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Abstract. There has been considerable success in analytic modeling of
the 802.11 MAC layer. These models are based on a number of fundamen-
tal assumptions. In this paper we attempt to verify these assumptions
by taking careful measurements using an 802.11e testbed with commod-
ity hardware. We show that the assumptions do not always hold but
our measurements offer insight as to why the models may still produce
good predictions. To our knowledge, this is the first in-detail attempt to
compare 802.11 models and their assumptions with experimental mea-
surements from an 802.11 testbed. The measurements collect also allow
us to test if the basic MAC operation adhere to the 802.11 standards.

1 Introduction

The analysis of the 802.11 CSMA/CA contention mechanism has generated a
considerable literature. Two particularly successful lines of enquiry are the use
of pure p-persistent modeling (e.g. [3]) and the per-station Markov chain tech-
nique (e.g. [2]). Modeling usually involves some assumptions, and in this respect
models of 802.11 are no different. Both these models assume that transmission
opportunities occur at a set of discrete times. These discrete times correspond
to the contention counter decrements of the stations, equivalent to state tran-
sitions in the models, and result in an effective slotting of time. Note that this
slotting based on MAC state transitions is different from the time slotting used
by the PHY. A second assumption of these models is that to a station observing
the wireless medium, every slot is equally likely to herald the beginning of a
transmission by one or more other stations. In the models this usually manifests
itself as a constant transmission or collision probability.

In this paper we will show detailed measurements collected from an experi-
mental testbed to study these assumptions. This is with a view to understanding
the nature of the predictive power of these models and to inform future modeling
efforts. The contribution of this paper includes the first published measurements
of packet collision probabilities from an experimental testbed and their compar-
ison with model predictions and the first detailed comparison of measured and
predicted throughputs over a range of conditions.

We are not the first to consider the impact of model assumptions. In par-
ticular, the modeling of 802.11e has required the special treatment of slots im-
mediately after a transmission in order to accommodate differentiation based
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on AIFS (e.g. [1, 9, 11, 6, 4]). In [13] the nonuniform nature of slots is used to
motivate an 802.11e model that moves away from these assumptions.

2 Test Bed Setup

The 802.11e wireless testbed is configured in infrastructure mode. It consists of a
desktop PC acting as an access point, 18 PC-based embedded Linux boxes based
on the Soekris net4801 [7] and one desktop PC acting as client stations. The PC
acting as a client records delay measurements and retry attempts for each of
its packets, but otherwise behaves as an ordinary client station. All systems
are equipped with an Atheros AR5215 802.11b/g PCI card with an external
antenna. All stations, including the AP, use a Linux 2.6.8.1 kernel and a version
of the MADWiFi [8] wireless driver modified to allow us to adjust the 802.11e
CWmin, AIFS and TXOP parameters. All of the systems are also equipped with
a 100Mbps wired Ethernet port, which is used for control of the testbed from
a PC. Specific vendor features on the wireless card, such as turbo mode, are
disabled. All of the tests are performed using the 802.11b physical maximal data
transmission rate of 11Mbps with RTS/CTS disabled and the channel number
explicitly set. Since the wireless stations are based on low power embedded
systems, we have tested these wireless stations to confirm that the hardware
performance (especially the CPU) is not a bottleneck for wireless transmissions
at the 11Mbps PHY rate used. As noted above, a desktop PC is used as a client
to record the per-packet measurements, including numbers of retries and MAC-
level service time. A PC is used to ensure that there is ample disk space, RAM
and CPU resources available so that collection of statistics not impact on the
transmission of packets.

Several software tools are used within the testbed to generate network traffic
and collect performance measurements. To generate wireless network traffic we
use mgen. We will often use Poisson traffic, as many of the analytic models
make independent or Markov assumptions about the system being analysed.
While many different network monitoring programs and wireless sniffers exist,
no single tool provides all of the functionality required and so we have used a
number of common tools including tcpdump. Network management and control
of traffic sources is carried out using ssh over the wired network.

3 Collision Probability and Packet Timing Measurement

Our testbed makes used of standard commodity hardware. In [5] we developed
a measurement technique that only uses the clock on the sender, to avoid the
need for synchronisation. By requesting an interrupt after each successful trans-
mission we can determine the time that the ACK has been received. We may
also record the time that the packet was added to the hardware queue, and by
inverting the standard FIFO queueing recursion we can determine the time the
MAC spent processing the packet. This process is illustrated in Figure 1. For
the measurements reported here, we have refined the technique described in [5]



by making use of a timer in the Atheros card that timestamps the moment com-
pleted transmit descriptors are DMAed to host memory. This allows us to avoid
inaccuracies caused by interrupt latency/jitter. As will be shown later, in this
way we are able to take measurements with microsecond-level timing accuracy.
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Fig. 1. Schematic of delay measurement technique.

To measure packet collision probabilities, we make use of the fact that the
transmit descriptors also report the number of retry attempts Ri for each packet.
Using this we can estimate the calculate the total number of retries R and the
average collision probability R/(P + R) where P is the number of successful
packet transmissions. We can also generalist this to get the collision probability
at the nth transmission attempt as

# {packets with Ri ≥ n}
# {packets with Ri = n} + # {packets with Ri ≥ n } . (1)

This assumes that retransmissions are only due to collisions and not due to
errors. We can estimate the error rate by measuring the retransmissions in a
network with one station. In the environment used, the error rate is < 0.1%.

4 Validation

All the models we study assume that the 802.11 backoff procedure is being
correctly followed. The recent work of [12], demonstrates that some commercial
802.11 cards can be significantly in violation of the standards. In particular,
it has been shown that some cards do not use the correct range for choosing
backoffs or do not seem to back off at all. We therefore first verify that the cards
that we use perform basic backoffs correctly, looking at CWmin (the range of the
first backoff in slots), AIFS (how many slots to pause before the backoff counter
may be decremented) and TXOP (how long to transmit for).

To do this we measure the MAC access delay. This is the delay is associated
with the contention mechanism used in 802.11 WLANs. The MAC layer delay,



i.e. the delay from a packet becoming eligible for transmission (reaching the head
of the hardware interface queue) to final successful transmission, can range from
a few hundred microseconds to hundreds of milliseconds, depending on network
conditions. In contrast to [12], which makes use of custom hardware to perform
measurements of access delay, here we exploit the fine grained timing information
available using the measurement technique described in the previous section to
make access delay measurements using only standard hardware.

To test the basic backoff behaviour of the cards, we transmitted packets from
a single station with high-rate arrivals and observed the MAC access delay for
each packet. Figure 2(a) shows a histogram of these times to a resolution of 1µs
for over 900,000 packets. We can see 32 sharp peaks each separated by the slot
time of 20µs, representing a CWmin of 32. This gives us confidence that the
card is not subject to the more serious problems outlined in [12].

There is jitter, either in the backoff process or in our measurement technique.
However, we can test the hypothesis that this is a uniform distribution by binning
the data into buckets around each of the 32 peaks and applying the chi-squared
test. The resulting statistic is within the 5% level of significance.
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Fig. 2. Distribution of transmission times for packets with a single station. Note there
a number peaks corresponding to CWmin.

The cards in question are 802.11e capable and so for comparison we adjust
CWmin so that backoffs are chosen in the range 0 to 3. The results are shown
in Figure 2(b) where we can see 4 clear peaks, as expected. We also see a small
number of packets with longer transmission times. The number of these packets
is close to the number of beacons that we expect to be transmitted during our
measurements, so we believe that these are packets delayed by the transmission
of a beacon frame.

Figure 3(a) shows the impact of increasing AIFS on MAC access time. In the
simple situation of a single station, we expect increasing AIFS to increase MAC
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Fig. 3. Distribution of packet transmission times for a single station. On the left, AIFS
has been increased, so the peaks are shifted by 120µs. On the right, TXOP has been
set to allow two packets to be transmitted every time a medium access is won, so we
see approximately half the packets being transmitted in a shorter time.

access times by the amount which AIFS is increased by. Comparing Figure 2(a)
and Figure 3(a) confirms this.

Similarly, we can use TXOP on the cards to transmit bursts of packets,
only the first of which must contend for channel access. Figure 3(b) shows the
distribution of transmission times when two packet bursts are used. We see that
half the packets are transmitted in a time almost 50µs shorter than the first
peak shown in Figure 2(b).

These measurements indicate that a single card’s timing is quite accurate and
so capable of delivering transmissions timed to within slot boundaries. In this
paper we do not verify if multiple cards synchronise sufficiently to fully validate
the slotted time assumption.

5 Collision Probability vs Backoff Stage

Intuitively, the models that we are considering are similar to mean-field mod-
els in physics. A complex set of interactions are replaced with a single simple
interaction that should approximate the system’s behaviour. For example, by
using a constant collision probability given by p = 1− (1− τ)n−1, where τ is the
probability a station transmits, regardless of slot, backoff stage or other factors.

This assumption is particularly evident in models based on [2] as we see the
same probability of collision used in the Markov chain at the end of each backoff
stage. However similar assumptions are present in other models. It is the collision
probability at the end of each backoff stage that we will consider in this section.

We might reasonably expect these sort of assumptions to better approximate
the network when the number of stations is large. This is because the backoff
stage of any one station is then a small part of the state of the network. Con-



versely, we expect that a network with only a small number stations may provide
a challenge to the modeling assumptions.

Figure 4(a) shows measured collision probabilities for a station in a network
of two stations. Each station has Poisson arrivals of packets at the same rate.
We show the probability of collision on any transmission, the probability of
collision at the first backoff stage (i.e. the probability of a collision on the first
transmission attempt for a given packet) and the probability of collision at the
second backoff stage (i.e. the probability of collision at the second transmission
attempt for a given packet, providing the first attempt was unsuccessful). Error
bars are conservatively estimated for each probability using 1/

√
N , where N is

the number of events used to estimate the probability.

The first thing to note is that the overall collision probability is very close to
the collision probability for the first backoff stage alone. This is because collisions
are overwhelmingly at the first backoff stage: to have a collision at a subsequent
stage a station must have a first collision and then a second collision, but we see
that less than 4% of colliding packets have a collision at the second stage.

As we expect, both overall collision probability and first state collision proba-
bility increase as the offered load is increased. However, we observe that collisions
at the second backoff stage show a different behaviour. Indeed, within the range
of the error bars shown, this probability is nearly constant with offered load.

This difference in behaviour can be understood in terms of the close coupling
of the two stations in the system. First consider the situation when the load
is low. On a station’s first attempt to transmit a packet, the other station is
unlikely to have a packet to transmit and so the probability of collision is very
low. Indeed, we would expect that the chance of collision to become almost zero
as the arrival rate becomes zero.

Now consider the second backoff stage when the load is low. As we are be-
ginning the second backoff attempt, the other station must have had a packet
to transmit to have caused a collision in the first place. So, it is likely that both
stations are on their second backoff stage. Two stations beginning a stage-two
backoff at the same time will collide on their next transmission with probabil-
ity 1/(2 ∗ CWmin) = 1/64 (marked on Figure 4(a)). If there is no collision, it
is possible that the first station to transmit will have another packet available
for transmission, and could collide on its next transmission, however as we are
considering a low arrival rate, this should not be common.

On the other hand, if the load is heavy, it is highly likely that the other station
has packets to send, regardless of backoff stage. This explains the increasing trend
in all the collision probabilities shown. However, at the second backoff stage we
know that both stations are have recently doubled their CW value. These larger
than typical CW values result in smaller collision collision probability, and so we
expect a lower collision rate on the second backoff stage compared to the first.

Figure 4(b) shows the same experiment, but now conducted with 10 stations
in the network. Here, explicitly reasoning about the behaviour of the network is
more difficult, but we see the same trends as for 2 stations: the first-stage and
overall collision probabilities are very similar; collision probabilities increase as
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Fig. 4. Measured collision probabilities as offered load is varied. Measurements are
shown of the average collision probability (the fraction of transmission attempts re-
sulting in a collision), the first backoff stage collision probability (the fraction of first
transmission attempts that result in a collision) and the second backoff stage collision
probabilities (the fraction of second transmission attempts that result in a collision).

the load increases; collision probabilities at the second stage are higher than at
first stage when the load is low, but vice versa when the load is high. The relative
values of the collision probabilities are closer than in the case of 2 stations, but
the error bars suggest they are still statistically different.

In contrast to the relatively gradual increase for two stations, we see a much
sharper increase for 10 stations. Accurately capturing any sharp transition can
be a challenge for a model.

In summary, while analytic models typically assume that the collision prob-
ability is the same for all backoff stages, our measurements indicate that this is
generally not the case. However, collisions are dominated by collisions at the first
backoff stage, and so the overall collision probability is a reasonable approxima-
tion to this. Adjustments to later-stage collision probabilities would represent
second-order corrections when calculating mean-behaviour quantities (e.g. long
term throughput). However, based on these measurements it is not clear if distri-
butions or higher-order statistics, such as variances, predicted by existing models
will always accurately reflect real networks.

6 Saturated Network Relationships

In this section we will consider the relationship between the average collision
probability and the transmission probability. The relationship between these
quantities plays a key role in many models, where it is assumed that

p = 1 − (1 − τ)n−1. (2)



Models will typically calculate τ based on mean backoff window or use a self-
consistent approach, where a second relationship between p and τ gives a pair
of equations that can be solved for both.

Once τ is known, the throughput of a system is usually calculated by cal-
culating the the average time spent transmitting payload data in a slot by the
average length of a slot. That is,

S =
Epnτ(1 − τ)n−1

σ(1 − τ)n + Tsnτ(1 − τ)n−1 + (1 − (1 − τ)n − nτ(1 − τ)n−1)Tc

. (3)

Here Ep is the time spent transmitting payload, σ is the time between counter
decrements when the medium is idle, Ts is the time before a counter decre-
ment after a successful transmission begins and Tc is the time before a counter
decrement after a collision begins.

The pair of equations 2 and 3 are based on assuming that each station trans-
mits independently in any slot. These equations can be tested independently of
the rest of the model based on our measurements. Specifically, using our mea-
surements of collision probability p, we may derive τ using equation 2 and then
compare the predicted throughput given by equation 3 to the actual throughput.
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Fig. 5. Predicted and measured collision probability (left) and throughput (right) in
in a network of saturated stations as the number of stations is varied.

Figure 5(a) shows the predictions made by a model described in [10] for the
collision probabilities in a network of saturated stations and compares them to
values measured in our testbed. We see that the model overestimates the collision
probabilities by a few percent.

Figure 5(b) shows the corresponding measured throughput, together with
model-based predictions of throughput made in several different ways. First, p
and τ are predicted using the model described in [10] and throughput derived
using equation 3. We take values Ts = 907.8µs and Tc = 963.8µs which would
be valid if the 802.11b standard was followed exactly. It can be seen that, other



than for very small numbers of stations, the model prediction consistently un-
derestimates the throughput by around 10%.

Further investigation reveals that the value used for Tc appears to signif-
icantly overestimate the Tc value used in the hardware. While the standard
requires that, following a collision, stations must pause for the length of time
it would take to transmit an ACK at 1Mbps our measurements indicate that
the hardware seems to resume the backoff procedure more quickly. In particular,
values of Ts = 916µs and Tc = 677µs are estimated from test bed measurements.
Using once again the model values for p and τ , but now plugging in our mea-
sured values for Ts and Tc, we see in Figure 5 that this produces significantly
better throughput predictions, suggesting that the estimated values for Ts and
Tc are probably closer to what is in use. In particular, we note that for larger
numbers of nodes, where collisions are more common, the estimated throughput
now closely matches the measured throughput.

Finally, instead of predicting p using a model, we use the measured value of p
and estimate τ using equation 2. We continue to use the values of Ts and Tc based
on testbed measurements. We can see from Figure 5 that for larger numbers of
stations the throughput predictions are very similar to the previous situation.
This suggests that equation 3 is rather insensitive to the small discrepancies seen
in Figure 5 for larger numbers of stations. However, for two stations we see a
significantly larger discrepancy in throughput prediction. This may indicate that
the independence assumptions made by equations 2 and 3 are being strained by
the strongly coupled nature of a network of two saturated stations.

7 Conclusion

In this paper we have investigated a number of common assumptions used in
modeling 802.11 using an experimental testbed. We present the first published
measurements of conditional packet collision probabilities from an experimental
testbed and compare these with model assumptions. We also present one of the
first detailed comparison of measured and predicted behaviour.

We find that collision probabilities are not constant when conditioned on a
station’s backoff stage. However, collisions are dominated by collisions at the first
backoff stage, and so the overall collision probability is a reasonable approxima-
tion to this. Adjustments to later-stage collision probabilities would represent
second-order corrections when calculating mean-behaviour quantities (e.g. long
term throughput). However, based on these measurements it is not clear if dis-
tributions or higher-order statistics, such as variances, predicted by these models
will always accurately reflect real networks.

We also find that throughput predictions are somewhat insensitive to small
errors in predictions of collision probabilities when a moderate number of stations
are in a saturated network. In all our tests, we see that two station networks
pose a challenge to the modeling assumptions that we consider.



In future work we may explore the level of synchronisation between stations,
the effect of more realistic traffic on the assumptions we have studied and the
impact of non-fixed collision probabilities on other statistics, such as delay.
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