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Abstract— This paper considers security issues of a cyber-
physical system (CPS) under denial-of-service (DoS) attacks.
The measurements of multiple sensors are transmitted to a
remote estimator over a multi-channel network, which may
be congested by an intelligent attacker. Aiming at improving
the estimation accuracy, we first propose a novel aggregation
scheme for the estimator to produce accurate state estimates,
from which we obtain a closed-form expression of the expected
estimation error covariance. We further develop a sensor-
attacker game to design the cooperative and defensive channel-
selection strategy, which avoids the sensors being attacked in
an energy-efficient way. Numerical examples are provided to
illustrate the developed results.

I. INTRODUCTION

As the next generation of engineering systems, cyber-
physical systems (CPSs), which synthesize physical pro-
cesses, communication networks and control systems (i.e.,
3C), have aroused wide attentions from different areas [1],
such as aerospace engineering, smart grid, transportation
system and ubiquitous health care systems, etc. The 3C
structure provides CPSs with prominent stability, robustness
and efficiency. However, the tight integration of 3C brings
additional security issues to the design of CPSs. The vul-
nerability of computational and communication components
exposes the control systems to many potential threats, like
operation abnormality and system destruction. These may
be conducted by malicious adversaries with economic or
terrorism-based motivations. Two typical classes of attack
on CPSs discussed in the work of Cardenas et al. [2]
are deception (integrity) attacks and denial-of-service (DoS)
attacks. The former modifies the data packets in a malicious
way, while DoS attacks block the information flow between
the sender (sensor) and the receiver to increase the packet-
drop rate. The latter is common and ease of implementation
in practical systems. For example, cyber attackers blocked
the information flow from the physical plant in the recent
incident on Ukrainian power grid [3], in which the power
supply to hundreds of thousands of homes in Ukraine was
brought down. In the present work, we mainly deal with a
defence-strategy design to assure safe operations of CPSs in
the presence of DoS attacks.
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Several recent studies investigating CPS security under
DoS attacks have been carried out in [4]–[7]. The latest
work by Senejohnny et al. studied a modified consensus
protocol to avoid DoS attacks. The survey conducted by
Zhang et al. [4] has investigated the energy-constrained
attack policy taken by a DoS attacker to degrade the system
performance. These works about designing optimal strategies
only focus on one side, i.e., the sensors or the attacker.
To capture the strategic iterations between a sensor and an
intelligent attacker, Liu et al. [5] applied a game-theoretic
approach. Under energy constraints, Li et al. [7] analyzed an
interactive decision-making process between a sensor and a
remote estimator and obtained the equilibrium solution via
an updating algorithm.

Unfortunately, these existing DoS-defence strategies can-
not fully handle the new challenges brought by the large-
scale wireless sensor networks (WSNs) in CPSs. In practice,
CPSs accomplish diverse applications (e.g., timely environ-
mental monitoring) by utilizing an enormous number of
sensors with high-rate data collection ability, which may
measure the same/different physical processes (e.g., tem-
perature/humidity fluctuation). Moreover, to alleviate bursty
communication traffic in this competitive environment (i.e.,
numerous sensors with high data transmission rate), CPSs
utilize the multi-channel technology and it is supported by
some MAC protocols, WSN hardware and commercially
available communication radios [8]. Motivated by this, we
consider a novel multi-channel multi-sensor system in our
CPS-security study. Specifically, for the multi-sensor issue
(when sensors measure the states of the same physical
process), to avoid heavy computational overhead, we adopt
the information fusion method to process the aggregated data.
Sun and Deng [9] described an optimal information fusion
criterion weighted by matrices for Kalman filter. Lack of
considering the unreliability of the remote transmission, this
criterion may not apply to the worst-case when the fusion
center receives nothing. To overcome it, this work presents
a linear combination method, in the minimum-error-variance
sense, to aggregate the available information (involving the
received data and the prediction information based on pre-
vious estimate). Meanwhile, the sensors, provided with the
multi-channel networks, will utilize the public resource in
general cases, and this competition situation will be broken if
there is a malicious attacker. Compared with previous works,
the main contributions of our current work are summarized
as follows:

• Online information: to improve the estimation accuracy,

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 6297

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 14,2021 at 16:17:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: System Model
we propose an optimal linear combination among the
received information and previous estimates. We also
prove the existence of a fix point, which enables us to
obtain a closed form of the expected state estimation
error covariance.

• Cooperative strategy: to model the interactive decision-
making process among the multiple agents, we first
group the sensors together due to their same purpose
and introduce a sensor-attacker game for the cooperative
strategy design.

• Cross-Layer design: the proposed aggregation scheme
for the remote estimator guides the design of the
defensive channel-selection strategies for the sensors,
which links the sensor layer with the estimator layer.
Furthermore, an extension model with N > 2 channels
and M > 2 sensors can be easily obtained via this
framework.

The remainder of the paper is organized as follows.
Section II contains the mathematical models of the multi-
sensor multi-channel system. Section III demonstrates the
dynamic parameter design for the proposed data aggregation
scheme. Section IV introduces the cooperative channel-
selection scheme for sensors via a game-theoretical approach.
Some examples and concluding remarks are presented in
Section V and Section VI, respectively.

Notations: N is the set of positive integers. Rn is the n
dimensional Euclidean space. We write X ≥ 0 (or X > 0)
when X is positive semi-definite (or positive definite). Tr(·)
denotes the trace of a matrix. For functions h, g, h ◦ g
is defined as the function composition h(g(·)). E[·] is the
expectation of a random variable and Pr(·) refers to the
probability. The notation −→· is the representation of vectors.
yk0,i stands for the sequence {y0,i, y1,i, . . . , yk,i}.

II. SYSTEM MODEL

A general multi-sensor multi-channel system is shown in
Fig. 1.As a baseline, we start by a simple model with two
sensors and two channels, and introduce the mathematical
models for each components in this section.

A. Local Kalman Filtering

We consider the following process model:

xk+1 = Axk + wk, yk,i = Cixk + vk,i, i = 1, 2, (1)

where xk ∈ Rnx and yk,i ∈ Rmy,i denote the process state
vector and the i-th sensor’s observation vector, respectively.

The process noise wk ∈ Rnx and the observation noise vk,i ∈
Rmy,i are independent zero-mean Gaussian random vectors
with

E[∆k∆′j ] =

 δkjQ 0 0
0 δkjR1 δkjR0

0 δkjR
′
0 δkjR2

 , ∀j, k ∈ Z (2)

in which ∆k = [wk vk,1 vk,2]′, Q ≥ 0 and Ri > 0, i =
{1, 2}. Assume that the initial state x0 is a zero-mean
Gaussian random vector with covariance Π0 ≥ 0 and is
uncorrelated with the noises wk and vk,i, ∀i ∈ 1, 2. In
addition, the pair (A,Ci) is assumed to be detectable for
all i and (A,

√
Q) is stabilizable.

To improve the estimation/control performance of the
system, CPSs adopt the “smart sensors” [10]. Precisely, the
sensors in Fig. 1, after taking measurements at time step k,
run local Kalman filters to estimate the state xk based on
the overall collected measurements.The obtained minimum
mean-squared error (MMSE) estimate of xk for the i−th
sensor is denoted by x̂k,i = E[xk|yk0,i]. Correspondingly, the
estimation error for the i-th sensor denoted by εk,i and the
error covariance matrix Pk,i are defined as

εk,i , xk − x̂k,i, Pk,i , E[(εk,i)(εk,i)
′|yk0,i] i = 1, 2. (3)

By employing a local Kalman filter, these terms are comput-
ed as

x̃k,i = Ax̂k−1,i, P̃k,i = APk−1,iA
′ +Q,

Kk,i = P̃k,iC
′
i[CiP̃k,iC

′
i +Ri]

−1,

x̂k,i = Ax̂k−1,i +Kk,i(yk,i − CiAx̂k−1,i),
Pk,i = (I −Kk,iCi)P̃k,i,

in which the recursion starts from x̂0 = 0 and P0 = Π0.
For convenience, we define the Lyapunov and Riccati

operators h and g̃i : Sn+ → Sn+ for each sensor as

h(X) , AXA′ +Q,

g̃i(X) , X −XC ′i[CiXC ′i +Ri]
−1CiX.

Due to the detectability assumption on (A,Ci), the error
covariance matrix Pk,i for each sensor will converge ex-
ponentially to a unique fixed point P i of h ◦ g̃i [11]. For
simplicity, we assume that the initial state of the Kalman
filter at each sensor has entered steady state, i.e., Pk,i =
P i, k ≥ 0, i = 1, 2.

B. Communication Model
As a data packet, the obtained local estimate x̂k,i for

each sensor are transmitted to the remote estimator (see
Fig. 1) through two channels, which are assumed to have
independent Additive White Gaussian Noise (AWGN). Each
sensor is required to decide through which channel to send
data, and evidently a channel-scheduling problem arises
with the consideration of improving the remote estimation
accuracy.

Transmitted through the unreliable communication chan-
nel, the data packets will contain uncertain errors when arriv-
ing at the receiver as a consequence of channel noise, multi-
path fading and so on. The packets containing transmission

6298

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 14,2021 at 16:17:09 UTC from IEEE Xplore.  Restrictions apply. 



errors will be detected by the cyclic redundancy check (CRC)
and abandoned before uploading to the data aggregator. In
this point-to-point communication, we measure the packet
arrival reliability by the packet-error-rate (PER) and for any
modulation scheme, it is closely related to the signal-to-
noise-ratio (SNR). In this multi-sensor system, if the sensors
select the same channel for transmission, the two transmitted
packets may interfere with each other. Additionally, the
malicious attacker will obstruct the communication channel
by launching DoS attacks, which also perturbs the packet
transmission in the selected channel. Under this case, the
SNR is replaced by SINR (signal-to-interference-plus-noise-
ratio) [12]. Assume that the channel selection for the three
agents (the two sensors and the attacker) are denoted by
(l, j, s), then

SINRi(l, j, s) =

{
el,1

τδljej,2+δlsns+σl
, i = 1,

ej,2
τδljel,1+δjsns+σj

, i = 2,
(4)

in which l, j, s ∈ {1, 2}, and el,i represents the transmission
power on the l-th channel for the i-th sensor. The coefficient
τ indicates the degree of the simultaneous-transmission in-
terference between the transmitted packets x̂k,1 and x̂k,2.
The interference power used by the attacker to jam the s-th
channel is denoted by ns. Moreover, σl is the additive white
noise power for the l-th channel. We describe the packet-
arrival-rate for the l-channel, which depends on channel
characteristics, in a general form, i.e., fl(SINRi(l, j, s)).
It is an increasing function on SINR since low SINR
leads to an undesirably poor communication performance.
We characterize the arrival of packets by two independent
binary random processes, denoted by γk,1 and γk,2. γk,1 = 0
represents the occurrence of packet (x̂k,1) loss. We assume
that the arrivals of the two packets are independent even if
they are transmitted in the same channel, e.g., Pr(γk,1 =
1, γk,2 = 1) = Pr(γk,1 = 1)Pr(γk,2 = 1). This scenario
is reasonable, for example, simultaneous transmission in
frequency-nonselective channels. If the packet-arrivals are
related, we can still use a formula on SINR to express the
probability Pr(γk,1 = 1, γk,2 = 1) and other cases.

C. Remote Estimation
We denote x̂k as the estimate generated by the remote

estimator. After receiving the data packets, the remote esti-
mation of the state xk is described as follows: once receiving
x̂k,1 and/or x̂k,2 correctly (i.e., γk,1 = 1 or γk,2 = 1),
the remote estimator synchronizes its estimate x̂k with them
based on a linear combination; otherwise, simply predicts
the estimate with its previous estimate x̂k−1 by using the
system model (1). Then, we write x̂k in the following simple
equation:

x̂k = αk,1γk,1x̂k,1 + αk,2γk,2x̂k,2 + αk,3γk,3Ax̂k−1, (5)

in which γk,3 = γk,1 ⊕ γk,2 , (γk,1 + γk,2) mod 2, i.e.,
a binary addition1. Note that when the two packets are

1Since this modular in the operation can be any positive number, the
aggregation scheme can be extended to include M > 2 estimates sent by
M sensors.

received successfully, the predict item Ax̂k−1 contains no
more effective information and its weight γk,3 equals to zero.

Under this scheme (5), the estimate x̂k are required to
be unbiased if the packet-arrival statuses γk,1 and γk,2 are
known. That is, E[x̂k|γk,1, γk,2] = E[xk], ∀k ≥ 1. Hence,
we have the following constraint for the parameters,

αk,1γk,1 + αk,2γk,2 + αk,3γk,3 = 1, (6)

which can be easily obtained from the mathematical induc-
tion and the following derivation:

E[x̂k|γk,1, γk,2]

=αk,1γk,1E[x̂k,1] + αk,2γk,2E[x̂k,2] + αk,3γk,3AE[x̂k−1]

(a)
= (αk,1γk,1 + αk,2γk,2 + αk,3γk,3)E[xk]

=E[xk],
(7)

The derivation of (a) relies on the fact that E[E[X|Y ]] =
E[X] and E[xk] = AE[xk−1]. Apparently, the parameters are
required to be bounded; however, it is unnecessary to require
the parameters to be positive, which will be analyzed later.

Similar to (3), the estimation error εk and the error
covariance matrix Pk for the remote estimator are introduced
to describe the estimation performance.

εk , xk − x̂k, , Pk , E[(εk)(εk)′|Ik0 ], (8)

in which Ik , {γk,1x̂k,1γk,2x̂k,2} represents the received
information at time k.

D. Problem of Interest

We study the following two questions:
1) how to obtain an optimal aggregation and compute the

remote estimation error covariances;
2) how to design secure channel-selection strategies for

the multi-sensor in the existence of DoS attacks.

III. ESTIMATION ACCURACY FOR DATA FUSION

In this section, we introduce the parameter design for the
aggregation scheme and provide a closed-form recursion for
the error covariance Pk with the optimal parameters.

A. Preliminaries

Before designing the optimal parameters, we study some
properties of the information available to the remote es-
timator. First, we introduce the incremental innovation in
the local state estimate of the i-th sensor x̂k,i, denoted by
zk,i = x̂k,i −Ax̂k−1,i.

From [13], some properties about the estimation error εk,i
as defined in (3) are summarized in the following lemma.

Lemma 3.1: The following statements about εk,i, i = 1, 2
hold:

1) εk,i is zero-mean Gaussian and is independent of the
innovation zk,i;

2) εk,i is independent of wl and vj,i for any l, j ∈ Z and
l ≥ k, j ≥ k + 1;

The prove is simple and we omit the details here. For
different sensors, their estimation errors are cross-correlated
and the relationship is summarized in the following theorem.
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Theorem 3.2: For the two Gaussian processes εk,1 and
εk,2, their cross-covariance at time k, denoted by Γk =
E[εk,1ε

′
k,2], follows the iteration:

Γk = T(Γk−1) : Rnx×nx −→ Rnx×nx (9)
T(Γk) , (I −K1C1)h(Γk)(I −K2C2)′ +K1R0K

′
2,

in which R0 = E[vk,1v
′
k,2]. The cross-covariance matrix Γk

converges exponentially to a unique fixed point Γ of the
mapping T.

Proof: The iteration (9) is obvious. We focus on the proof
of the fixed point of the cross-covariance matrix. For any
X,Y ∈ Rnx×nx , we have

‖ T(X)− T(Y ) ‖2

= Tr[(X − Y )′A′1A1(X − Y )A′2A2]

(a)

≤ Tr[(X − Y )′(X − Y )]Tr[A′1A1] ‖ A2 ‖2
(b)

≤ ρ2 ‖ X − Y ‖2,

(10)

where ‖ · ‖ represents the Frobenius norm and Ai = (I −
KiCi)A, i = 1, 2. The inequality (a) is derived from the fact
that Tr(AB) ≤ Tr(A)Tr(B) if A and B are positive semi-
definite. Because of the detectability assumption, we have
‖ Ai ‖≤ ρ < 1 and then the inequality (b) is obvious. The
inequality (10) illustrates that T is a contraction mapping and
a unique fixed point point exists for the mapping T according
to the Banach fixed point theorem. �

Furthermore, we can obtain the relationship between the
estimation error and the innovation from different sensors.

Lemma 3.3: The zero-mean Gaussian random process εk,i
and zk,j , in which i, j ∈ {1, 2}, i 6= j, are cross-correlated
and their cross co-variance are independent of time k.
It is easy to obtain this lemma and we omite the details here.

B. Parameter Design for Remote Estimation

The information aggregation scheme (5) aims at producing
an estimate based on the available information and simulta-
neously minimizes its mean square error (MSE). Thereupon,
with the received information Ik = (γk,1x̂k,1, γk,2x̂k,2) at
time k, we look for a triple −→αk , (αk,1, αk,2, αk,3) which
solves the following optimization problem:

min−→αk

Tr[Pk|Ik] s.t. γk,1αk,1 + γk,2αk,2 + γk,3αk,3 = 1.

(11)
The optimal parameter design is summerized in the fol-

lowing theorem.
Theorem 3.4: For the linear combination scheme (5), the

dynamic optimal parameter triple under different realizations
of −→γk , (γk,1, γk,2) and the corresponding error covariance
are as follows:

−→αk/Tr[Pk] =


(1− α?k,2, α?k,2, 0)/βk,0 if −→γk = (1, 1),

(α?k,1, 0, 1− α?k,1)/βk,1 if −→γk = (1, 0),

(0, 1− α?k,3, α?k,3)/βk,2 if −→γk = (0, 1),

(0, 0, 1)/Tr[h(Pk−1)] otherwise.
(12)

where α?k,1, α?k,2 and α?k,3 are given in (14), (18) and (20);
Pk,0, Pk,1 and Pk,2 are given in (15), (13) and (16).

Proof: We analyze the optimization problem in different
cases.
Case 1: If the two packets x̂k,1 and x̂k,2 are all received
successfully, the estimate is x̂k = αk,1x̂k,1+αk,2x̂k,2. Then,
we have

Pk = E[(xk − x̂k)(xk − x̂k)′] (13)
(a)
= αk,2

2(P 1 + P 2 − Γ− Γ
′
) + αk,2(Γ + Γ

′ − 2P 1) + P 1,

in which Γ is the fix point defined in Lemma 3.2.
To solve the minimization problem (11), we substitute the

equality constraint αk,2 = 1−αk,1 into the objective function
(see (a) in (13)), and the symmetric axis of the quadratic
objective function is obtained to be

α?k,2 =
Tr[P 1 − Γ]

Tr[P 1 + P 2 − 2Γ]
. (14)

Hence, we have the minimum error covariance:

βk,0 , Tr[Pk|γk,1, γk,2 = 1] =
Tr[P 1]Tr[P 2]− Tr[Γ]2

Tr[P 1 + P 2 − 2Γ]
(15)

Case 2: If the remote estimator only receives the packet
x̂k,1 at time k, the linear combination is x̂k = αk,1x̂k,1 +
αk,3Ax̂k−1. Then, we have

Pk = αk,1
2P 1 + αk,1αk,3(E[(xk − x̂k,1)(xk −Ax̂k−1)′]

+ αk,3
2Tr[h(Pk−1)] + E[(xk −Ax̂k−1)(xk − x̂k,1)′])

(16)
To obtain the cross covariance between εk,1 = xk− x̂k,1 and
zk = xk − Ax̂k−1, we define Wk , E[εk,1z

′
k] (W1 = P 1)

which satisfies the following iteration:

Wk = α̃k−1,1(A−K1C1A)P 1A
′ + α̃k−1,2(A−K1C1A)

· ΓA′ + α̃k−1,3(A−K1C1A)Wk−1A
′ + (I −K1C1)Q,

(17)
in which α̃k−1,i = γk−1,iαk−1,i. εk−1,i is a linear function
of εk−2,i, wk−2 and vk−1,i from Lemma 3.1. Hence it is
independent of wk−1 and vk,i, ∀i ∈ 1, 2. Furthermore, xk−1
is independent of wk−1 and vk,i,∀i, and x̂k−2 only depends
on x0, w0, . . . , wk−3 and v0,i, . . . , vk−2,i, i = 1, 2. As a
consequence, zk−1 is also independent of wk−1 and vk,i for
i ∈ {1, 2}. Similar to Case 1, we can obtain the optimal
parameters and its corresponding Pk:

α?k,1 =
Tr[h(Pk+1)−Wk]

Tr[P 1 + h(Pk−1)− 2Wk]
. (18)

and
βk,1 , Tr[Pk|γk,1 = 1, γk,2 = 0]

=
Tr[P 1]Tr[h(Pk−1)]− Tr[Wk]2

Tr[P 1 + h(Pk−1)− 2Wk]
.

(19)

Besides that, based on the Cauchy-Schwarz inequality,
we can obtain the bound of Wk, i.e., |Tr[Wk]| ≤
(Tr(P1)Tr(h(Pk−1)))

1
2 , ∀k ∈ N , hence α?k,1 is bounded.

The discussion of the case (γk,1 = 0, γk,2 = 1) is same as
the aforementioned analysis. We omit the details and present
that

α?k,3 =
Tr[h(P 2 − Ŵk]

Tr[P 2 + h(Pk−1)− 2Ŵk]
. (20)
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and

Pk,2 =
Tr[P 2]Tr[h(Pk−1)]− Tr[Ŵk]2

Tr[P 2 + h(Pk−1)− 2Ŵk]
, (21)

where Ŵ , E[εk,2z
′
k] and its iteration is similar to (17). �

IV. COOPERATIVE CHANNEL SELECTION FOR DOS
ATTACKS

As depicted in Fig. 1, the remote estimator explicitly
informs the sensors whether the data packets are received
successfully or not via a feedback mechanism. Thus, the
sensors can obtain full knowledge of the estimation error
covariance Pk from (12) developed in the previous section.
Meanwhile, the attacker can also infer Pk by intercepting
the feedback signals. Based on this real-time information, at
each time, the agents will make efficient decisions among
the multiple communication paths. To model this interactive
decision-making process among the sensors and the attacker,
we introduce a game-theoretic framework and design the
defensive/offensive strategies for the sensors/attacker, respec-
tively.

A. Game Formulation

Define a game as G =< I, S, J >, where I represents
the set of two players; S = (S1, S2) is the action set for
each player in I; and the payoff function J : S1 × S2 →
RI denotes the payoff of each player i ∈ I. In this game
framework, we have the following specifications.

1) Player: Since two sensors have the same objective to
improve the estimation accuracy, they can be regarded as a
team; in contrast, the attacker aims at degrading the system
performance. The sensor team denoted by Is and the attacker
Ia are assumed to be two rational players; i.e., each player
makes the best choice among the action set S.

2) Strategy: At every time step k, the sensor team needs
to choose through which channel to send the two estimates
x̂k,1 and x̂k,2; analogously, the attacker selects a channel
to launch DoS attacks. Consequently, the strategy of the
attacker, denoted by

−→
λk = {λs} ∈ R3 with s = 0, 1, 2,

is composed of different probabilities for choosing corre-
sponding channels. Note that the subscript s = 0 stands
for the inactive state of the attacker, which means that no
DoS attack are launched for the sake of energy saving.
Differently, the pure strategies (actions) for the sensor team
are S1 = {(l, j) : l, j = 0, 1, 2} and its mixed strategy
is denoted by −→ρk = (ρ00, ρ01, . . . , ρlj , . . . , ρ22)′ ∈ R9,
i.e., a probability distribution over the corresponding actions
(l, j). Hence, the mixed strategies satisfy that

∑2
s=0 λs =

1,
∑2
l=0

∑2
j=0 ρlj = 1.

3) Arrival Rate: To analyze this relationship between the
packet-arrival-rate and SINRi under the multi-sensor multi-
channel framework, we introduce two matrices describing
the packet-arrival-rate for each sensor.Let the arrival rate of
packet x̂k,1 denoted by q1 , f̃1(l, j, s) = fl(SINR1(l, j, s))
(in which (l, j, s) indicates the selected channels). Similarly,
the packet x̂k,2 is received by the remote estimator with

probability q2 , f̃2(l, j, s) = fj(SINR2(l, j, s)). Consider
the constructed matrixes Qi, i ∈ {1, 2}, defined as

Qi =



f̃i(0, 0, 0) f̃i(0, 0, 1) f̃i(0, 0, 2)
...

...
...

f̃i(l, j, 0) f̃i(l, j, 1) f̃i(l, j, 2)
...

...
...

f̃i(2, 2, 0) f̃i(2, 2, 1) f̃i(2, 2, 2)

 ∈ R
9×3,

in which (l, j) has the same order as −→ρk. According to the
independence assumption on γk,1 and γk,2, we obtain the
probability matrix for the no-packet-loss case, denoted by
M0 = Q1◦Q2, in which ◦ represents the Hadamard product.
Analogously, the probability matrix M1 for the case (γk,1 =
1, γk,2 = 0) is M1 = (1−Q1) ◦Q2 where 1 ∈ R9×3 refers
to a matrix of all ones. Additionally, we have M2 = Q1◦(1−
Q2) and M3 = (1−Q1) ◦ (1−Q2). With these probability
matrices, we can obtain the expected packet-arrival-rate at
time k: Rt(Mt,

−→
λk,
−→ρk) = −→ρk′Mt

−→
λk, t ∈ {0, 1, 2, 3}. Conse-

quently, based on (12) the trace of the expected error covari-
ance at time k is Tr [E(Pk)] =

∑3
t=0Rt(Mt,

−→
λk,
−→ρk)βk,t,

where βk,3 = Tr[h(Pk−1)].
4) Energy: Energy constraints are common in CPS study

due to limited batteries and inconvenience of recharging, etc.
One of the most important goals of CPS design is to achieve
a desired tradeoff between the energy cost and the system
performance. The attacker may also have energy limitations
on its attack scheme. The expected energy for the sensor and
the attacker is Esk = −→ρk′ ·

−→
Es and Eak =

−→
Ea′ ·

−→
λk.

5) Payoff: With the sensors aiming to improving the es-
timation performance without too much energy expenditure,
we model the one-stage payoff function for the sensor team:
rk(Pk−1,

−→ρk,
−→
λk) , −Tr [E(Pk)]− δsEs + δaEa, where the

parameters δa, δs represent the proportions of the energy
term in the payoff. For the attacker, its payoff function is
−rk(Pk−1,

−→ρk,
−→
λk).

B. Rational Strategies Design

Based on the characteristics of the payoff functions, play-
ers will process the following one-step zero-sum game at
every time k:

Problem 4.1: For the sensor team and the attacker,

J ?S (m) = max−→ρk∈S2
min−→
λk∈S1

rk(m,−→ρk,
−→
λk),

J ?A(m) = max−→
λk∈S2

min−→ρk∈S1
− rk(m,−→ρk,

−→
λk)

s.t.
∑
s

λs = 1,
∑
l

∑
j

ρlj = 1.

To solve Problem 4.1, we first introduce the equilibria of
the one-step game [14]. Then, we prove the existence of the
optimal strategies, which are deployed by the sensor and the
attacker; i.e., we show that a Nash Equilibrium (NE) exists
for this game.

Definition 4.2 (NE): In the two-player zero-sum game
with the initial state P0, a strategy profile πs,? (or πa,?)
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TABLE I: Dynamics of the optimal parameters

−→αk

k
1 2 3 4 5 6 7

αk,1 0 0 0 0 0 0.8905 0
αk,2 0.8172 0.8175 0.8193 0 0 0 0
αk,3 0.1828 0.1825 0.1807 1 1 0.1095 1

TABLE II: Summary for parameters
Parameters for dynamic system Weight
A C1/C2 Q R1/R2 P 1/P 2 Γ δ1 δ2
1.2 0.7/0.8 0.8 0.8/0.8 0.92/0.75 0.18 0.15 0.15
Parameters for multi-channel
c1/c2 L1/L2 {el,1} {ej,2} {ns} σ1/σ2 τ
4/4 1/1 (4, 5) (4, 5) (2.5, 2.5) 0.1/0.15 0.1

for the sensor team (or the attacker) is a NE if

J ?S (P0)
.
= JS(P0, π

s,?, πa,?) ≥ JS(P0, π
s, πa,?),∀πs,

J ?A(P0)
.
= JA(P0, π

s,?, πa,?) ≥ JA(P0, π
s,?, πa),∀πa.

To explain the existence of NE in the sensor-attacker game,
recall the theorem that the two-player zero-sum game with
finite pure strategies for each player, has at least one NE.
Note that, the reward function can be described as: rk =
−−→ρk′[

∑3
t=0 βk,tMt]

−→
λk − δs

−→ρk′
−→
Es + δa

−→
Ea′
−→
λk. Apparently,

this objective function is convex on −→ρk and
−→
λk and we have

min max rk = max min rk. Hence, the NE exists based on
the minmax theorem in [14, Appendix 2]. By employing the
convex tools, we are able to solve this minmax problem and
some examples are illustrated in Section V.

V. EXAMPLES

In this section, we illustrate the results developed via
some examples. For simplicity, we consider a scalar dynamic
system with parameters shown in Tab. II. We adopt a general
form of fl(SINR) from [12], that is, fl(SINR) = 1− cl ·
(SINR)−Ll , l = 1, 2. After simulating the sensor-attacker
game and the aggregation 50 times using Matlab, we obtain
the following results. For each time, we obtain the optimal
parameter triple {αk,1, αk,2, αk,3} based on Theorem 3.4,
and its dynamics for the first 7 times are illustrated in Tab. I.
From this, we can infer the arrival of estimates, for example,
the packets are lost at time 4 and 5 since −→αk = (0, 0, 1)
when k = 4, 5. With the feedback information, the sensors
have a knowledge of the latest system performance Pk−1
and send their estimates following the optimal defensive
strategy (see Fig. 2), and simultaneously the intelligent at-
tacker will congest a channel following its offensive strategy,
the specifics of which are presented in Fig. 3. From the
simulation results, the possible actions for the sensor team
are in the set {(l, j) : (0, 0), (0, 1), (0, 2), (1, 2), (2, 1)} (and
the probabilities of others equal to zero). Since Pr(j = 0) <
Pr(l = 0), we can conclude that the sensor team is inclined
to send the more accurate estimate x̂k,2 rather than x̂k,1 (note
that P 1 > P 2 and el,1 = ej,2 if l = j) when the transmission
energy is limited. Moreover, they avoid sending x̂k,1 and x̂k,2
in a same channel to eliminate the interference.

VI. CONCLUSION

This work proposed an optimal aggregation scheme to
operate the received information and a cooperative channel-
selection strategy for the sensors via a game-theoretic ap-
proach.
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Fig. 2: Dynamic channel-selection scheme for the sensor
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Fig. 3: Dynamic attack scheme for the attacker
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