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Abstract— We extend our previous work on optimal
dy namic resourc e alloc ation in wireless environments to
inc orporate predic tion of th e freq uenc y -selec tive O F D M
c h annel. We b riefl y summariz e our previous work and
its exploitation of c onvexity for th e resourc e alloc ation
prob lem in point-to-point dig ital wireless c ommunic ation
links. We introduc e c h annel predic tion to overc ome la-
tenc y assoc iated with sy mb ol rec overy , c h annel estima-
tion, and c h annel-state feedb ac k, wh ic h previously re-
stric ted resourc e alloc ation alg orith ms to implementa-
tion in slowly - fading c h annel environments. T h e resourc e-
alloc ation framework is aug mented with c h annel predic tion
func tionality , and we demonstrate its use with a c h annel
model exh ib iting freq uenc y -selec tive fading with a limited
time autoc orrelation. R esults are presented, illustrating
suc c essful implementation, and we c onc lude with an outline
of th e c ourse of future investig ation to make c h annel-
predic tion-b ased resourc e alloc ation a viab le tec h niq ue in
prac tic al O F D M sy stems.

I . I N T RO D U C T I O N

O rth og onal Freq uency D iv ision M odulation (O FD M )

sy stem s are b eing rap idly dev elop ed into p latform s to

serv ice th e ex p loding b andw idth dem ands in em erg -

ing w ireless com m unication netw ork s. C ontem p orary

O FD M im p lem entations include th e IE E E 8 0 2 .11 W iFi

sp ecification, as w ell as th e dig ital v ideo and audio

b roadcasts in E urop e and w orldw ide.

In such sy stem s, th e w ideb and transm ission ch annel

is im p lem ented as a collection of (indep endent) nar-

row b and sub -ch annels, each of w h ich conv ey s a p or-

tion of th e total p ay load data. T h ese sy stem s ty p ically

utilise a fix ed resource allocation sch em e, in w h ich

th e transceiv er op erates using p re-assig ned transm ission

rate/p ow er lev els. T h is h elp s account for th e dy nam ic

b eh av ior of th e w ireless env ironm ent b y allocating ov er-

h ead p ow er lev els so th at th e receiv ed sig nal lev els

(in th e p resence of tim e-v ary ing ch annel conditions)

are sufficient to p rov ide som e desired ov erall q uality

of serv ice (Q oS ) lev el. Alth oug h th is p erform s accep t-

ab ly for b roadcast env ironm ents, th e nature of m ob ile

com m unications m otiv ates an alternate ap p roach . T h e

energ y storag e constraints ty p ically im p osed b y m ob ile

netw ork ing term inals, as w ell as th e p oint-to-p oint com -

m unications scenario ty p ically encountered m otiv ates th e

dev elop m ent of an op tim ised resource allocation sch em e.

T h e auth ors are w ith th e ARC S p ecial Research C entre for U ltra-
Broadb and Inform ation N etw ork s, Affi liated Prog ram of N ational IC T
Australia, U niv ersity of M elb ourne, Australia em ail: {k.prince,
bsk, s.dey}@ee.mu.oz.au.

T h is w ork w as sup p orted b y th e Australian Research C ouncil.

W e consider p oint-to-p oint dig ital O FD M com m uni-

cations in th e p resence of slow ly -dev elop ing freq uency -

selectiv e fading . W e assum e th at th e fading p rocess

h as a non-z ero tim e coh erence, and th at z ero cross-

correlation is ob serv ed in ob serv ations of th e fading

p rocess across different sub ch annels1. W e illustrate th e

ex p loitation of th ese p rop erties to p redictiv ely p erform

resource allocation in such env ironm ents.

O ur consideration of p redictiv e resource allocation

arises from th e rap id ch annel q uality v ariations as-

sociated w ith th e m ob ile w ireless ch annel, in w h ich

th e tim e req uired for ch annel estim ation are sig nifi cant

w h en com p ared w ith th e coh erence tim e of th e ch annel.

T h is results in outdated ch annel state inform ation for

transm ission resource allocation. W e ex p loit th e tim e-

correlation of th e fading p rocess and ap p ly K alm an

fi ltering [1] to p rov ide a forecast of th e fade v alues b ased

on p rev ious (noisy ) ob serv ations of th e fading p rocess.

T h is w ork is p resented as an ex tension of p rev ious w ork

on op tim al resource allocation in th e p resence of fast

fading and com p osite fading in a non-p redictiv e scenario.

T h e nex t section b riefl y describ es th e resource alloca-

tion (or loading ) fram ew ork and h ig h lig h ts k ey asp ects.

W e ch aracterise th e p rediction as a fi ltering op eration,

and illustrate th e resource allocation p rob lem under

such conditions, w h ere th e ch annel is not restricted

to b e statistically stationary . A p-v ector G auss-M ark ov

fading ch annel m odel is im p lem ented for ev aluation of

its p erform ance and results are p resented. Perform ance

lim itations of our fram ew ork are p resented, along w ith an

assessm ent of th e conseq uences of op eration in h ostile

env ironm ents. W e th en discuss im p ortant future direc-

tions of th is p relim inary w ork and offer som e conclu-

sions.

I I . L O AD I N G FRAM E W O RK

W e m odel an O FD M ch annel as a collection of p

discrete narrow b and sub ch annels, each of w h ich affects

th e receiv ed sig nal p ow er, as rep resented b y a tim e-

v ary ing fading coefficient draw n from a statistical fad-

ing p rocess. T h e O FD M ch annel fade p rocess m ay b e

rep resented b y th e random v ector h ∈ R
p assum ing

v alues h(n), and w h ere hi(n) denotes th e v alue of

th e g ain tap ex p erienced on th e ith sub ch annel during

1W h ereas uncorrelated assum p tion th is is not true in p ractice, it
serv es to sim p lify our initial m odel in order to treat each sub ch annel
sep arately . W ith correlated slow -fading p rocesses, w e can only ex p ect
to do b etter at track ing and p redicting th e fade p rov ided som e infor-
m ation on th e b andw idth coh erence function
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transmission of the nth symbol. It is assumed that

the transmission occurs with negligible inter-carrier and

inter-symbol interference.

In order to achieve data transmission over such a

network with a particular QoS, it is required that the

receiver signal-to-noise ratio (SNR) meets or exceeds a

certain threshold (SNRTH ), which is dependent upon the

modulation scheme employed and selected sub-symbol

rate. This phenomenon is exploited by the implemen-

tation of adaptive modulation in time-varying channels,

in which the modulation rate Ri(n) and transmit power

Pi(n) on the ith subchannel are selected such that the

SNRTH associated with the desired QoS will be satisfied.

The (Ri(n), Pi(n)) operating point selected for the ith

subchannel during the nth interval depends on the value

assumed by the subchannel fade hi(n). It is assumed that

the rate assigned for transmission on a given subchannel

is selected from some closed set (which may or may not

be constrained to integer values) and that it is possible to

abandon a given subchannel by the assignment of zero

bits. For now, we assume that it is possible to select

any non-negative transmit power Pi(n) with which to

transmit a given sub-symbol, subject to some overall

maximum power constraint PMAX . H ence,

0 ≤ Pi(n) ≤ PMAX , Ri(n) ∈
{

0, r1, · · · , rL−1

}

, ∀ i, n
(1)

The aim of the resource allocation algorithm is to

accept each h(n) and select the rate/power conditions for

transmission of the OFDM symbol x(n) to achieve the

desired QoS. We select error probability Pe as the QoS

metric for our analysis2. For a single subchannel, the

resource allocation is trivial and the maximum allowed

rate is bound only by the power constraint Pi ≤ PMAX ,

SNRTH (rj) thresholds, and hi(n). Optimisation over the

p sub-symbols introduces additional complexity, as each

Pi is now bound by the sum of the other (Pj 6=i)’s such

that PMAX ≥ PT :=
∑p

i=1 Pi. The total rate RT of the

OFDM symbol is defined as RT :=
∑p

i=1 Ri.

Two possible (and popular) approaches to loading an

OFDM system are considered: Rate Maximisation and

Margin Maximisation. Rate Maximisation Allocation

(RMA) aims to maximise the symbol rate subject to total

symbol power PMAX and subchannel error probability

Pe,t constraints. H ence,

m a x RT s.t. PT ≤ PMAX and Pe,i ≤ Pe,t ; ∀ i
(2)

For Margin Maximisation Allocation (MMA), the per-

formance margin is defined as the excess SNR achieved

during transmission of a digital symbol, relative to the

minimum required SNR to achieve a particular Pe,t.

Since margin represents a scaling of the allocated Pi’s,

the solution to this problem may be found by evaluating

the minimum power allocation required to satisfy the rate

2Pe may be defined in terms of bit error rate (BER) or the symbol
error probability (SEP) or an outage probability.

RDES and Pe,t:

m in PT s.t. RT = RDES and Pe,i ≤ Pe,t ; ∀i (3)

and then scaling the power of this solution appropriately

until the total power budget is used. Assuming that the

information in each subchannel is equally important,

equal margin may be allocated across all subchannels

by factor ϕ = PMAX / PT .

The following analysis is detailed in [2]– [3]. We

consider the MMA problem defined in (3), and assume

a convex rate-power relationship as is true in general.

We can use Lagrange multipliers and the Kuhn-Tucker

conditions to characterise the optimal solution. The con-

strained optimisation problem can be converted into an

unconstrained optimisation problem (4 ), where J(λ) is

the Lagrange cost and λ ≥ 0.

m in J(λ) =

N
∑

i=1

Pi + λ

(

RDES −

N
∑

i=1

Ri

)

(4 )

For fixed λ, J(λ) corresponds to the minimum power

required to satisfy some RT, and which is achieved with

a same-slope solution ( ∂ P i

∂ R i
= λ) for each subchannel

[2]. The algorithm’s goal is to find a λ∗ which achieves

the target RDES.

As the rj ’s are drawn from a discrete set, the (digital)

solution may be found by relaxing the solution of the

continuous problem to find the appropriate (Ri, Pi)
values. This discrete relaxation does not alter the con-

vexity of the objective function, and the optimisation

for this problem follows as above, except that in our

consideration the derivatives are replaced by differentials

di(rj), the (∆power)/(∆rate) between adjacent operating

points rj−1 and rj . Each segment of the continuous-

valued λ range is associated with an operating point

solution for target rate,

Ri =

{

rj , di(rj) ≤ λ < di(rj+ 1)
0, λ < di(r1).

(5)

Considering the SNRTH (rj) to fulfil the target Pe for

a particular rate rj as defined by,

S N Ri =
Pi|Hi|

2

2σ2
i

= Pi · C N Ri, (6)

it is noted that the Pi required to achieve SNRTH (rj)
is inversely proportional to the c h annel-to-nois e ratio,

CNRi. Provided that the observed values of CNRi affect

signal transmission independently of other properties of

the subchannel, the operating points may be defined in

terms of SNR/rate tuples. This modifies the criteria for

operating point selection (7), where β(rj) := di(rj) ·
C N Ri .

Ri =

{

rj ,
λ

β(rj+1)
≤ 1

C NR i
< λ

β(rj)

0, λ
β(r1)

< 1
C NR i

.
(7)

These boundaries are no longer subchannel dependent,

which greatly reduces the computation load of imple-

mentation [3]. For a given λ, L − 1 lookup table
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boundaries may be computed, and (CNRi)
−1 is used

to find Ri.

This simplification depends on an underlying scalabil-

ity of the desired rate/power points across subchannels,

in a unit-fading environment (AWGN). This may be

formally stated; A load ing problem has scalability across

su bchannels if the Q oS can be w ritten as a fu nction of

only (Ri = rj) and (ζi · Pi) for all i, j , w here ζi is

a k now n param eter w hich com pletely characteriz es the

ex act or statistical natu re of each su bchannel. If the

channel conditions are known, then ζi is the CNRi as

above. In the case of a fading environment, ζi may be

related to a statistical parameter of the fading process

[3]. In the case where the exact channel conditions are

replaced by a reliable estimate, then this estimate may

be used to determine the ζi parameter.

The loading algorithms in [2]– [3] are not only op-

timal, but are very computationally efficient with run

times exhibiting O(p) complexity. A major factor in the

complexity reduction is the scalability property, and this

is expected to hold in many predictive scenarios/models

as well. In addition, our loading approach offer a low-

complexity ability to track small or moderate channel

changes, which is critical for a predictive channel sys-

tem.

III. CHANNEL PREDICTION

We consider the adaptation of our framework to

integrate channel prediction. In the previous sections,

we outlined that the solution to the resource allocation

problems (2), (3) could be evaluated by comparing the

inverse channel to noise ratio (a linear function of the

fade intensity observed on the channel and the observed

channel noise power) with the scaled rate/power deriva-

tive of the objective function (5).

We assume our OFDM channel can be described as

the product of some fast-fad ing process and one which

produces slow fad ing. We assume that the slow fading

process is dominant and independent of the fast-fading

process, which is assumed to vary so quickly that it

is impossible to track or predict for resource allocation

purposes. The effects of the fast-fading process can be

averaged out to focus solely on the slow-fading process

for our loading problem. The dominant (slow) fading

process produces observations which exhibit a time-

autocorrelation function that does not rapidly fall to zero.

This time-correlation may be exploited by the implemen-

tation of predictive filtering to provide a reliable estimate

of channel conditions during the future transmission

instant of a desired symbol. This estimate may then

be used to determine resource allocation parameters for

the transmission of this future symbol. The appeal of

such a predictive resource allocation is that it allows an

appreciable time to lapse between the sampling of the

channel state (during which time the resource allocation

algorithm amy be executed, and the solution passed

from receiver to transmitter node) and the realisation

of the predicted channel state, which is essential for

implementing adaptive modulation in rapidly-varying

channel environments. Such a scheme would adaptively

allocate transmission resources such that the solution

of the allocation problem would be closely matched

with the state assumed by the channel at the symbol

transmission instant.

Our aim is to provide reliable estimates of the val-

ues to taken by the channel fading process s during

the transmission of a given symbol x, based on prior

observations. Recent progress has been made in the

application of predictive filters to estimate future values

of the channel fading process observed on wireless

channels [4], [5]. Linear Recursive-Least-Square error

(RLS) filtering was utilised in [4], and Kalman filtering

was employed in [5]. We implemented Kalman filtering,

as this provides better performance than linear filters in

the presence of statistically non-stationary environments,

and those with significant added noise [6].

In our OFDM channel model, we assume that per-

fect receiver phase compensation is possible, or that

the receiver is able to remove transmission phase-

distortion effects. We assume that the wideband channel

experiences time-varying frequency-selective fading and

that the fading process affecting this channel exhibits

correlation between successive symbol intervals. No

long-range dependency is assumed for the fading pro-

cess. This allows the framework to be applicable across

a wide range of fading process models. Additionally, no

assumptions will be made at this stage regarding the

correlation of the fading processes observed on any pair

of subchannels.

We characterise the channel as introducing fading such

that the exponent of the actual fade coefficient assumes

values derived from a Gauss-Markov random process.

We can characterise this exponent as s(n) ∈ R
p, where

s(n) = As(n − 1) + Bu(n) (8)

where A ∈ R
p×p is the (known) state transition matrix,

B ∈ R
p×p is the (known) input gain matrix, which

modulates the Gaussian excitation process, u(n) ∈ R
p.

Without loss of generality, we assume that u v N (0,Q).
The time autocorrelation of s falls rapidly:

Rs(τ) := E[s(n)s(n + τ)] = 0 , ∀ | τ |≥ 2 (9)

The initial state vector, s(−1) v N (µs,Cs) is also

assumed independent of all u(n). Each realisation (s(n))
is observed in the presence of a zero-mean additive white

noise process (w), the observations (h(n) ∈ R
p×p) thus

given by

h(n) = D(n)s(n) + ε(n) (10)

where D(n) ∈ R
p×p is the (known) observation matrix,

and the pertu rbation v ector ε(n) v N (0,C(n)). The

Gaussian nature of the perturbation prevents any direct

prediction of h(n): the expected value of the predicted
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h(n) will therefore be derived from a prediction of the

s variables.

Following [7], the minimum-mean-square error

(MMSE) estimate of s(n), denoted ŝ(n), based on

previous observations of x(·) is provided by Kalman

filtering:

1) Prediction:

ŝ(n | n − 1) = Aŝ(n − 1 | n − 1) (11)

ĥ(n | n − 1) = Dŝ(n | n − 1) (12)

2) M iniumum Prediction M SE ( M PM SE ) M atrix :

M(n | n − 1) = AM(n − i | n − 1)A′ + BQB′

(13)

3) K alman G ain M atrix:

K(n) = M(n | n − 1)D′(n)·

[C(n) + D(n)M(n | n − 1)D′(n)]−1

(14)

4) C orrection:

ŝ(n | n) = ŝ(n | n − 1)+

K(n)[x(n) − D(n)̂s(n | n − 1)]
(15)

5) M M SE M atrix :

M(n | n) = [I − K(n)D(n)]M(n | n − 1) (16)

The algorithm was initialised with ŝ(−1 | −1) = µs

and M(−1 | −1) = Cs. To implement longer-range

prediction, (17) gives the MMSE estimate of ŷ(d + n) |
d > 0.

E[ĥ(n + d) | x(0), · · · ,x(n)] = DAd−1ŝ(n + 1)
(17)

IV . PREDICTIV E LOADING

We applied the framework developed above to im-

plement prediction in the presence of Gauss-Markov

fading (8), (10). From (9),we observed that the co-

herence time of such a channel limits the filtering to

single-step prediction. Our prediction will therefore be

refreshed at each symbol interval. Such rapidly-decaying

time correlation would not typically be encountered in

practise, but serve to establish reasonable worst-case

bounds on the operation of predictive allocation schemes.

The increased coherence time of more practical channels

would enable longer range prediction to be implemented

(17), and would reduce the frequency of the channel

estimation and prediction operations.

We considered an OFDM system with p = 128
subchannels. Channel effects varied the receive power

by a factor h, as given in (10). We assumed reception

in a unit noise power environment, and thus the values

h(n) also correspond to receiver SNR. For stability,

A = 0.9 8 I, where I ∈ R
p×p is the identity matrix. We

also set B = I, and the observer was given access to all

state variables (D = I). We assumed a worst-case (in

terms of computation load) uncorrelated channel fading.

Following the Log-Normal shadowing model observed in

[8], we selected u to be a zero mean Gaussian random

vector with a variance Q = σ2
ui

I, where σ2

ui
= 11d B.

The p ertu rb a tio n ε wa s a ls o a s s u m ed to b e a z ero - m ea n

u n c o rrela ted G a u s s ia n ra n d o m v ec to r o f len g th p, a n d

wa s a s s ig n ed a v a ria n c e o f 10−3. The K a lm a n p red ic tio n

a lg o rithm (1 1 )-(1 6 ) wa s in itia lly es ta b lis hed with a u n it

p red ic tio n ho riz o n - the a lg o rithm wa s g iv en a c c es s to

v a ria b les u(τ) a n d h(τ) (0 ≤ τ ≤ n) to d eterm in e

s(n + 1).

W e d es ired to im p lem en t the M M A (3 ) to a c hiev e

a ta rg et s y m b o l ra te o f RT = 3 8 4 b its /s y m b o l, whic h

wo u ld req u ire a n a v era g e v a lu e E[Ri] = 3 b its . O u r

ta rg et erro r p ro b a b ility wa s Pe = 1% . A s a m p le o f the

res u lts (f o r o n ly a s u b s et o f f o u r s u b c ha n n els ) is s ho wn

in F ig . 1 .
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1: P red ic ted C N R a n d R es u ltin g R a te Allo c a tio n

F ig . 1 A (to p d ia g ra m ) s ho ws a s a m p le o f the p red ic ted

v a lu es o f the tim e d ev elo p m en t o f the c ha n n el g a in

c o n d itio n s o b s erv ed in f o u r s u b c ha n n els (i = 1 − 4)

(o rd in a te) p lo tted a g a in s t a n in d ex o f tim e (a b s c is s a ).

F ig . 1 B (lo wer d ia g ra m ) s ho ws the c o rres p o n d in g M M A

ra te a llo c a tio n f o r thes e s u b c ha n n els f o r the s a m e tim e

in terv a l a s a b o v e. The thres ho ld s in d ic a ted b y S N R (1 )

a n d S N R (6 ) c o rres p o n d to the S N R TH v a lu es f o r rj =
1 a n d rj = 6 res p ec tiv ely , a t the ta rg et Pe. O ther

thres ho ld s were n o t d is p la y ed f o r the s a k e o f c la rity ,

a n d lie b etween thes e two v a lu es . N o g ra p hic a l res u lts

were p res en ted f o r the p red ic tio n erro r p ro c es s
(

Σ(n) :=

h(n)− ĥ(n)
)

a s its tim e d ev elo p m en t res em b led a z ero -

m ea n G a u s s ia n ra n d o m p ro c es s with c o v a ria n c e o n the

o rd er o f 10−3 a lo n g the m a in d ia g o n a l, a n d z ero f o r a ll

o f f - d ia g o n a l elem en ts .

F ro m F ig . 1 , we o b s erv e the o p era tio n o f the d y n a m ic

M M A s c hem e, whic h v a ried ea c h s u b s y m b o l (Ri) to

rea lis e the req u ired RT a t the ta rg et Pe. The s u b c ha n n el

(Pi)’s a re s c a led to a c hiev e a u n if o rm m a rg in a c ro s s

2 6 3
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subchannels and hence the values of Pi(n) were not

presented. It was observed that the changing values

observed for ĥ values produced appropriate loading

conditions (Ri(n), Pi(n)), and that instances of ĥi(n) <

SNR(1) resulted in channel abandonment. These and

other observations indicate that the MMA is correctly

implemented in this environment.

We also noted that the average transmit power required

to satisfy similar Po requirements with fixed resource

allocation at an equivalent symbol rate (here, Ri = 3bit)

was much greater the maximum Pi values allocated

using MMA. These observations indicated correct im-

plementation of predictive resource allocation in OFD M

communications over the wireless mobile channel.

V . ANAL Y SI S

A. Prediction Operation

The Kalman predictor is an implementation of an IIR

filter. Steady-state analysis of the predictor operation

(following [7 ]) yields a measure of error performance.

From (8 ), as n → ∞, the Kalman filter asymptotically

becomes an L TI filter provided that C(n) = C. As

n → ∞ we denote K(∞) as the Kalman gain, M(∞)
as the MMSE , and Mp(∞) as the MPMSE (steady-state

values). It has been shown that

M(∞) =C(AM(∞)A′ + Q)·
(

AM(∞)A′ + Q + C
)

−1 (18 )

and that the steady-state transfer function is

H∞(z) = K(∞)
(

I − A(I − K(∞))z−1
)

−1
(19 )

The innov ation3 of the output is therefore,

h̃ = h(n) − Iŝ(n | n − 1)

= h(n) − Aŝ(n − 1 | n − 1)A
(20 )

Considering ŝ(n | n) (as n → ∞) as the output of a

filter with gain H∞(z) excited by x(n), we note that

the transfer function relating h(n) to h̃(n) is

Hw(z) =
(

I − Az−1
)(

I − A(I − K(∞))z−1
)

−1

(21)

The PSD of h(n), Phh(f), is given in (22), and the PSD

of the prediction filter output4 is given by (23).

Phh(f) = Ps s (f) + C (22)

Pŝŝ(f) = Hw(f)Ps s (f)H′

w(f) (23)

D enoting C
h̃

as the covariance of h̃, the prediction filter

error PSD is thus

Ph̃h̃(f) = C
h̃

(

Hw(f)H′

w(f)
)

−1
(24)

As n → ∞ therefore, the PSD of the filter error be-

comes fl at, and its magnitude is less than the innovation

variance [7 ] .

3 I NNOV ATI ON is defined as the “ new” information in the actual
output value; orthogonal to all previous observations of h

4where Hw(f) = Hw

`

e x p (j2π f)
´

.

B . L oading Operation

The reduction of the steady-state PSD allows success-

ful implementation of this method of channel prediction,

even in cases where the system parameters are non-

stationary (which may be observed when mobile users

move through varying environments). For Gaussian in-

puts, the error of the prediction filter will be a white zero-

mean Gaussian random vector, having covariance less

the covariance of the prediction filter input. It is trivial to

show that the predicted value of x will exceed its actual

value approximately half of the time, which will allow

the algorithm to allocate resources in a more conservative

manner than actual conditions would require, resulting in

no Q oS violations in the system.

The variance of the predictor error may be minimised

when the filter is allowed to sample h(n) frequently

compared to its rate of evolution. This reduces the

variance in successive h(n) values, by reducing the

range of possible variation between successive samples,

increasing observed correlation. Sampling theory would

best guide the selection of an appropriate measurement

time horizon for observation of the fading process.

Fulfilment of this condition will produce optimal re-

source allocation.

V I . FU TU RE WORK

This experiment outlined and assessed the perfor-

mance of a resource optimisation scheme based on

single-step prediction of a channel with especially short

coherence time. It is straightforward to develop the

introductory model introduced in this paper to for longer-

range channel prediction, and ultimately for the eval-

uation of the application of these methods to realistic

channel fading data. This will also allow us to accu-

rately determine the actual parameters of the prediction

error process (Σ) and to evaluate the performance of

procedures to mitigate error effects on the Q oS of the

transmission link. Predicting too far ahead will have

consequences on performance due to higher prediction

error, while a short-range prediction may not still lag the

true channel in a practical system with latency. We plan

to analyse this tradeoff, and include practical limitations

such as a limited amount of noisy subchannel estimates.

We are also investigating the further optimisation of

the resource allocation algorithm by the analysis of the

time-varying optimal L agrange parameter (λ∗(n), used

to determine the optimal resource allocation scheme for

transmission of symbolx(n)) and the implementation

of predictive filtering on this parameter as well. We

anticipate that successful implementation of this function

will further enhance computational efficiency of the

resource-allocation determination.

We are additionally investigating the performance of

predictive loading utilising alternate prediction schemes

(e.g. Wiener, L inear RL S filtering), in an effort to

determine an optimal, or an attractive near-optimal,

predictive resource allocation scheme for digital OFD M
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transmission in wireless channels.

VII. CONCLUSION

We have presented a framework for OFDM resource

allocation in a dynamic fading environment with channel

prediction. We have demonstrated this model with min-

imal requirements on the time auto-correlation of the

fading process, and no consequential assumptions made

on the nature of the cross-correlation of the fading levels

observed on individual subchannels.
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