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Abstract—This paper considers a remote state estimation
problem where a sensor observes a dynamical process, and trans-
mits local state estimates over an independent and identically
distributed (i.i.d.) packet dropping channel to a remote estimator.
The sensor is equipped with energy harvesting capabilities. At
every discrete time instant, provided there is enough battery
energy, the sensor decides whether it should transmit or not,
in order to minimize the expected estimation error covariance
at the remote estimator. For transmission schedules dependent
only on the estimation error covariance at the remote estimator,
the energy available at the sensor, and the harvested energy, we
establish structural results on the optimal scheduling which show
that for a given battery energy level and a given harvested energy,
the optimal policy is a threshold policy on the error covariance,
i.e. transmit if and only if the error covariance exceeds a certain
threshold. Similarly, for a given error covariance and a given
harvested energy, the optimal policy is a threshold policy on the
battery level. Numerical studies confirm the qualitative behaviour
predicted by our structural results.

I. INTRODUCTION

In event triggered estimation, a sensor will transmit mea-

surements to a remote estimator only when certain events

occur, e.g. if the estimation quality has deteriorated sufficiently

[1]–[4]. By transmitting only when necessary in order to

achieve certain performance objectives, energy savings can

be achieved, which are important for sensors operating in

low energy environments such as wireless sensor networks.

Different strategies such as transmitting when the estimation

error [1], functions of the estimation error [3], or the estimation

error covariance [2], [4] exceeds a threshold, have been consid-

ered. For variance based triggering (where transmit decisions

depend on the estimation error covariance), it was shown in

[4] that a threshold policy is optimal, in the sense that it

minimizes a convex combination of the expected estimation

error covariance and expected energy usage.

The harvesting of energy from the surrounding environ-

ment such as solar, thermal, or electromagnetic radiation, has

been proposed as a solution to the limited battery life of

sensors, which may need to operate continuously for many

years in sensor network applications. Transmission strategies

for optimizing communication objectives such as maximizing

throughput or minimizing transmission delay have been ex-

tensively studied, see e.g. [5]–[8]. More recently, transmission
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strategies for optimizing estimation and control objectives such

as minimizing expected estimation error covariance and LQG

costs have also received attention, see [9]–[11].

The focus of this paper is to study an event triggered

remote estimation problem where the sensor is equipped with

energy harvesting capabilities, and transmission over a packet

dropping channel can only occur if there is sufficient energy

in the battery. In particular, we wish to derive structural results

on the optimal transmission policy that minimizes the ex-

pected estimation error covariance at the remote estimator. For

noiseless measurements and no packet drops, some structural

results have been previously derived in [12]. In this paper,

we will prove that for a given battery energy level and a

given harvested energy, the optimal policy is a threshold policy

on the error covariance (with the threshold dependent on the

battery level and energy harvested). Similarly, for a given error

covariance and a given harvested energy, the optimal policy is

a threshold policy on the battery level.

The paper is organized as follows. Section II gives the

system model. The optimal transmission scheduling problem

is formulated in Section III. Structural results for the optimal

transmission schedule are derived in Section IV. Some numer-

ical results verifying the behaviour predicted by our structural

results are presented in Section V.

II. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. Consider

a discrete time process

xk+1 = Axk + wk (1)

where xk ∈ R
n and wk is i.i.d. Gaussian with zero mean and

covariance Q. The sensor has measurements

yk = Cxk + vk, (2)

where yk ∈ R
n and vk is Gaussian with zero mean and

covariance R. The noise processes {wk} and {vk} are assumed

to be mutually independent.

A. Smart Sensor with Energy Harvesting

The sensor has computational capabilities (i.e. the sensor

is “smart”) and can run a local Kalman filter. The local state

estimates and error covariances

x̂s
k|k−1 , E[xk|y0, . . . , yk−1], x̂s

k|k , E[xk|y0, . . . , yk]

P s
k|k−1 , E[(xk − x̂s

k|k−1)(xk − x̂s
k|k−1)

T |y0, . . . , yk−1]

P s
k|k , E[(xk − x̂s

k|k)(xk − x̂s
k|k)

T |y0, . . . , yk]
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Fig. 1. Remote State Estimation with an Energy Harvesting Sensor

can be computed at the sensor using the standard Kalman

filtering equations, see e.g. [13]. We will assume that the pair

(A,C) is detectable and the pair (A,Q1/2) is stabilizable.

Let P̄ be the steady state value of P s
k|k as k → ∞, which

exists due to the detectability assumptions [13]. To simplify

the presentation, we will assume that the local Kalman filter

is operating in the steady state regime, so that P s
k|k = P̄ , ∀k.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if and

only if x̂s
k|k is to be transmitted to the remote estimator at time

k. Let Bk denote the battery level of the sensor at time k, with

Bmax the maximum capacity of the battery. There is an energy

usage of E for each scheduled transmission. Transmission can

only occur if there is sufficient battery energy, i.e. νk = 1
is possible only when Bk ≥ E. The sensor is equipped

with energy harvesting capabilities, with the energy harvested

between the discrete time instants k−1 and k denoted by Hk.

Similar to [7], the evolution of the battery level is modelled

as

Bk+1 = min{Bk−νkE+Hk+1, Bmax} = g(Bk−νkE+Hk+1)
(3)

with νk = 0 if Bk < E, where the function g(.) is defined by

g(x) , min{x,Bmax}. (4)

The energy harvested process {Hk} will be assumed to be

a Markov process, with state space H. Also denote B ,

[0, Bmax]. The decision variables νk are determined at the

sensor, and in this paper will be assumed to depend on

Pk−1|k−1, Hk and Bk.

At time instances when νk = 1, the sensor transmits its

local state estimate x̂s
k|k over a packet dropping channel. Let

γk be random variables such that γk = 1 if the transmission

at time k is successfully received by the remote estimator, and

γk = 0 otherwise. We will assume that {γk} is i.i.d. Bernoulli

[14] with

P(γk = 1) = λ ∈ (0, 1).

B. Optimal Remote Estimator

At instances where νk = 1, it is assumed that the remote

estimator knows whether the transmission was successful or

not, i.e., the remote estimator knows the value γk, with

dropped packets discarded. On the other hand, if νk = 0,

since the sensor is not scheduled to transmit at this time, the

corresponding γk is assumed to be of no use to the remote

estimator. Define

Ik ,{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂
s
0|0, . . . , νkγkx̂

s
k|k}

as the information set available to the remote estimator at

time k. Denote the state estimates and error covariances at

the remote estimator by:

x̂k|k , E[xk|Ik], Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)
T |Ik].

(5)

Given that the decision variables νk depend on

Pk−1|k−1, Hk and Bk, but not on the state xk, the optimal

remote estimator can be shown to have the following form

[15], [16]:

x̂k|k =

{

Ax̂k−1|k−1 , νkγk = 0
x̂s
k|k , νkγk = 1

Pk|k =

{

f(Pk−1|k−1) , νkγk = 0
P̄ , νkγk = 1

(6)

where

f(X) , AXAT +Q. (7)

We assume that γk is fed back to the sensor before the

transmission decision at the next time instant k+1. Thus, the

remote estimate Pk|k can be reconstructed at the sensor with

this acknowledgement mechanism.1

III. OPTIMIZATION OF TRANSMISSION SCHEDULING

In this section we will formulate a suitable optimization

problem for determining the transmission schedule that mini-

mizes the expected error covariance subject to energy harvest-

ing constraints. Structural properties of the optimal solution to

this problem will then be derived in Section IV.

Define the countable set

S , {P̄ , f(P̄ ), f2(P̄ ), . . . }, (8)

where fn(.) is the n-fold composition of f(.), with the

convention that f0(X) = X . Then it is clear from (6) that S
consists of all possible values of Pk|k at the remote estimator.

As mentioned in Section II, we will consider transmission

policies where νk depends only on Pk−1|k−1, Hk and Bk.

We will consider the following optimization problem of finite

horizon K:

min
νk∈{0,1}
νkE≤Bk

K
∑

k=1

E[trPk|k]

= min
νk∈{0,1}
νkE≤Bk

K
∑

k=1

E
[

E[trPk|k|Pk−1|k−1, νk, Hk, Bk]
]

(9)

We note that

E[trPk|k|Pk−1|k−1, νk, Hk, Bk]

= νk[λtr(P̄ )+(1−λ)trf(Pk−1|k−1)]+(1−νk)trf(Pk−1|k−1)

= νkλtr(P̄ ) + (1− νkλ)trf(Pk−1|k−1)

1The case of imperfect feedback acknowledgements can also be considered,
using similar ideas as in [9].
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Let the functions Jk(·, ·, ·) : S × H × B → R be defined

recursively as:

JK+1(P,H,B) = 0

Jk(P,H,B) = min
ν∈{0,1}
νE≤B

{

νλtr(P̄ ) + (1− νλ)trf(P )

+ νλE
[

Jk+1(P̄ , H̃, g(B − νE + H̃))|H
]

+ (1− νλ)E
[

Jk+1(f(P ), H̃, g(B − νE + H̃))|H
]}

(10)

for k = K, . . . , 1, where the conditional expectations are with

respect to H̃ given H , and g(.) is defined in (4). Problem (9)

can be solved using the dynamic programming algorithm, by

computing Jk(Pk−1|k−1, Hk, Bk) for k = K,K − 1, . . . , 1.

Note that if the range of Hk is continuous, then in practice

Hk and Bk will need to be discretized in order for problem

(9) to be solved numerically.

IV. STRUCTURAL PROPERTIES OF OPTIMAL

TRANSMISSION SCHEDULING

Numerical solutions to the optimization problem (9) via

dynamic programming do not provide much insight into the

form of the optimal solution. In this section, we will derive

some structural results on the optimal solutions to problem (9).

To be more specific, we show that for a given Bk and Hk, the

optimal policy is a threshold policy with respect to the error

covariance Pk−1|k−1, i.e. it is optimal to transmit if and only

if Pk−1|k−1 exceeds a certain threshold (dependent on k, Bk

and Hk). Similarly, for fixed Pk−1|k−1 and Hk, the optimal

policy is a threshold policy with respect to the battery level

Bk. Knowing that the optimal policies are of threshold-type

can also provide computational savings when solving problem

(9) numerically, see e.g. the discussion in [17].

A. Preliminaries

For symmetric matrices X and Y , we say that X ≤ Y

if Y − X is positive semi-definite, and X < Y if Y − X is

positive definite. In general, “ ≤ ” only gives a partial ordering

on the set of positive semi-definite matrices. However, when

restricted to S defined in (8), we have the following result.

Lemma IV.1. There is a total ordering on the elements of S
given by

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ ...

A proof of Lemma IV.1 may be found in [4]. We will say

that a function F (.) : S → R is increasing if

X ≤ Y ⇒ F (X) ≤ F (Y ). (11)

Lemma IV.2. For any n ∈ N, trfn(P ) is an increasing

function of P .

Proof. We have

trfn(P ) = tr

(

AnP (An)T +

n−1
∑

m=0

AmQ(Am)T

)

which is increasing with P .

Lemma IV.3. For d ≥ 0, the function g(.) defined in (4)

satisfies

0 ≤ g(x)− g(x− d) ≤ d

Proof. The inequality g(x) − g(x − d) ≥ 0 is obvious. For

the other inequality, note that if x ≤ Bmax, then g(x)− g(x−
d) = x − (x − d) = d. If x > Bmax and x − d > Bmax,

then g(x) − g(x − d) = Bmax − Bmax = 0. If x > Bmax

(which implies x − d > Bmax − d) and x − d ≤ Bmax, then

g(x)−g(x−d) = Bmax−(x−d) < Bmax−(Bmax−d) = d.

B. Threshold Policies with Respect to Error Covariance

We have the following result on the optimality of threshold

policies with respect to the remote estimator error covariance.

Theorem IV.4. For fixed Bk and Hk, the optimal ν∗k is a

threshold policy on Pk−1|k−1 of the form:

ν∗k(Pk−1|k−1, Bk, Hk) =

{

0 , Pk−1|k−1 ≤ P ∗

1 , otherwise

where the threshold P ∗ depends on k,, Pk−1|k−1 and Hk.

Proof. For B ≥ E, Jk(P,H,B) in (10) can be expressed as

Jk(P,H,B) =min
{

trf(P )+E[Jk+1(f(P ), H̃, g(B+H̃))|H],

λtrP̄+(1−λ)trf(P ) + λE[Jk+1(P̄ , H̃, g(B−E+H̃))|H]

+ (1−λ)E[Jk+1(f(P ), H̃, g(B − E + H̃))|H]
}

,

corresponding to the values νk = 0 or νk = 1. Since νk only

takes on the two values 0 and 1, Theorem IV.4 will be proved

if we can show that for fixed B ≥ E and H , the functions

φk(P ) , trf(P )+E[Jk+1(f(P ), H̃, g(B + H̃))|H]−λtrP̄

− (1−λ)trf(P )−λE[Jk+1(P̄ , H̃, g(B − E + H̃))|H]

−(1−λ)E[Jk+1(f(P ), H̃, g(B − E + H̃))|H],

= λ
(

trf(P )−trP̄−E[Jk+1(P̄ , H̃, g(B−E+H̃))|H]
)

+ E[Jk+1(f(P ), H̃, g(B + H̃))|H]

− (1− λ)E[Jk+1(f(P ), H̃, g(B − E + H̃))|H]

for k = 1, . . . ,K are increasing functions of P . Since trf(P )
is increasing with P by Lemma IV.2, this will be the case

if we can show that E[Jk(f(P ), H̃, g(B + H̃))|H] − (1 −
λ)E[Jk(f(P ), H̃, g(B−E+H̃))|H] is an increasing function

of P for all k.

In fact, we will prove the stronger statement that

Jk(f
n(P ), H,B)− (1− λ)Jk(f

n(P ), H,B′) (12)

is an increasing function of P for all k ∈ {1, . . . ,K + 1},

n ∈ N, H ≥ 0, B ≥ 0, B′ ≥ 0 with 0 ≤ B −B′ ≤ E, noting

that 0 ≤ g(B + H̃) − g(B − E + H̃) ≤ E by Lemma IV.3.

In order to show that (12) is an increasing function of P , it

turns out that we also need to show that

Jk(f
n(P ), H,B′)− Jk(f

n(P ), H,B) (13)

2016 24th European Signal Processing Conference (EUSIPCO)

227Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2021 at 13:02:47 UTC from IEEE Xplore.  Restrictions apply. 



is an increasing function of P for all k ∈ {1, . . . ,K + 1},

n ∈ N, H ≥ 0, B ≥ 0, B′ ≥ 0 with 0 ≤ B −B′ ≤ E.

The proof is by induction. That (12) and (13) are increasing

functions of P in the case of k = K +1 is clear. For P ≥ P ′

and 0 ≤ B −B′ ≤ E, assume that

Jl(f
n(P ), H,B)− (1− λ)Jl(f

n(P ), H,B′)

− Jl(f
n(P ′), H,B) + (1− λ)Jl(f

n(P ′), H,B′) ≥ 0
(14)

and

Jl(f
n(P ), H,B′)− Jl(f

n(P ), H,B)

− Jl(f
n(P ′), H,B′) + Jl(f

n(P ′), H,B) ≥ 0
(15)

holds for l = K + 1,K, . . . , k + 1.

Let us first show that (14) holds for l = k. We have

Jk(f
n(P ), H,B)− (1− λ)Jk(f

n(P ), H,B′)

− Jk(f
n(P ′), H,B) + (1− λ)Jk(f

n(P ′), H,B′)

= min
ν,νE≤B

{

νλtr(P̄ ) + (1− νλ)trfn+1(P )

+ νλE
[

Jk+1(P̄ , H̃, g(B − νE + H̃))|H
]

+ (1−νλ)E
[

Jk+1(f
n+1(P ), H̃, g(B−νE+H̃))|H

]}

− (1− λ) min
ν,νE≤B′

{

νλtr(P̄ ) + (1− νλ)trfn+1(P )

+ νλE
[

Jk+1(P̄ , H̃, g(B′ − νE + H̃))|H
]

+ (1−νλ)E
[

Jk+1(f
n+1(P ), H̃, g(B′−νE+H̃))|H

]}

− min
ν,νE≤B

{

νλtr(P̄ ) + (1− νλ)trfn+1(P ′)

+ νλE
[

Jk+1(P̄ , H̃, g(B − νE + H̃))|H
]

+ (1−νλ)E
[

Jk+1(f
n+1(P ′), H̃, g(B−νE+H̃))|H

]}

+ (1− λ) min
ν,νE≤B′

{

νλtr(P̄ ) + (1− νλ)trfn+1(P ′)

+ νλE
[

Jk+1(P̄ , H̃, g(B′ − νE + H̃))|H
]

+ (1−νλ)E
[

Jk+1(f
n+1(P ′), H̃, g(B′−νE+H̃))|H

]}

If B ≥ E and B′ ≥ E, then

Jk(f
n(P ), H,B)− (1− λ)Jk(f

n(P ), H,B′)

− Jk(f
n(P ′), H,B) + (1− λ)Jk(f

n(P ′), H,B′)

≥ min
ν

{

(1− νλ)trfn+1(P )

+ (1− νλ)E
[

Jk+1(f
n+1(P ), H̃, g(B − νE + H̃))|H

]

− (1− λ)
[

(1− νλ)trfn+1(P )

− (1− νλ)E
[

Jk+1(f
n+1(P ), H̃, g(B′ − νE + H̃))|H

] ]

− (1− νλ)trfn+1(P ′)

− (1− νλ)E
[

Jk+1(f
n+1(P ′), H̃, g(B − νE + H̃))|H

]

+ (1− λ)
[

(1− νλ)trfn+1(P ′)

+(1−νλ)E
[

Jk+1(f
n+1(P ′), H̃, g(B′−νE+H̃))|H

] ]}

= min
ν

(1− νλ)
{

λ
[

trfn+1(P )− trfn+1(P ′)
]

+ E

[

Jk+1(f
n+1(P ), H̃, g(B − νE + H̃))|H

]

− (1− λ)E
[

Jk+1(f
n+1(P ), H̃, g(B′ − νE + H̃))|H

]

− E

[

Jk+1(f
n+1(P ′), H̃, g(B − νE + H̃))|H

]

+ (1− λ)E
[

Jk+1(f
n+1(P ′), H̃, g(B′ − νE + H̃))|H

]}

≥ 0,

where the last inequality holds (for both cases ν = 0 and

ν = 1) by Lemma IV.2 and the induction hypothesis (14),

since 0 ≤ g(B − νE + H̃) − g(B′ − νE + H̃) ≤ E when

0 ≤ B −B′ ≤ E.

If B < E and B′ < E, or if B ≥ E and B′ < E, then

the inequality Jk(f
n(P ), H,B)− (1−λ)Jk(f

n(P ), H,B′)−
Jk(f

n(P ′), H,B) + (1 − λ)Jk(f
n(P ′), H,B′) ≥ 0 can be

shown by similar arguments, with the case B ≥ E and B′ < E

also making use of the induction hypothesis (15). This proves

that (14) holds for l = k.

It remains to show that (15) holds for l = k. This can be

done using the same method as showing that (14) holds for

l = k, and will make use of both induction hypotheses (15)

and (14). The details are omitted for brevity.

C. Threshold Policies with Respect to Battery Level

We also have the following result on the optimality of

threshold policies with respect to the battery level:

Theorem IV.5. For fixed Pk−1|k−1 and Hk, the optimal ν∗k
is a threshold policy on Bk of the form:

ν∗k(Pk−1|k−1, Bk, Hk) =

{

0 , Bk ≤ B∗

1 , otherwise

where the threshold B∗ depends on k, Pk−1|k−1 and Hk.

Theorem IV.5 can be regarded as a special case of Theorem

6.1 of [9]. Due to paper length constraints, the details are

omitted.

V. NUMERICAL STUDIES

We consider an example with parameters

A =

[

1.1 0.2
0.2 0.8

]

, C =
[

1 1
]

, Q = I, R = 1,

in which case P̄ is easily computed as

P̄ =

[

1.3762 −0.9014
−0.9014 1.1867

]

.

The packet reception probability is chosen to be λ = 0.7. The

transmission energy E = 2. The energy harvested process

{Hk} is chosen to be i.i.d. with Hk uniformly distributed

between 0 and 2. The maximum battery capacity Bmax = 6.

We use the finite horizon K = 10.

Since {Hk} is i.i.d. the optimal transmission policy will

be independent of Hk. Fig. 2 plots ν∗k for different values of

Pk−1|k−1 = fn(P̄ ), for fixed k = 2 and Bk = 2. We observe a
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2
*

0

1

Fig. 2. ν∗
2

for different values of Pk−1|k−1 = fn(P̄ ), for fixed Bk = 2.

threshold behaviour in Pk−1|k−1. Note that the plot is discrete

as Pk−1|k−1 lies in the discrete set S . Fig. 3 plots ν∗k for

different values of Bk, for fixed k = 3 and Pk−1|k−1 = f(P̄ ).
We now observe a threshold behaviour in Bk.

B
3

0 1 2 3 4 5 6

�

3
*

0

1

Fig. 3. ν∗
3

for different values of B3, for fixed Pk−1|k−1 = f(P̄ ).

Next, we consider the case where the maximum battery

capacity Bmax is varied. Fig. 4 plots the trace of the expected

error covariance trE[Pk|k] vs. Bmax, with trE[Pk|k] obtained by

averaging over 100000 Monte Carlo runs, with each run having

the initial values P0|0 = P̄ and B1 = E. We compare the

performance with a suboptimal scheme that always transmits

provided there is enough energy available, i.e. νk = 1 if

Bk ≥ E. We see that the optimal solution significantly

outperforms this suboptimal scheme.

2 2.5 3 3.5 4 4.5 5 5.5 6

B
max

4.5

5

5.5

6

6.5

7

tr
 E

[P
k
|k

]

Always transmit

Optimal solution

Fig. 4. Expected error covariance vs. maximum battery capacity.

VI. CONCLUSION

This paper has considered an event triggered remote esti-

mation problem, where the sensor is equipped with energy

harvesting capabilities and transmission is over a stochastic

packet dropping link. We have derived structural results on

the optimal transmission scheduling in order to minimize an

expected error covariance measure. Our results show that for

the class of problems studied threshold policies in the error

covariance and battery level are optimal.
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[12] A. Nayyar, T. Başar, D. Teneketzis, and V. V. Veeravalli, “Optimal
strategies for communication and remote estimation with an energy
harvesting sensor,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp.
2246–2260, Sep. 2013.

[13] B. D. O. Anderson and J. B. Moore, Optimal Filtering. New Jersey:
Prentice Hall, 1979.

[14] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE

Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, September 2004.
[15] Y. Xu and J. P. Hespanha, “Estimation under uncontrolled and controlled

communications in networked control systems,” in Proc. IEEE Conf.

Decision and Control, Seville, Spain, December 2005, pp. 842–847.
[16] L. Schenato, “Optimal estimation in networked control systems subject

to random delay and packet drop,” IEEE Trans. Autom. Control, vol. 53,
no. 5, pp. 1311–1317, Jun. 2008.

[17] M. H. Ngo and V. Krishnamurthy, “Optimality of threshold policies
for transmission scheduling in correlated fading channels,” IEEE Trans.

Commun., vol. 57, no. 8, pp. 2474–2483, Aug. 2009.

2016 24th European Signal Processing Conference (EUSIPCO)

229Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2021 at 13:02:47 UTC from IEEE Xplore.  Restrictions apply. 


