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Abstract—Solving a resource allocation problem in a dis-
tributed way requires communication between the system and
its users. This information exchange is, however, limited by
communication constraints, delays, and distortions in most
practical problems. This paper presents a quantitative analysis
of information (flow) in a well-known distributed resource
allocation algorithm using concepts from Shannon information
theory. For this purpose, an entropy-based measure is adopted
to quantify information which is defined as uncertainty re-
duction. Then, information flow in a certain class of iterative
algorithms is studied. The relationships between the rate and
total amount of information exchanged, and convergence of
the algorithm are investigated under certain assumptions. The
concepts introduced and the obtained results are illustrated
using numerical examples.

I. INTRODUCTION

Distributed resource allocation problems are encountered

in a wide variety of systems ranging from electrical power

grid to communication networks [4], [13], [24], [27]. Their

common characteristics include heterogeneous preferences of

individual users sharing the limited resources and the de-

sirability –sometimes necessity– of a decentralized solution

which involves information exchange between the users and

the system. Iterative, e.g. gradient, algorithms have been used

in the literature extensively to address such problems [3],

[14], [16], [17], [27], [29].

Although most of the iterative resource allocation schemes

in the literature involve communication between the users

and the system, the information aspect of the problem is

often treated only implicitly. As a rare example, the effect of

using single-bit marks for signaling link price information

is investigated in [7] in the specific context of congestion

control. While recent works on networked control with infor-

mation constraints [11], [12], [15], [18], [20]–[22], [25], [28]

study the interplay between stability and information, they

do not focus on explicitly quantifying information flow in the

context of distributed resource allocation using information-

theoretic concepts.

This paper presents an initial set of results on quantify-

ing information explicitly in iterative (gradient) algorithms

for distributed resource allocation using concepts from in-

formation theory. Iterative methods which converge to a

unique solution, especially the well-known primal (gradient)
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algorithm [17], [27], are analyzed to illustrate the concepts

introduced. Building upon the earlier results on the role infor-

mation plays in optimization [1], [2], an information measure

based on the concept of uncertainty reduction is defined to

quantify the information gain, and hence information flow, in

the iterative algorithms analyzed. Specifically, entropy power

[26] which is closely related to differential entropy is utilized

as a measure of uncertainty.

The results presented in this paper constitute an initial

step toward answering challenging questions such as (1)

what are the information-related implications of iterative

algorithms? (2) how to quantify information flow and the

effects of information limitations? (3) how to design optimal

communication systems for distributed resource allocation?

A better quantitative understanding of information will help

answering these questions through a novel synthesis of

distributed optimization, learning, and information theory.

The main contributions of the paper are:

1) Establishing the relationships between the convergence

of a certain class of iterative algorithms for distributed

resource allocation and the information gain at each

iteration.

2) A novel use of information-theoretic concepts such

as entropy power and Shannon information (defined

as uncertainty reduction) in the context of distributed

optimization.

3) Quantitative analysis of information flow in (primal)

gradient algorithms under communication limitations.

4) Investigation of the trade-off between the total amount

of information (data) exchanged until convergence of a

distributed algorithm and the information rate (at each

iteration) under certain simplifying assumptions.

The rest of the paper is organized as follows. The

next section provides an overview of a well-known dis-

tributed resource allocation problem and its iterative solution.

Section III introduces basic information-theoretic concepts

within the context of the problem considered. A set of results

on the relationship between the convergence properties of

the iterative algorithm and their information implications are

presented under the assumption of perfect communication

(with infinite bandwidth) between the system and users.

Subsequently, Section IV quantifies the information flow in

the system and explores the trade-off between total amount

of data exchanged until the algorithm converges versus

the communication limitations. The paper ends with the

concluding remarks and a discussion on the future work in

Section V.
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II. A DISTRIBUTED AND ITERATIVE ALGORITHM FOR

ALLOCATION OF A SINGLE RESOURCE

The problem of allocating a limited resource to indepen-

dent users arises in a variety of systems. A representative

example is distributing a fixed divisible quantity C such as

bandwidth, water, or energy to a set of N users, A. Let the

scalar xi ≥ 0 denote the share each user i ∈ A receives from

the resource, C. Then, the resource constraint is formulated

as
N
∑

i=1

xi ≤ C. (1)

Assuming that every user has a possibly different prefer-

ence for the resource, the preference of user i is captured by

the utility function Ui(xi) : R
+ → R, which is assumed to be

continuous, twice-differentiable, and concave for analytical

tractability. Concavity property of the utility function is

motivated by the fact the marginal “utility” decreases for a

large variety of resources. In some settings, even the actual

utility may decrease capturing the situation where having too

much of the resource has a negative effect on the user, e.g.

having too many pieces of pie results in stomach pain, if

the resource shared is a big pie. Based on the preferences

of users, U , a commonly used objective is to maximize the

aggregate utility of the users under the resource constraint

(1), which leads to the optimization problem:

max
x

V (x) =
∑

i

Ui(xi) subject to
∑

i

xi ≤ C, (2)

where x = [x1, . . . , xN ].
The “system problem” in (2) is a “convex” optimization

problem due to concavity of Ui ∀i. Hence, it can be solved

using standard methods in a centralized manner [10] yielding

the unique solution (x∗, λ∗), if the system knows the private

preferences of all the users.

The Lagrangian function associated with (2) is

L(x) =
∑

i

Ui(xi) + λ

(

C −
∑

i

xi

)

,

where λ > 0 is a scalar Lagrange multiplier.

In many resource allocation problems there is no way of

directly asking users of their preferences and a decentralized

solution to (2) is more desirable or even necessary. For this

purpose, the objective function V (x) is decomposed [9] to

obtain N convex user optimization problems:

max
xi

Ui(xi). (3)

If each user solves (3) independently, then the resource

constraint (1) may be violated, which results in a lose-lose

situation for participants called “tragedy of commons” or

“the price of anarchy” [23]. Therefore, the users should

be informed of the resource limitations and be given an

incentive to act accordingly. A standard way of addressing

this issue is to modify the user problem by introducing a

signaling or “pricing” term leading to

max
xi

Ui(xi)− pxi, (4)

where p acts as an incentive signal effectively imposing the

resource constraint. It was shown in [5], [6] that a linear

signaling term is sufficient. Next, the signal p is chosen such

that the global system problem (2) is aligned with theN local

user problems (4). Due to convexity of user problems, the

first-order necessary and sufficient condition dUi/dxi−p = 0
indicates that simply choosing p = λ results in the desired

alignment. Hence, the problem reduces to finding λ∗ = p∗

in a distributed way.
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Fig. 1. A visualization of the distributed system in Algorithm 1. The
communication between the system node and users may be imperfect in
many problems.

A solution to the joint user and system problem is provided

by the iterative distributed optimization scheme summarized

in the Algorithm 1, which is visualized in Figure 1 and

represented by the mapping T : RN+1 → R
N+1,

Users: xi(t+ 1) = fu
i (xi(t), λ(t)), i = 1, . . . , N,

System:λ(t+ 1) = fλ(x(t), λ(t)),

⇐⇒ z(t+ 1) = T (z(t)) , t = 0, 1, . . .

(5)

where the variable z := [x, λ] is defined for notational

convenience.

Algorithm 1 Iterative Distributed Optimization Algorithm

1: repeat

2: System: observe user actions, xi ∀i or
∑

i xi.

3: System: update the signal λ (= p)
taking into account

∑

i xi and C.

4: for User i ∈ A do

5: update xi by solving the user problem (4).

6: end for

7: until z = (x, λ) converges to z∗ = (x∗, λ∗), the unique
solution of the system problem (2).

The iterative approach of Algorithm 1 (5) is applicable

to a broad class of problems. For example, one or multiple

users can collaboratively act as a virtual “system node” if

there is no physical node to handle this task. An underlying

assumption here is that although users have their own prefer-

ences, they do not try to cheat the system by misrepresenting

them. The research field of mechanism design investigates

that problem [19], which is outside the scope of this paper.

III. INFORMATION GAIN IN ITERATIVE ALGORITHMS

The first step towards analysis of Algorithm 1 using

an information-theoretic approach is to define the vector
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z∗, which is the (unique) solution of (5), as the unknown

quantity to be “learned”. For most problems, z belongs to

a broad compact set Z := [0,Ψ]N+1, where Ψ is chosen

sufficiently large such that xi ≤ Ψ ∀i and λ ≤ Ψ. The

maximum uncertainty of z, i.e. complete lack of information,

is captured by choosing φ0(z), the joint probability density

function (pdf) on Z , as uniform. The next definition presents

information-theoretic measures relevant to the problem.

Definition 1. Let φ(z) be the uniform joint probability

density function (pdf) on Z := [0,Ψ]N+1 that captures the

uncertainty of the vector z ∈ Z due to not knowing its actual

value, z∗ ∈ Z , which is the (unique) solution of (5). Then,

the following hold:

1) A variant of entropy power [26], he(z) : Z → [0,∞),
defined as

he(z) := e
1

N+1
h(z)

quantifies the uncertainty of z ∈ Z , where

h(z) = −

∫

Z

φ(z) log (φ(z)) dz

is the differential entropy.

2) The maximum uncertainty of z ∈ Z is

he
0(z) = Ψ.

Here, entropy power [26] is used to measure the uncer-

tainty of z instead of differential entropy because it has a

bounded range whereas differential entropy may diverge to

negative infinity in some cases.

Next, the information gain on z(t) after each iteration is

defined as a reduction in its uncertainty using Definition 1.

Definition 2. The information gain at iteration t of Al-

gorithm 1 (and mapping (5)) is defined as the difference

between the uncertainty (entropy power) before and after

the iteration,

I(t+ 1) := he(z(t))− he(z(t+ 1)).

The information metric in Definition 2 is related to yet

different from standard mutual information I(X;Y ) =
h(X) − h(X|Y ) between two random continuous variables

X, Y with a joint density function. In this case, the result of

the iteration at time t implicitly plays the role of the hidden

variable Y , which leads to a slightly different interpretation

of information outside the context of communication.

The following straightforward yet important result es-

tablishes a relationship between the geometric convergence

of the Algorithm 1 and the information obtained at each

iteration of the mapping (5).

Theorem 3. Let the mapping z(t+ 1) = T (z(t)) in (5) be

a contraction

‖T (z1)− T (z2)‖∞ ≤ αt ‖z1 − z2‖∞ , ∀z1, z2 ∈ Z,

where α ∈ [0, 1) and ‖·‖
∞

denotes the maximum (infinity)

norm. Define the infinite sequence

{αt := ‖z(t+ 1)− z∗‖
∞

/ ‖z(t)− z∗‖
∞

, t = 1, 2, . . .}

Then, the following hold:

1) The mapping T has a unique fixed point z∗ ∈ Z .

2) The iteration z(t + 1) = T (z(t) converges to z∗

geometrically from any starting point z(0) ∈ Z ,

‖z(t)− z∗‖
∞

≤ αt ‖z(0)− z∗‖
∞

, ∀t ≥ 0.

3) The entropy power he(z(t)) is bounded by

0 ≤ he(z(t)) ≤ he
0 e

−t(N+1) ln(1/α),

and converges to zero

lim
t→∞

he(z(t)) = 0.

4) The information gain converges to zero,

lim
t→∞

I(t) = 0.

Proof. [Overview]

Parts 1) and 2) directly result from Proposition 1.1 in [8,

Chap 3. pp 182].

Part 3) follows from 2) and Definition 1. The differential

entropy of z is bounded above by

h(z(t)) ≤ min
[

∑N
i=1 ln(α

t2 |x(0)− x∗

i |)

+ ln(2αt |λ(0)− λ∗|), (N + 1) ln(Ψ)]

≤ −t(N + 1) ln(1/α) + (N + 1) ln(Ψ)

≤ h0 − t(N + 1) ln(1/α).

Part 4) immediately follows from Part 3) and Definition 2.

Numerical Example 1 [Information Gain]:

Consider a gradient algorithm as a special case of (7),

with C = 100, µ = 0.01, and Ui(xi) = αi log(xi) such that
∑

i αi = 100. The following evolution of the Lagrangian

multiplier

λ(t+ 1) = λ(t) + µ

(

100

λ(t)
− C

)

. (6)

admits the unique solution λ∗ = 2. Let λ(0) = 4 which

results in the initial (maximum) uncertainty he
0 = 4. The evo-

lution of uncertainty of λ and the information gain for each

iteration of (6) are depicted in Figures 2 and 3, respectively.

It can be observed in Figure 3 that limt→∞ I(λ(t)) = 0.

IV. INFORMATION FLOW IN GRADIENT ALGORITHMS

In Section III, Theorem 3 presents an information-

theoretic method for analyzing the outcome of (5). However,

it was assumed that all the variables involved, e.g. z, are
of infinite precision and the information exchange between

users and the system occurs over infinite bandwidth in

Algorithm 1. Next, the information flow in the algorithm

and its effect on the outcome are investigated by relaxing

these commonly used assumptions.

A well-known special case of the Algorithm 1 is when a

gradient search is performed on the system problem while
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Fig. 2. The evolution of the uncertainty of λ in (6) quantified by power
entropy, he(λ(t)), in Definition 1.
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Fig. 3. The evolution of information I obtained on λ in each iteration of
(6) quantified by the information metric in Definition 2.

the users adopt a best response scheme. Hence, the mapping

(5) becomes the primal algorithm [17], [27]:

Users: xi(t+ 1) = argmaxxi
Ui(xi)− λ(t)xi, ∀i,

System:λ(t+ 1) = λ(t) + µ (
∑

i xi(λ(t))− C) ,
(7)

where µ is the step-size constant. Under the strict concavity

conditions imposed on U , each user problem above admits a

unique solution corresponding to a static mapping from λ(t)
to xi(t + 1). Imposing a sufficient condition on µ, see e.g.

[8], the primal algorithm (7) becomes a contraction and the

results in Theorem 3 apply.

In real life digital systems, the communication channels

from the users to the system and vice versa (see Figure 1)

have limited bandwidth and are imperfect. Such information

flow limitations affect user problems as well as the system

problem in (7). The following assumptions summarize vari-

ous relevant aspects:

• A1 The computations at the nodes are of (practically)

infinite precision.

• A2 The vector x and scalar λ are quantized for trans-

mission between the nodes.

• A3 The communication channel may distort (x, λ) due
to delays and errors.

The system problem in (7) provides a good starting point

for the information flow analysis. Let xq
i (t) := xi(t) + εi(t)

be the solution of user problems in (7) communicated to the

system node under the Assumptions A1-A3, where εi(t) rep-
resents the distortion due to quantization and communication

errors. Then, the distorted information xq
i is an input to the

system problem leading to

λ(t+ 1) = λ(t) + µ s(t)

= λ(t) + µ (g(t) + ε̄(t)) ,
(8)

where ε̄(t) :=
∑

i εi(t) and g(t) :=
∑

i xi(λ(t))− C.

In the case of infinite bandwidth, i.e. ε̄ = 0, a sufficient

condition for (8) converge to λ∗ is µ ≤ 2/K, where K is

the Lipschitz constant of the gradient
∑

i xi(λ(t)) − C [8].

On the other hand, under Assumptions A2-A3, the aggregate

quantization and communication error ε̄ does have an impact

on the convergence rate of (8) as it distorts the original

gradient g(t).
In many problems where communication costs are not

prohibitive, it is desirable to design information flow in the

system such that the gradient algorithm (7) deterministically

and asymptotically converges to the solution. The following

theorem presents a result on the relationship between deter-

ministic convergence of (8) and the amount of information

required.

Theorem 4. Let λ∗ be the solution to (7). Define a region

R(r) := |λ− λ∗| < r around it, where r ∈ R
+ is a

positive constant. An upper-bound on the quantization and

communication errors outside R(r) is defined as

|ε̄| ≤ θ |g(t)| ,

where g(t) =
∑

i xi(λ(t)) − C and λ(t) /∈ R(r). Consider
a communication system (quantization level) design and

choose r such that there exists a θ ∈ (0, 1).
If the constant step-size µ in (8) satisfies

µ ≤
2

K
(1− θ),

where K is the Lipschitz constant of the gradient g(t), then
there exists a finite L such that for all t > L, λ(t) ∈ R(r),
i.e. the system dynamics (8) converge near the solution in

finite time.

Proof. [Overview] The proof is based on the Propositions

2.1 and 2.3 in [8, pp. 203-206]. The sufficient conditions of

those propositions simplify here to

|s(t)| ≥ K1 |g(t)| and s(t)g(t) ≥ K2 |g(t)|
2
,

for positive K1 and K2 with s(t) given in (8). Since outside

the region R(r) it is assumed that

|s(t)| ≥ (1− θ) |g(t)| ,

there exists a positive K1 and a K2 ≤ (1 − θ). Thus, the
restriction on the step size 0 < µ < 2K2/K satisfies the

sufficient condition on µ for asymptotic convergence. Hence,

the scalar λ(t) enters the region R(r) in finite time.

Remark 1. The sufficient conditions in Theorem 4, especially

the ones on quantization and communication errors are quite

stringent in order to maintain the deterministic convergence
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of the algorithm. These conditions can be relaxed in certain

problems where probabilistic and/or slower convergence is

acceptable.

Theorem 4 indicates an interesting relationship between

the information flow, convergence region, and gradient step-

size affecting the convergence speed. Next, a bound on the

total amount of information necessary for the trajectory λ(t)
to enter the region R(r) is derived under certain simplifying

assumptions.

Proposition 5. Assume that (i) the user information xi are

uniformly quantized on the interval [0, xmax] to Qx levels

(ii) the errors ε in (8) are only due to quantization (iii)

the users receive the value λ(t) with infinite precision, i.e.

the return channel has infinite bandwidth (iv) the sufficient

conditions in Theorem 4 hold.

Then, for a given starting point λ(0) and r > 0, an upper-

bound on the total amount of user information needed for

the gradient algorithm (8) to enter the region R(r) is

Itotal(λ(0), r, U) = L(Qx, λ(0), r) ·N · ln(Qx), (9)

where L is the number of steps for entering the region R(r)
and N the number of users.

Choosing a finer quantization or increasing quantization

levels, Qx, clearly decreases the errors εi, ε̄, and hence θ.
A smaller θ allows for a larger step size and decreases the

number of steps, L. Thus, there is a clear trade-off between

the terms L and ln(Qx) in (9).

An interesting and important question that immediately

follows from the discussion above is: what is the best

information flow structure, more specifically the uniform

quantization scheme that effectively determines the bit rate,

for the gradient algorithm (8) to converge with minimum

amount of total information exchange? This complex ques-

tion is analyzed numerically in the next example.

Numerical Example 2 [Gradient Algorithm]

A special case is of the gradient algorithm (7) is simulated

for N = 10 users with utility functions Ui(xi) = αi log(xi),
where αi are randomly generated user-specific preference pa-

rameters in the interval ai ∈ [1, 10], ∀i. Each xi ∈ [0, 100]
is uniformly quantized to Qx = 2v levels with different

number of bits in each simulation v ∈ {6, 7, . . . , 19, 20}.
Then, the respective upper-bound on the (worst-case) aggre-

gate quantization error ε̄ =
∑

i εi is w = N ∗ 100/Qx. The

initial value in (8) is λ(0) = 1.8 for all cases and λ∗ = 0.65.
Figure 4 shows the total information Itotal sent from users

to the system as defined in (9) until convergence (in the

sense of entering the interval [λ∗ − 0.01, λ∗ + 0.01] for

different bit rates based on uniform quantization of xi. The

reverse channel is assumed to be of infinite bandwidth here

for simplicity. Figure 5 depicts the total number of iterations

until convergence. As expected, sending more precise data

(more information) does not decrease the number of steps

after a lower bound is reached due to the limitation on the

step size. As Figures 4 and 5 indicate, there is an optimal

uniform quantization scheme, specifically 12 bit uniform

quantization of xi per iteration, that minimizes the aggregate

data flow by balancing the number of iterations needed for

convergence and the amount of information transmitted at

each iteration.
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Fig. 4. Total information Itotal flow from users to the system as defined in
(9) for different number of bits, v = log

2
(Qx), per iteration in the case of

uniform quantization.
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2
(Qx), per iteration in the case of uniform quantization.

V. CONCLUSION

An initial set of results is presented toward a better

quantitative understanding of the role information plays in

distributed resource allocation. Firstly, the information gain

in a certain class of iterative algorithms for distributed

allocation of a single resource is quantified by establish-

ing the relationships between convergence and information

under a perfect communication assumption. Information-

theoretic concepts such as entropy (power) and information

as uncertainty reduction are used for this purpose. Secondly,

the information flow in (primal) gradient algorithms under

communication limitations between the system and the users

is analyzed. Specifically, the trade-off between the total

amount of information (data) exchanged until convergence

of the distributed algorithm and the information rate (at each

iteration) is investigated under certain simplifying assump-

tions. The theoretical analysis is supported by illustrative

numerical examples.
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This paper differs from recent studies on networked

control with information constraints, which study the in-

terplay between stability and information, by its explicit

focus on quantifying information flow in distributed opti-

mization algorithms using information-theoretic measures.

There remains a substantial amount of future work in the

presented research direction such as quantitative analysis

of Bayesian learning schemes for distributed optimization

from an information perspective, applications to N−person

strategic games, and extensions to mechanism design.
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