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Abstract
Weaim to address the question of whether or not there is a significant recent ‘hiatus’, ‘pause’ or
‘slowdown’ of global temperature rise. Using a statistical technique known as change point (CP)
analysis we identify the changes in four global temperature records and estimate the rates of
temperature rise before and after these changes occur. For each record the results indicate that three
CPs are enough to accurately capture the variability in the datawith no evidence of any detectable
change in the global warming trend since∼1970.We conclude that the term ‘hiatus’ or ‘pause’ cannot
be statistically justified.

1. Introduction

The idea of a recent ‘hiatus’, ‘pause’ or ‘slowdown’ of
global temperature rise has received considerable
public and scientific attention in recent years
(Mooney 2013, Hawkins et al 2014). The time interval
to which people refer differs but is usually taken as
starting either in 1998 or 2001. Global temperature
trends starting from these particularly warm years
until the present are smaller than the long-term trend
since 1970 of 0.16 ± 0.02 °C per decade, though still
positive.

While close to 50 papers have already been pub-
lished on the ‘hiatus’ or ‘pause’ (Lewandowsky et al, in
press), the important question of whether there has
been a detectable change in the warming trend (rather
than just variability in short-term trends due to stochas-
tic temperature variations) has received little attention.
An appropriate statistical tool to answer this question is
change point (CP) analysis (e.g. Carlin et al 1992). CP
analysis allows us to determine the magnitude of chan-
ges in rates of temperature increase/decrease and esti-
mate the timings atwhich these changes occur.

2.Methods

We present an approach to CP analysis known as CP
linear regression (e.g. Carlin et al 1992). This approach

models a time series as piecewise linear sections and
objectively estimates where/when changes in data
trends occur. The model forces each line segment to
connect, avoiding discontinuities. Isolated pieces of
trend line with sudden temperature changes between
them (i.e. a ‘stairway model’) would not provide a
physically plausible model for global temperature
given the thermal inertia of the system. A change in
climate forcing can instantly change the rate of
warming, but cannot instantly change global
temperature.

To specify the model, consider a sample size of n,
with response data y y, , n1 … observed at continuous
times x x, , n1 … with x x xn1 2< < … < . In the sim-
plest regression case of a single CPwe have:

y
x x

x

( ) when ,

( ) otherwise.i

i i i

i i
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Here α is the expected value of y at the CP,
N (0, )i

2ϵ σ∼ and 2σ is the residual variance. Most
importantly γ is the time value where a change in rate
occurs, and 1β and 2β are the slopes before and after
the trend change.

The CPmodel can be extended to deal withmCPs,

lγ where l = 1,…,m. It is convenient to fit these models
in a Bayesian framework (e.g. Gelman et al 2003) so
that we can include external prior information where
necessary, and have full access to all the uncertainties
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on the parameters. Of most interest are the priors for
the CP parameters lγ (the timings of the rate changes).
These parameters are given uniform prior distribu-
tions over the entire range of the data, with the condi-
tion that they are ordered chronologically. Using
Bayes’ theorem allows the data to inform the model
and update prior information to give posterior esti-
mates for lγ and any other parameters of interest. We
defer discussion of the technical details involved in this
model to appendix A.

Themodel as described takes the number of CPsm
as a fixed parameter. To determine the most appro-
priate value ofm, and thus the number of CPs, we use
the deviance information criterion (DIC; Spiegelhalter
et al 2002). The DIC works by penalising the deviance
(a measure of the quality of the model’s fit to data) by
its complexity, determined by the effective number of
parameters. In general as model complexity increases,
the deviance will decrease, so adding this penalty will
select parsimonious models that fit the data well but
are not too complex. The DIC is negatively orientated
(i.e. a smaller value indicates a better model). When
running themodels, we choose a range of values form,
e.g. from 0 to 5. Parameter convergence is monitored,
models that do not show convergence are rejected and
from the remainder DIC is used to decide on the most
appropriatemodel for the data.

The models were fitted in JAGS (just another
Gibbs sampler; Plummer 2003). JAGS is a tool for ana-
lysis of Bayesian hierarchical models using Markov
Chain Monte Carlo (MCMC) simulation. MCMC is a
technique to approximate Bayesian posterior distribu-
tions for unknown parameters. The method simulates
a Markov process (a type of random walk) where the
distribution of the values it will take after a very large
number of iterations is the required posterior distribu-
tion (see appendix B for more details on MCMC).
JAGS offers cross platform support, and provides a
direct interface to R using the package rjags (Plum-
mer 2014). Bayesian models fitted using MCMC pro-
vide samples from the posterior distribution of the
parameters. From these samples we can compute any
summary statistics we require (e.g. means and stan-
dard deviations). When JAGS models are run, a num-
ber of samples are usually discarded as the algorithm
converges to the true posterior, and a further number
are thinned out to avoid autocorrelation in successive
samples. We check convergence using standard meth-
ods in the R package coda (Plummer et al 2006). The R
code required to run the CP models is provided in the
supplementarymaterial.

3. Results

In figure 1 we present a CP analysis applied to four
global annual temperature data series (Had-
CRUT4, 2015, GISTEMP 2015, NOAA 2015, Cowtan
and Way 2015). In all cases, by monitoring

convergence and using DIC, we find that the best fit is
obtained with three CPs situated in about 1912, 1940
and 1970. The linear sections correspond to well-
known stages of global temperature evolution, where
the plateau from 1940 to 1970 is related to a near-
balance of positive (greenhouse gas) and negative
(aerosol) anthropogenic forcings, while the ∼0.6 °C
warming since 1970 has been attributed almost
entirely to human activity (IPCC 2014). The three CP
fit is similar to a smooth nonlinear trend line obtained
by singular spectrum analysis (Rahmstorf and
Coumou 2011).

Our approach aims to identify trend changes in the
data series. A side effect of the CPmodel choice is that
the first derivative of temperature (i.e. the rate of
change) over time is discontinuous; at a CP the rate of
temperature increase/decrease switches from one
value to another. Physically this is not implausible. A
sudden change in the rate of temperature change is far
less unphysical than a sudden change in temperature.
The former could be caused by a change in the rate of
forcing. An alternative approach would be to use a
spline model and this would be particularly useful if
our interests lay specifically in observing continuous
rates of temperature change. Cubic splines are a popu-
lar choice (Eilers and Marx 1996), as these have two
continuous derivatives. However, the choice of con-
tinuous derivatives is entirely arbitrary; curves with
two continuous derivatives are appealing as they
appear smooth to the human eye. Neither approach is
inappropriate, indeed, we could think of our CP analy-
sis as a version of a spline model where the knots (pla-
ces where to splines intersect) are the CPs. When
comparing a cubic spline fit with our three CP model
fit we found the results to be very similar, so the addi-
tional degrees of freedom offered by the cubic spline
appear unnecessary. We therefore simply apply the
model that gives us direct access to the quantity of
interest, namely detectable changes in linear rates of
global temperature rise and their corresponding
timings.

Residual analysis demonstrates that our three CP
model suitably captures the signal similarly to that of a
cubic splinemodel, i.e. the residual data after subtract-
ing themodel fit indicated that most of the climate sig-
nal is fully accounted for. Using fewer than three CPs
leaves one with highly auto-correlated residuals, i.e. a
remnant climate signal. Attempts to find a fourth CP
fail with poor parameter convergence.

Comparison of the three CP model with a piece-
wise linear regressionmodel that forces a trend change
in 1998 and 2001 gives further validation to our
results. For each record the comparison indicates only
minor differences between the two models (figures 2
and 3). Further, the 95% confidence intervals for the
fitted values (not shown) show strong overlap indicat-
ing no notable difference in both cases. Based on these
results it is unsurprising that we did not find a fourth
trend change in these data. The smallest difference
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Figure 1.Overlaid on the raw data are themean curves predicted by the three CPmodel. The grey time intervals display the total range
of the 95% confidence limits for eachCP. The average rates of rise per decade for the three latter periods are 0.13 ± 0.04 °C,−0.03 ±
0.04 °C and 0.17± 0.03 °C forHadCRUT, 0.14 ± 0.03 °C,−0.01 ± 0.04 °C and 0.15 ± 0.02 °C forNOAA, 0.15 ± 0.05 °C,−0.03±
0.04 °C and 0.18± 0.03 °C forCowtan andWay and 0.14± 0.04 °C,−0.01± 0.04 °C and 0.16 ± 0.02 °C forGISTEMP.

Figure 2.Comparing the three CP (3CP)model fit with a piecewise linear regression (PWLR) fit that forces four breakpoints (the
three indicated by theCP analysis and a fourth in 1998) for the four global temperature records.
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between the trends with and without a forced CP in
1998 or 2001 is found in the (Cowtan and Way 2015)
series, which arguably gives the best global coverage
due to their sophisticatedmethod of filling gaps in sur-
face observations with the help of satellite data (Cow-
tan and Way 2014). The CP analysis thus provides
strong evidence that there has been no detectable
trend change in any of the global temperature records
either in 1998 or 2001, or indeed any time since 1980.
Note that performing the CP analysis on the global
temperature records excluding the 2013 and 2014
observations does not alter this conclusion.

Finally to conclusively answer the question of whe-
ther there has been a ‘pause’ or ‘hiatus’we need to ask:
If there really was zero-trend since 1998, would the
short length of the series since this time be sufficient to
detect a CP? To answer this, we took the GISTEMP
global record and assumed a hypothetical climate in
which temperatures have zero trend since 1998. The
estimated trend line value for 1998 is 0.43 °C
(obtained by running the CP analysis on the original
data up to and including 1998). Using this, we simu-
lated 100 de-trended realizations for the period
1998–2014 that were centered around 0.43 °C. We
augmented the GISTEMP data with each hypothetical
climate realization and ran the four CP model on the

augmented data sets. This allowed us to observe how
often a fourth CP could be detected if the underlying
trend for this period was in fact zero. Results showed
that 92% of the time the four CP model converged to
indicate CPs in approximately 1912, 1940, 1970 and a
fourth CP after 1998. Thus, we can be confident that if
a significant ‘pause’ or ‘hiatus’ in global temperature
did exist, our models would have picked up the trend
changewith a high probability of 0.92.

4. Conclusion

CP regression analysis does not detect a significant
change or‘pause’ in global warming trends since
∼1970. Consistent with this, recent intervals of rapid
warming like 1990–2006 have not been interpreted as
significant acceleration (Rahmstorf et al 2007). Recent
variations in short-term trends are fully consistent
with an ongoing steady global warming trend super-
imposed by short-term stochastic variations. This
conclusion is consistent with modelling (Kosaka and
Xie 2014, Risbey et al 2014) and statistical analysis
(Foster and Rahmstorf 2011) suggesting that ENSO
variability is the main physical reason for the observed
variation inwarming trends.

Figure 3.Comparing the three CP (3CP)model fit with a piecewise linear regression (PWLR) fit that forces four breakpoints (the
three indicated by theCP analysis and a fourth in 2001) for the four global temperature records.
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Analysis of the extremes is also consistent with an
ongoing warming trend. The hottest years on record
were 2014, 2010 and 2005 (except in Cowtan andWay
where 2014 ranks second); for a steady warming trend
of 0.16 °C per decade and the observed variance of the
residual, a new record is expected on average every
four years (Rahmstorf and Coumou 2011). While it
has been shown that global temperature over the 21st
century will potentially demonstrate periods of no
trend or even slight cooling in the presence of longer-
term warming (Easterling and Wehner 2009), since
1976 not even a ten-year cold record has been set. We
conclude that, based on the available data, the use of
the terms ‘hiatus’ or ‘pause’ in global warming is
inaccurate.
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AppendixA.Multiple CPmodel

In the multiple CP case we have lγ , where
l m1, ,= … , assuming x xm n1 1 2γ γ γ< < < … < < .
We now have m 1+ independent data segments and
yi is drawn from the probability density function of the
jth segment for j m1 ,..., 1= + . Therefore we can
write themodel when i is in the jth segment as:

( )
( )

( )

y

N x j

N x

j m
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, ,
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Setting this model in a Bayesian framework, we
write the parameters as { , , , }2θ α β γ σ= where for
example j m{ : 1, , 1}jα α= = … + . We can then
use Bayes’ theorem tofind the posterior distribution of
the parameters given the data:

( )p y x p y x p( , ) , ( ). (1)
j

m

i J
i i

1

1 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏ ∏θ θ θ∣ ∝ ∣

=

+

∈

For all models demonstrated in this paper, we use
only vague N(0,1E + 6) prior distributions for the α
parameters. Prior distributions are not necessary for

jβ where j = 2,…,m as these can be deterministically

evaluated since neighbouring segments must join
together.We use:

j m, 2, , . (2)j

j j

j j

1

1

β
α α
γ γ

=
−
−

= …
−

−

The only free slope parameters 1β and m 1β + are
given vague N(0,1E + 6) prior distributions. The CP lγ
parameters are given uniform prior distributions over
the entire time range of the data, U x x( , )l n1γ ∼ , l = 1,
…,m. When l 1> we set the condition that lγ are
ordered, so that m1 2γ γ γ< < … < .

Appendix B.MarkovChainMonte
Carlo (MCMC)

We provide a summary of the use of MCMCmethods
in Bayesian analysis. For those interested in the more
technical details involved in MCMC we recommend
the introduction chapter in the Handbook of Markov
ChainMonteCarlo (Brooks et al 2011).

MCMC is a technique used to solve the problem of
sampling from complicated distributions. It is particu-
larly useful for the evaluation of posterior distribu-
tions in Bayesian models. From Bayes’ theorem we
have:

P X P X P( ) ( ) ( ) ,

Posterior Likelihood Prior

 

⏟
θ θ θ∣ ∝ ∣

where X is our data and θ is an unknown parameter or
vector of parameters. MCMC algorithms work by
drawing values for θ from the posterior distribution
(the probability distribution for θ given some observed
data). The Markov chain component of the MCMC
algorithm implies that a future value of our parameter
(s) t 1θ + only depends on the current value tθ and does
not depend on any of the previous values

, ,t t1 2 0θ θ θ…− − . In some MCMC algorithms the para-
meter value will either be accepted or rejected. This
acceptance/rejection step is governed by a specified
probability rule.We always accept values that are ‘good’
(i.e. that are supportedby the data).However, occasion-
ally we accept values that are ‘worse’ than the current
value (although still supported by the data). It is this
strategy that allows us to sample a probability distribu-
tion for our parameter(s) rather than only finding a
point estimate. The algorithm converges when the
sampled parameter values stabilize and if the algorithm
is efficient then it will converge towards the parameter’s
posterior probability distribution. Often, during the
warm-upphase of the algorithm, samples are discarded.
This is known as the burn in period. Only samples
beyond the burn in period are used as samples from the
posterior distribution. The Monte Carlo step implies
that by sampling enough times from the posterior
distribution we can get a good estimate for our
parameter(s) by taking an averageof all the samples.

Two popular MCMC algorithms are Metropolis–
Hastings (M–H) and the Gibbs sampler. In the M–H
algorithm, samples are selected from an arbitrary ‘pro-
posal’ distribution and are retained or not according to
an acceptance rule. The Gibbs sampler is a special case
in which the distributions are conditional (or
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‘proposed’ conditional) distributions of single compo-
nents of a parameter vector. JAGS (Plummer 2003) is a
program that was developed to perform these MCMC
methods on Bayesian statistical models. An appro-
priate likelihood for the data and priors for the
unknown parameter(s) are specified in a model file
and JAGS generates MCMC samples from this model
using Gibbs sampling. JAGS therefore produces sam-
ple values for our unknown parameter(s) and once we
are happy that the algorithm has converged these sam-
ples can be used to obtain point estimates (means,
medians) and uncertainties3.
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