still substantial, particularly as the
number of users is increased.

3.2 Asymmetric case

We now consider the asymmetric case, where the slow
fading distributions may be different between users. Using
the K equations in (8) and the K equations in (9), we can
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Figure 2. Sum capacity and rates of the users,
for K = 2 and µdB1 = 0 dB
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Figure 3. Probability that user 1 is better than
user 2, for K = 2 and µdB1 = 0 dB

numerically determine the values λi and hence µi(g). Re-
sults will be presented for the two user case. We will fix
µdB1 = 0 dB and vary µdB2. Figure 2 plots the sum capac-
ity (10), together with the rates that each of the two users
contributes to the overall sum, for different values of µdB2.
For µdB2 < µdB1 = 0 dB, user 1 contributes more to the
sum capacity than user 2. As µdB2 increases, the overall
sum capacity increases. Hoewever, the contribution of user
1 decreases, while the contribution of user 2 increases, and
for µdB2 >> µdB1, most of the contribution is due to user
2.

We can also evaluate the probability with which user i is
the ‘best’, ie. Pr(Gi

λi
>

Gj

λj
, ∀j �= i), as

∏
j �=i

Pr
(

Gj

λj
<

Gi

λi

)
=

∫ ∞

0

pGi(gi)
∏
j �=i

PGj

(
λj

λi
gi

)
dgi

(13)
In Figure 3 we plot the probability that user 1 is ‘better’ than
user 2, for fixed µdB1 = 0 dB. For µdB2 = µdB1 = 0 dB,
each user will transmit approximately half of the time. But

5

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 24,2021 at 15:39:03 UTC from IEEE Xplore.  Restrictions apply. 



when one user is much stronger than another, eg. µdB2 >>
µdB1, then the stronger user (user 2) will end up transmit-
ting most of the time, while the weaker user (user 1) will
not transmit very often. Fairness is therefore an issue in the
asymmetric case, and the sum rate may not necessarily the
most appropriate quantity to optimize, c.f. [10]. Also see
[14] for other related practical issues, such as the variable
delay between successive transmissions. In the following
sections, we will mainly concentrate on the symmetric case.

4 Sub-optimal power control schemes

In the case of perfect channel side information at both the
transmitter and receiver [9]-[10], the power allocation law
takes on the relatively simple form µ(h) = 1

λ− 1
h . However,

in the case of the transmitters having only slow fading in-
formation, the power allocation e−1

g (λ) defined by (6) does
not take on a closed form in general and must be found nu-
merically, eg. the transcendental equation (8). This thus
motivates the idea of using simpler power control strate-
gies which hopefully achieves close to the optimal capaci-
ties under ‘good’ channel conditions, whilst still satisfying
the average power constraints. Such favorable conditions
might include cases where there are either a large number
of users in the system (to take advantage of multiuser di-
versity effects), or if the average received SNR is high. In
this section, we consider two simple sub-optimal schemes
which particularly suitable for the symmetric users case.

4.1 Statement of the sub-optimal schemes

Suppose there are K symmetric users in the system and
an average power constraint P for each user. Then we have
the following two sub-optimal power control schemes.

1. Assume that the fast fading takes on its mean and
solve the following problem instead

max
µ(G)

EG

[
ln

(
1 +

∑K
i=1 µi(G)GiE[Fi]

N0

)]

subject to EG[µi(G)] = P , i = 1, . . . , K and µi(G) ≥
0, i = 1, . . . , K .

The solution to this problem is given in [10]. We
then use the obtained µ(G) to evaluate the sum rate

EG

[
EF |G

[
1
2 log2

(
1 +

�K
i=1 µi(G)GiFi

N0

)]]
.

2. At a particular instant n, only the user with the best
slow fading at that time is allowed to transmit, with trans-
mission at the constant power KP . This scheme will satisfy
the average power constraint P , since a given user will have
the best slow fading conditions out of all users 1/K-th of
the time on average. Notice also that there is no need to
determine what the Lagrange multipliers are.

Both policies can be extended to the asymmetric case.
For the first scheme, [10] also provides the solution. For the
second scheme, the best user will again transmit at constant
power, though the powers for each user will be different,
since the proportion of time that each of the users is ‘best’
(13) are different. To determine what the different powers
should be, one would need to know the Lagrange multipliers
λi, which in turn requires us to solve eg. (8). So this scheme
is perhaps not as simple/useful in the asymmetric case.

4.2 Simulation results

The sum rate for the Rayleigh-Lognormal example of
Section 3, using the above sub-optimal schemes, may be
written as

Rsubopt1 =
K

2 ln 2

∫ ∞

0

exp
(

1
µi(g)gi

)
E1

(
1

µi(g)gi

)
× pG(gi)PG(gi)K−1dgi

with

µi(g) =
{ 1

η − 1
gi

, gi > gj , gi > η,∀j �= i

0 , otherwise

∫ ∞

η

(
1
η
− 1

gi

)
pG(gi)PG(gi)K−1dgi = 1

and

Rsubopt2 =
K

2 ln 2

∫ ∞

0

exp
(

1
Kgi

)
E1

(
1

Kgi

)
× pG(gi)PG(gi)K−1dgi.

Table 1 lists numerical figures of the capacity Ctts and
sub-optimal sum rates for fixed µdB = 0 dB and various
values of K . Table 2 lists numerical figures for fixed K = 2
and various values of µdB. We can see that Ctts, Rsubopt1

and Rsubopt2 are very close to each other for the values con-
sidered, and in the cases where the number of users K or the
dB mean µdB gets large, the difference becomes extremely
small (smaller than 10−5 in magnitude). It seems that unless
the channel conditions are very unfavorable, eg. very low
average received SNRs, the proposed sub-optimal power
control policies will give us achievable rates which are close
to optimal. The first sub-optimal scheme also seems to per-
form better than the second, even though the second scheme
is probably simpler. In the following section we will prove
that Ctts → Rsubopt2.

5 Some theoretical results

In this section, we prove a number of results for the sym-
metric case relating to the optimal power allocation scheme
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Table 1. Sum rates for fixed µdB = 0 dB

K Ctts Rsubopt1 Rsubopt2

2 1.29957 1.29843 1.25836
4 2.10578 2.10476 2.09873
8 3.02345 3.02318 3.02273
16 3.94552 3.94548 3.94545
32 4.83875 4.83874 4.83874
64 5.69960 5.69960 5.69960

Table 2. Sum rates for fixed K = 2 users

µdB(dB) Ctts Rsubopt1 Rsubopt2

-10 0.506934 0.506378 0.417615
0 1.29957 1.29843 1.25836
10 2.60070 2.59978 2.59484
20 4.17340 4.17326 4.17307
30 5.81884 5.81884 5.81883
40 7.47751 7.47751 7.47751

derived in Section 2.3, which attempts to provide some in-
sight into why the behaviour of the optimal power allocation
scheme tends towards that of the second sub-optimal policy
of Section 4. By doing so, we will work towards the main
convergence theorem, Theorem 9.

Let Gm ≡ Gm,K = max(G1, . . . , GK) be the random
variable defined to be the maximum slow fading of the K
users. gm will denote a realisation of Gm. Then let µi(g) ≡
µ(gm) > 0 if gi = max(g1, . . . , gK). Firstly we have:

Lemma 4. µ(gm) is a strictly increasing function of gm

Proof. From (6)

λ = EF |gm

[
gmF

N0 + µ(gm)gmF

]

=
∫ ∞

0

gmf

N0 + µ(gm)gmf
p(f)df

=
∫ ∞

0

1
N0

gmf + µ(gm)
p(f)df (14)

which must hold for all gm > N0
E[F ]λ. Consider the expres-

sion
1

N0
gmf + µ(gm)

p(f) (15)

Suppose gm strictly increases. If µ(gm) remains constant,
then (15) strictly increases (as a function of f ), contradict-
ing (14). If µ(gm) strictly decreases, then (15) also strictly
increases, again contradicting (14). So the only possibility
when gm is strictly increasing is for µ(gm) to also strictly
increase.

Lemma 5. lim
gm→∞µ(gm) = 1

λ

Proof. A more direct proof in the case of Rayleigh fast fad-
ing may be found in [6]. The general proof uses the follow-
ing, which is a slight variation of Corollary 5.7 in [3].

Proposition 1. Let f be a function defined on X × [c,∞)
to R such that x → f(x, t) is measurable for each t ∈
[c,∞). Suppose that limt→∞ f(x, t) = f(x) for each x ∈
X , and there exists an integrable function g on X such that
|f(x, t)| ≤ g(x)m, ∀t ∈ [c,∞). Then∫

f(x)dµ(x) = lim
t→∞

∫
f(x, t)dµ(x).

From (6), λ =
∫ ∞
0

gmf
N0+µ(gm)gmf p(f)df must hold for

all gm > N0
E[F ]λ, with λ > 0. Let

a(f, gm) =
gmf

N0 + µ(gm)gmf
p(f), gm ∈ [c,∞)

with c chosen such that c > N0
E[F ]λ, which implies µ(c) > 0.

First we show that µ(gm) is bounded for all gm. For a
proof by contradiction, assume that µ(gm) → ∞ as gm →
∞. Then

lim
gm→∞ a(f, gm) = 0

Moreover,

|a(f, gm)| ≤ 1
µ(gm)

p(f) ≤ 1
µ(c)

p(f)

for all gm ≥ c (by Lemma 4), and 1
µ(c)p(f) is integrable.

We can then apply Proposition 1, to obtain

λ = lim
gm→∞

∫ ∞

0

gmf

N0 + µ(gm)gmf
p(f)df

=
∫ ∞

0

lim
gm→∞

gmf

N0 + µ(gm)gmf
p(f)df

= 0

which contradicts λ > 0. Thus µ(gm) is bounded, and
limgm→∞ µ(gm) exists by Lemma 4.

To find limgm→∞ µ(gm), we use a similar argu-
ment to the above, to obtain limgm→∞ a(f, gm) =(
limgm→∞ 1

µ(gm)

)
p(f) and λ = limgm→∞ 1

µ(gm)

Next we have a number of results which are applicable
when the number of users K → ∞. Statements and proofs
for the high average SNR case are similar, see the end of
this section for some comments.

Lemma 6. Given an ε > 0,

Pr
(

1
λ
− ε < µ(Gm) <

1
λ

)
→ 1 as K → ∞.
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Proof. Let L > 0 be such that 1
λ − ε < µ(gm), ∀gm > L.

The existence of such an L follows from Lemma 5. The in-
equality µ(gm) < 1

λ always holds by Lemma 4 and Lemma
5. Hence

Pr
(

1
λ
− ε < µ(Gm) <

1
λ

)
= Pr

(
1
λ
− ε < µ(Gm)

)
≥ Pr(Gm > L)
= 1 − Pr(Gm ≤ L)

= 1 −
K∏

i=1

Pr(Gi ≤ L)

which approaches 1 as K approaches infinity, since each of
the terms in the product is strictly less than 1 by the un-
bounded support assumption.

Lemma 7. 1
λ → KP as K → ∞

Proof. From the average power constraint, we have∫ ∞

0

µ(gm)p(gm)dgm = KP

Let

A = {gm :
1
λ
− ε < µ(gm) <

1
λ
}

and Ac = [0,∞)\A. Then Pr(A) → 1 as K → ∞ by
Lemma 6. The inequality KP < 1

λ follows easily from the
previous results, and so

1
λ
− KP

=
1
λ
−

∫ ∞

0

µ(gm)p(gm)dgm

=
1
λ
−

∫
A

µ(gm)p(gm)dgm −
∫

Ac

µ(gm)p(gm)dgm

≤ 1
λ
−

∫
A

µ(gm)p(gm)dgm

≤ 1
λ
−

(
1
λ
− ε

)
Pr(A)

Since ε is arbitrary, the result follows.

Corollary 8. Given an ε > 0,

Pr(KP − ε < µ(Gm) < KP + ε) → 1 as K → ∞
Proof. From Lemma 7, we have for sufficiently large K

1
λ
− ε < KP <

1
λ

(16)

Combining (16) with Lemma 6, we obtain

Pr
(

1
λ
− ε < µ(Gm) <

1
λ

)
≤ Pr(KP − ε < µ(Gm) < KP + ε)
→ 1.

Corollary 8 says that as K → ∞, the power allocated
to the best user will lie within ε of the constant value KP
with probability approaching 1, for some arbitrary ε > 0.
Heuristically leting ε = 0 and having each user transmit-
ting at the constant power KP whenever it is the best, then
corresponds to the second sub-optimal scheme proposed.

We can now prove the main result of this section.

Theorem 9. Ctts → Rsubopt2 as K → ∞
Proof. First, note that the sum rates may be written as

Ctts = EGm

[
EF |Gm

[
1
2 log2

(
1 + µ(Gm)GmF

N0

)]]
=

∞∫
N0λ

E[F ]

∞∫
0

1
2 log2

(
1 + µ(gm)gmf

N0

)
p(f)p(gm)dfdgm

and

Rsubopt2 = EGm

[
EF |Gm

[
1
2 log2

(
1 + KPGmF

N0

)]]
=

∞∫
0

∞∫
0

1
2 log2

(
1 + KPgmf

N0

)
p(f)p(gm)dfdgm.

The main idea in the proof is that as K → ∞, we can
use Corollary 8 to restrict ourselves to the cases when KP−
ε < µ(gm) < KP + ε in the expression for Ctts, since the
probability of this occurring tends to 1. To see this, let

B = {gm : KP − ε < µ(gm) < KP + ε}
and Bc = [N0λ

E[F ] ,∞)\B. Then

Ctts =
∫
B

∞∫
0

1
2 log2

(
1 + µ(gm)gmf

N0

)
p(f)p(gm)dfdgm

+
∫

Bc

∞∫
0

1
2 log2

(
1 + µ(gm)gmf

N0

)
p(f)p(gm)dfdgm.

Now by the inequality µ(gm) < 1
λ and Lemma 7, for K

sufficiently large, we will have µ(gm) < KP + ε for all
gm ∈ [N0λ

E[F ] ,∞). Thus µ(gm) < KP − ε, ∀gm ∈ Bc, and it
may then be seen that the contribution

∫
Bc

∞∫
0

1
2

log2

(
1 +

µ(gm)gmf

N0

)
p(f)p(gm)dfdgm

to Ctts will be negligible as K → ∞. That is, as K → ∞,

Ctts →
∫
B

∞∫
0

1
2

log2

(
1 +

µ(gm)gmf

N0

)
p(f)p(gm)dfdgm

(17)
Next we define a function µ′(gm) : [0,∞) → R as

µ′(gm) =
{

µ(gm) , gm ∈ B
KP , otherwise
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Then ∫
B

∫ ∞
0

1
2 log2

(
1 + µ(gm)gmf

N0

)
p(f)p(gm)dfdgm

=
∫

B

∫ ∞
0

1
2 log2

(
1 + µ′(gm)gmf

N0

)
p(f)p(gm)dfdgm

<
∫ ∞
0

∫ ∞
0

1
2 log2

(
1 + µ′(gm)gmf

N0

)
p(f)p(gm)dfdgm

and by (17), we have for large enough K that

Ctts ≤ ∫ ∞
0

∫ ∞
0

1
2 log2

(
1 + µ′(gm)gmf

N0

)
p(f)p(gm)dfdgm

(18)
Using (18) and the fact that Ctts ≥ Rsubopt2 (by definition),
we thus have that as K → ∞

|Ctts − Rsubopt2|
≤

∣∣∣∫ ∞
0

∫ ∞
0

1
2 log2

(
1 + µ′(gm)gmf

N0

)
p(f)p(gm)dfdgm

− ∫ ∞
0

∫ ∞
0

1
2 log2

(
1 + KPgmf

N0

)
p(f)p(gm)dfdgm

∣∣∣
≤ ∫ ∞

0

∫ ∞
0

∣∣∣(1
2 log2

(
1 + µ′(gm)gmf

N0

)
− 1

2 log2

(
1 + KPgmf

N0

))
p(f)p(gm)

∣∣∣ dfdgm

=
∫ ∞
0

∫ ∞
0

∣∣∣ 1
2 log2

(
N0+µ′(gm)gmf

N0+KPgmf

)∣∣∣ p(f)p(gm)dfdgm

Now notice that log2

(
N0+µ′(gm)gmf

N0+KPgmf

)
may be either posi-

tive or negative, depending on whether KP ≤ µ′(gm) <
KP + ε or KP − ε < µ′(gm) < KP . In the case
KP ≤ µ′(gm) < KP + ε, we have∣∣∣log2

(
N0+µ′(gm)gmf

N0+KPgmf

)∣∣∣ ≤ log2

(
N0+(KP+ε)gmf

N0+KPgmf

)
= log2

(
1 + εgmf

N0+KPgmf

)
In the case KP − ε < µ′(gm) < KP , we have∣∣∣log2

(
N0+µ′(gm)gmf

N0+KPgmf

)∣∣∣ ≤ − log2

(
N0+(KP−ε)gmf

N0+KPgmf

)
= − log2

(
1 − εgmf

N0+KPgmf

)
Using the inequality ln(1 + x) ≤ − ln(1 − x), 0 ≤ x < 1
[1], we thus have

|Ctts − Rsubopt2|
≤

∞∫
0

∞∫
0

− 1
2 ln 2 ln

(
1 − εgmf

N0+KPgmf

)
p(f)p(gm)dfdgm

≤ 1
2 ln 2

∞∫
0

∞∫
0

εgmf
N0+(KP−ε)gmf p(f)p(gm)dfdgm

≤ 1
2 ln 2

∫ ∞

0

∫ ∞

0

ε

KP − ε
p(f)p(gm)dfdgm

=
ε

2(KP − ε) ln 2

where we have now used the inequality − ln(1− x) ≤ x
1−x

for 0 ≤ x < 1 [1].
Since |Ctts − Rsubopt2| → 0 as K → ∞ (ε is also arbi-

trary), we are done.

High average SNR case
For the high average SNR (SNR) case, we replace the
statement K → ∞ with the statement SNR → ∞ in
the previous results, the proofs will be mostly very sim-
ilar. The proof of Lemma 6 will hold provided the term
1 − ∏K

i=1 Pr(Gi ≤ L) goes to 1 as SNR approaches infin-
ity. In other words, we need the (slow) fading distribution
to satisfy the condition that for any L > 0, Pr(Gi ≤ L) de-
creases to 0 as SNR increases. This holds for many common
fading distributions, eg. lognormal, Rayleigh. However, if
this condition is not satisfied, then the proof techniques of
Corollary 8 and Theorem 9 will not apply, so there may not
necessarily be convergence between the optimal and sub-
optimal policies. See [2] for such an example in the single
user, single time-scale case.

6 Asymptotic analysis of the sum capacity

From a plot of the figures in Table 1, it seems that Ctts

and Rsubopt2 both scale logarithmically with the number of
users K . In this section we will attempt to study the asymp-
totic behavior of Ctts as K → ∞. Specifically, we show
that Rsubopt2 is upper-bounded by an expression which
will be O(log K) provided a certain condition is satisfied,
and we demonstrate that this condition holds for lognormal
slow fading. By definition, this then implies that Rsubopt2

is O(log K). This also implies that Ctts is O(log K), as
Ctts → Rsubopt2 by Theorem 9. Note that this result does
not say that Rsubopt2/Ctts grows exactly like log K , but
only that Rsubopt2/Ctts cannot grow any faster than log K .

Lemma 10. Let Gm ≡ Gm,K = max(G1, . . . , GK). As
K → ∞, if

E[Gm] = O(Kn)

for some n > 0, then Rsubopt2 = O(log K).

Proof. Recall that using the sub-optimal scheme of Sec-
tion 4, the sum rate may be written as

Rsubopt2 = EGm

[
EF |Gm

[
1
2

log2

(
1 +

KPGmF

N0

)]]
.

As K → ∞, we have

Rsubopt2 ≤ 1
2

log2

(
1 +

KPE[Gm]E[F ]
N0

)

∼ 1
2

log2

(
KPE[Gm]E[F ]

N0

)

=
1
2

(
log2 K + log2 E[Gm] + log2

PE[F ]
N0

)
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where the inequality comes from applying Jensen’s inequal-
ity twice. Noticing that the first term of the expression

log2 K + log2 E[Gm] + log2

PE[F ]
N0

is O(log K) and the last term is a constant, we only need
to ensure that log2 E[Gm] will be O(log K). This occurs
provided that E[Gm] does not grow too quickly with K .
E[Gm] = O(Kn) for some n > 0 will certainly suffice.

We will now show that this condition is satisfied for log-
normal slow fading. Without loss of generality, let each of
the Gi’s have the ‘standard’ lognormal distribution with pdf
and cdf given by

pG(g) =
1√
2πg

exp
[−(ln g)2

2

]
, g > 0

PG(g) =
1
2

+
1
2

erf

[
ln g√

2

]
, g > 0

Following the idea of [14], we will look at the limiting dis-
tribution of Gm as K → ∞. Note however that Lemma
2 as stated in [14] will not actually apply to the lognormal
distribution, as one can show that 1−P (g)

p(g) ∼ g
ln g , which di-

verges as g → ∞. Fortunately, more general statements of
this result as given in eg. [7] does still apply. From [7], we
have the following.

Proposition 2. Let X1, X2, . . . , XK be i.i.d. random vari-
ables with common distribution function P (x). Let ZK =
max(X1, X2, . . . , XK) and HK(x) = Pr(ZK ≤ x). Then
as K → ∞, HK(aK + bKx) converges in distribution to
one of the three distribution functions H1,γ(x), H2,γ(x) or
H3,0(x), where

H1,γ(x) =
{

exp(−x−γ) , x > 0
0 , otherwise

H2,γ(x) =
{

1 , x ≥ 0
exp(−(−x)−γ) , x < 0

H3,0(x) = exp(−e−x), x ∈ R

and aK and bK > 0 are suitable constants.

Technical details, such as the definition of γ, and how to
determine the constants aK and bK , may be found in [7].
For the standard lognormal distribution, it has been shown
that the limiting distribution is of the third type, ie.

Pr(Gm < aK + bKx) → exp(−e−x) as K → ∞ (19)

where the normalising constants aK and bK are

aK = exp
[
(2 lnK)1/2 − 1

2 (2 lnK)−1/2(ln lnK + ln 4π)
]

bK = (2 lnK)−1/2aK

Let Λ be the random variable with cdf PΛ(x) =
exp(−e−x). Then (19) implies that

E[Gm] ∼ aK + bKE[Λ]
= aK + bKγ∗

where γ∗ is Euler’s constant. It is easy to see that E[Gm] =
O(aK) and very roughly that aK = O(K2), so that
E[Gm] = O(K2). A graph of aK indicates that much
sharper bounds are possible, but our rough bound on E[Gm]
is nevertheless sufficient to show from Lemma 10 that both
Rsubopt2 and Ctts are O(log K).
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