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Abstract
Acceleration radiation—orUnruh radiation—the thermal radiation observed by an ever accelerating
observer or detector, although having similarities toHawking radiation, so far has proved extremely
challenging to observe experimentally. One recent suggestion is that, in the presence of amirror,
constant acceleration of an atom in its ground state can excite the atomwhile at the same time cause it
to emit a photon in anUnruh-type process. In this workwe show thatmerely by shaking the atom, in
simple harmonicmotion for example, can have the same effect.We calculate the transition rate for
this infirst order perturbation theory and consider harmonicmotion of the atom in the presence of a
stationarymirror, or within a cavity or just in empty vacuum. For the latter we propose a circuit-QED
potential implementation that yields transition rates of∼10−4 Hz, whichmay be detectable
experimentally.

1. Introduction

The study of quantumfields in curved space time has led to profound newdiscoveries includingHawking
radiation and theUnruh [1] effect. The latter typically is discussed for the case of an uniformly accelerated
observer or detector in the vacuumofflatMinkowski spacetime. The accelerated detector (whichwe take to be a
two level system—TLS), rather than seeing the vacuum, instead experiences a thermal photon bathwith
temperatureT=aÿ/(2πckB), where a is the proper acceleration of the TLS.One interpretation is that the virtual
photons that normally dress the internal states of such a TLS are promoted to be real excitations due to the highly
non-adiabatic nature of the acceleration. Virtual photons can havemeasurable signatures in atomic physics, e.g.
in the Lamb shift and inRaman scattering. However, experimentally observing theUnruh effect has proved
challenging since to achieveT∼1°K, requires an extreme acceleration a∼1020 m s−2, and to substantially
excite the TLS the latter should have a transition frequencyω0/2π∼20 GHz. The importance of theUnruh
effect and its analogous effect in black holes,Hawking radiation, has led to a number of proposals over the past
three decades towards an experimental test of the existence of acceleration radiation. These proposals include
detectingUnruh radiation via electrons orbiting in storage rings [2–4], in Penning traps [5], in high atomic
number nuclei [6], via shifts in acceleratingHydrogen-like atoms [7], via decay processes of accelerating protons
or neutrons [8], or when electrons experience ultra-intense laser acceleration [9, 10], by examining theCasimir–
Polder coupling to an infinite plane froman accelerating two-level system [11]. Researchers have also
investigated using cavities to enhance the effect [12–14, 52], and using the Berry phase or entanglement as probes
ofUnruh radiation [15–17].With the advent of circuitQED—cQED, researchers have investigated simulations
ofUnruh radiation via theDynamicCasimir Effect—DCE, [18–21], or by using cQED to simulate relativistically
moving systems [22, 23], and also usingNMR [24] or by studying the interaction between pairs of accelerated
atoms [25], or via the dynamical Casimir effect [26].More recent work has probedwhether realmotion can
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produce acceleration radiation and in [27, 28], the authors consider amechanicalmethod ofmodulating the
electromagnetic fields in cQEDDCEphoton production.

In ourworkwe instead consider amodel where the centre ofmass of a TLSmoves in an acceleratedmanner
thatmay be achieved in a laboratory setting e.g. oscillatorymotion. In [29] the authors discussed the possibility
that a TLS, uniformly accelerating away fromamirror and initially in its ground state, could experience a
transition to its excited state accompanied by the emission of a photon. This raises the question of what other
kinds of accelerationmight lead to such a process? In this paperwe show that simple harmonic oscillation of the
atom can also result in photon emission accompanied by an excitation from the ground to the excited state of
the TLS.

Considering acceleration radiation fromoscillatorymotion has an advantage over continuous linear
acceleratedmotion in that the TLS stays in a compact region and thus should bemore feasible for direct
experimental implementation. In the followingwe derive closed compact expressions for the rate of photon
production in the case of an oscillating TLS in the presence of amirror, orwithin cavity, or just coupled to
vacuum. For the latter we propose a cQED implementationwhich predicts significant rates of photon
production in themicrowave regime.

2. Evaluating the probability to emit a photon under general non-relativisticmotions

Wenow showhow to derive the probability for the two-level system,moving in one dimension along a pre-set
space-time trajectory, in the presence of amirror, to become excited and emit a photon usingfirst order
perturbation theory. Using the derived expressionwefirst confirm that if the two level system is at rest the
probability to emit a photon is zero. In the subsequent subsectionswe consider various other types ofmotions.
Following [29], we consider a two level system, or atom, coupled to the electromagnetic fieldwith a coupling
strength g, and atomic transition frequencyω0, so the excitation energy isΔE=ÿω0>0. For simplicity we
considermotion in one-dimension given by position z(t)4 In the interaction picture theHamiltonian for the
interaction of the atomwith the electricfieldfω, is [29]

w f f= +w w w wH t g a t z t a t z t, , , 1I *( ) { ( ( )) ( ( ))} ( )†

s s´ +w w
-

-
+e e , 2t ti i0 0( ) ( )

whereσ+ raises the internal atomic state andσ−lowers it, wa †, aω are photon creation operator and annihilation
operators andfω arefieldmodes that depend on the boundary conditions.We note that (2), describes the
interaction at a specific frequencyω, and the full Hamiltonian is obtained by ò w wºH t H t, dI I( ) ( ) , and thus
our treatment encapsulates the potential excitation of anywavelength radiation. Inwhat followswe compute the
probability to excite the atomand emit a photon of frequencyω, where the latter is not taken as afixed quantity.
This interaction has been used numerous times in the literature tomodel the coupling between a two-level atom
and a quantumfield but herewe do notmake the rotatingwave approximation and the position of the atom is
allowed to vary in time. Further, we permit the photon fieldmode frequencyω to be arbitrary and thus the the
atom can couple to vacuummodes of any frequency. This is unlike the so-called ‘singlemode approximation’
(SMA), where authors consider the atom to couple preferentially to a small number ofmodes concentrated at a
single frequency e.g. for an atomwithin an accelerating cavity [14, 30–37]. Research has shown thatmaking the
SMAcan lead to difficulties in superluminal propagation effects at strong couplings [38], and entanglement
generation [39], however someworks have explored beyond the SMA including anNMRanalogue simulation of
Unruh radiation [24] [2modes]. If the two level system ismoving on the entire real line and its position is a
function of t, wewould use right and leftmovingfieldmodes

f =w
w-e , 3t kz ti ( )( ( ))

where k=ω/c>0, is the z-component of the photon’s wave-vector. In the presence of amirrorfixed at z=z0,
wewould instead use

f = -w
w w- - + - + -e e , 4t kz t kz t kz t kzi i0 0 ( )( ( ) ) ( ( ) )

thus ensuring that the photon field, and hence the transition amplitude, vanishes when z(t) – z0 is an integer
multiple of thewavelength and the atom is at a node of the field. In a cavity of length L, wewould again use (4),
but the frequency andwave-vector would be restricted by the condition that k=ω/c=2πn/L for some
positive integer n.We shall workwith (4) on the half-line for themoment, and later adapt the results to the case
of a cavity or the entire real line as in (3). Infirst order perturbation theory the probability of exciting the atom

4
Unlike [29] our analysis will be non-relativistic and t is just ordinaryNewtonian time, not proper time—the calculation can be done

relativistically but there is no need for such a complication. If we assume amechanical oscillation frequencyΩ/2π∼10 GHz, and a
maximumamplitude of oscillation asA∼10 nm, then themaximumvelocity achieved of the atom is vmax∼600 m s−1=c. As we show
belowwe predict that these parameter valueswill yield significant acceleration radiation.
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(via the raising operator s w
+e ti 0 in the interaction), and at the same time creating a photon of frequencyωvia the

fwa *ˆ† , term in the interaction potential, is given by

ò= - w w

-¥

¥
- +P g c c te . . e d . 5k z t z t t2 i i i

2
0 0[ ] ( )( ( ) )

If the atom is at rest, z is constant and the integral gives δ(ω+ω0), which is zero sinceω>0 andω0>0. Thus
P=0, and the probability to become excited and emit a photon vanishes.We nowuse the expression (5), in the
following to consider other types of space-timemotions z(t), to discover how they can give rise to non-vanishing
probabilitiesP.

3.Oscillating 2-state atomwith amirror

Wenow consider an atom forced to oscillate in the presence of a stationarymirror, the latter located at z0,
oscillatingwith amotional angular frequencyΩ, around z=0with amplitude 0<A<z0 (sowe do not hit the
mirror), and set z(t)=A sin(Ωt) (see figure 1). Using this in (2), the probability of creating a photon of frequency
ω from the vacuum, and at the same time exciting the atom from its ground state to its excited state is

òw = - w w

-¥

¥
W - +P g c c te . . e d .k A t z t2 i sin i

2
0 0( ) [ ]( ( ) ) ( )

Simplify the notation by absorbingΩ into t and defining dimensionless variables τ=Ωt, w w w= + W0˜ ( ) ,
=A kA˜ and =z kz0 0˜ , we obtain
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The integrals appearing in (6) are related toAnger functions [40] (section 12.3.1),

ò òp
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But Anger functions are not quite whatwewant sincewhatwe have in (6), is

ò òåq q=q nq
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Letting ν=n+{ν}, where n is an integer, and 0�{ν}<1, is the non-integral part of ν, then
n p pd nå = å = + å =np n p

=-¥
¥ -

=-¥
¥ -

=
¥ se e 1 2 cos 2s

s
s

s
s

2i 2i
0 ( { } ) ({ }){ } and (8), vanishes unless ν is an

integer, inwhich case it diverges. This is not unexpected sincewhen Fermi’s GoldenRule says that if the
transition rate is constant, integrating over all twill necessarily give an infinite answer for any transitionwith
non-zero probability. For our periodic case itsmore informative to estimate a transition rate over amotional
cycle rather than the accumulated probability over all time.

Figure 1.Weconsider the generation of photons of frequencyω, from a two level system (atom), with internal transition frequencyω0,
mechanically oscillating at frequencyΩ and amplitudeA, and initially in the ground state with the electromagneticfield in the vacuum.
(a)Oscillating in front of amirror, (b) oscillating inside a cavity, (c) oscillating in free space.
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Before estimating this let us consider the case when ν is a non-zero rational number, ν=p/qwith p and q
mutually prime and positive, in the integral

ò òq y=q nq y y

-¥

¥
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¥
-qe d e d ,x x q pi sin i sin( ) ( ( ) )

whereψ=θ/q. The integrand is periodic inψwith period 2π so again the integral will diverge (unless the
integral over one period vanishes). Integrating over just one period inψ, we can define
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which, in terms of Anger functions, becomes
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Wenote however that
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since på =
- ps qexp 2is

q
0
1 ( ), vanishes for any two integers p and q, provided p/q is not an integer. From this

observationwe conclude that the transition rate is zero unless w̃ is a positive integer, that is

w w+ = Wn , 110 ( )
whereΩ is themechanical frequency,ω0 is the atomic transition frequency,ω is the frequency of the photon field
and n is an integer. Since w̃ is positive, n>0, and to obtain a closed expression for the transition probability
over amechanical cycle we can use the integral representation of the Bessel function, [40] (section 9.1.21),
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ical oscillation, 2π/Ω, we get a transition rate (inHz), as
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whereω=nΩ−ω0>0.

4. 2-dimensionalmotion

The formalism can be applied to a 2-level atom following any closed trajectory x t( )
in the two dimensional

y−z plane, with aflatmirror located at z0 extending in the y-direction. For an electromagnetic wavewithwave-
vector (ky, kz)we simply replace k (z(t)−z0) in (5)with -k x t k z. z 0( )

 
. One cannot obtain analytic answers for a

general trajectory but some simple cases are immediate:
2-level atom oscillating parallel to amirror:- for oscillation in the y-direction replace k (z(t)−z0) in (5)with

W -k A t k zsiny z 0( ) withA again a constant amplitude. The analysis is identical and (13) still holds, butwith kz0
replacedwith kzz0 and kA replacedwith kyA.

Rotating 2-level atomwith amirror:- for an atom rotating around the fixed point (0, z0) in a circle with radius
R and constant angular velocityΩ, = W Wx t R t tcos , sin( ) ( ) ( )

and k x t. ( )
 

= W + Wk R t k R tcos siny z( ) ( ). If we
parameterize the direction of the electromagnetic wave by a phase δwith d d= =k k k ksin , cosy z then

d dW + W - = W + -k R t k R t k z kR t kzcos sin sin cosy z z 0 0( ) ( ) ( ) and the phase δ in the sine function can be
absorbed into τ in (5), which does not affect the result.We just replace the amplitudeA in (13)with the rotation
radiusR and replace kz0 with dk z cosz 0 .
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5.Oscillating 2-level atom in a cavity

In a one-dimensional cavity containing no photons the transition rate to excite the atom and at the same time
emit a photon of frequencyω is still given by (13), except that the allowed values ofω are discrete,
ω=ck=πmc/L, withm a positive integer and equation (11) imposes the condition

p
w+ = W

mc

L
n0

onΩ. The rate is enhanced however if the cavity already containsN photons of frequencyω, since then
á + ñ = +wN a N N1 1∣ ∣† , giving the transition rate to excite/de-excite the atom givenN photons in the cavity
as

pc p p p
=

W
-

P
g mz

L

n
J
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L

8
sin

2
, 14n m N n, , ,

2
2 0 2⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )

whereχ+=N+1, to excite and emit a photon, whileχ−=N to de-excite the atomand absorb a photon, and
nΩ=ω0−ω=ω0−πmc/L.We note that in order to observe this phenomena one could consider one of the
mirror’s to be slightly imperfect and then one could perform spectroscopy on the photons leaking from the
optical cavity. The signature of the photons created via (14), will prove challenging to detect over any background
of existing photon occupationwithin the cavity.

6. Atomperforming SHO in free space

Repeating the analysis of previous sectionwhen there is nomirror, the transition rate to emit a photon is, using
(3)

òp
t

p
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w
p

p
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g g
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2
e e d
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, 15n
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2
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2 2
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with n>0. Evenwith nomirror an atom can be excited and emit a photon at the same time by shaking the atom
hard enough to supply the required energy. The transition rate (15), withω=nΩ−ω0 is

p w
=

W
W -

P
g

J
n A

c

2
, 16n n

2
2 0⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )

and for a given n the rate will be largest at the first peak of Jn. Fromfigure 2, we observe that for a given n, the
transition rate is negligible unless ~A n˜ . Themaximum rate occurs when n=1 and ~A 1.8˜ , and here

» WP g2.11
2 , but to achieve this onemust have amechanical oscillation amplitude ofA∼1.8c/(Ω−ω0),

whichwill be extremely largewhen compared to the highest realistically achievable values ofΩ−ω0, in an
experiment.

For a possible experimental demonstration of acceleration from a two level atom shaking in a vacuumwe
instead consider the case when the amplitude of oscillationA is small enough so that the argument of the Bessel

Figure 2.Transition rate for SHO forced atom in free space to emit a photonwith angular frequencyω=nΩ−ω0 andwavelength
λ=2πc/ω, equation (15), as a function of dimensionless oscillation amplitude p l=A A2˜ ( ) and sideband index n. The prefactor
2πg2/Ω is omitted.We see that transition rate is negligible until Ã is of order n.
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function in (16), is small andwe can use the expansion J1
2(x)∼x2/4, 0<x=1. To achieve a large rate we

consider ultra-strong coupling g of the atom to the continuumwhere g=αω0, withα∼0.2 and above [41–45].
We consider a cQED setupwhere a two level superconducting artificial atom is placed on a vibrating cantilever/
membranewhich is ultra-strongly coupled via an inductive coupling to the electromagnetic vacuumof a nearby
electromagnetic continuumof a superconducting co-planar waveguide. This is similar to recent experimental
work [46]. By using a diamond based nanomechanical resonator one can achievemotional frequencies in the
GHz regimes [47, 48]. From (16), with the approximation J1(x)

2∼x2/4, the rate ismaximisedwhenω0=Ω/2,
and taking this for small amplitude oscillations we obtain p a» WP A c321

2 3 2( ) ( ). Figure 3, shows that the
emission/transition rate for a shaken superconducting two level system can reach values of ~ -P 10 Hz1

4 ,
whichmay be detectable in current cQED setups.Onemight also consider placing themechanically oscillating
qubit close to amirror as discussed in section 3.Oscillatorymotion along an arbitrary direction in three
dimensionswould couple the qubit to both vacuummodeswhich either have themirror as a boundary or
unbounded vacuummodes (formotion parallel to themirror). This would result in emission of photons
perpendicular to themirror (the case treated in section 3), and in directions parallel to themirror’s plane (the
case treated in section 6). Such a situationmay be difficult to observe experimentally as onemust achieve large
couplings between the two level system and the continuum. This is possible in the above discussed cQED setup
above as the electromagnetic continuum is restricted essentially to be one dimensional.

Wefinally compare our results with recent relatedworks. In [49], and [50], the authors respectively consider
acceleration radiation from amechanically oscillating two level system in free space and themodification of
spontaneous emission in a two level system adjacent to an oscillatingmirror. However their studies are restricted
to the case whereΩ<ω0, and onlymulti-photon off-resonant processes play a role in these cases. Such off-
resonant processes cannot be captured via ourfirst order perturbative analysis and thuswe cannotmake any
clear comparisonwith their results. However thework of [51], which looks at the radiation emitted froma two-
level atomoscillating in free-space, do consider the regimeΩ>ω0, and include resonant processes and find the
emission of photonswith the frequencyω1=Ω−ω0, but do notfind the highermodesωn=nΩ−ω0, which
we predict to also exist, thoughwith greatly reduced probabilities. Tomake amore quantitative comparisonwe
study the small photon frequency case whenω1≡Ω−ω0, is small andω1A/c=1.Making the approximation
J1(x)

2∼x2/4, for x=1, and comparing our rate (16), with equation (5) [51], in this regime, (in the notation of
[51], this is whenω1≡ωcm−ω0 is small), wefind that both rates scale as ~ G ~ WP A1 MIE

2 . However in our
case wefind w~P1 1

2, while in [51],ΓMIE∼ω1
3, a difference whichmay be due to the differences between the

Hamiltonians. In our studywe assume theHamiltonian (1), amodel for coupling between two levels systems
and vacuumfields used bymanyworks andwhich alsowas used in [29], to derive theUnruh temperature for the
case of uniform acceleration, while [51], equation (1), includes both the normal dipole coupling but also a term
linear in the velocity of the two level system.
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Figure 3.Transition/emission rate for an atomoscillatingwith simple harmonicmotion in free space as a function of the amplitude of
the oscillation and ultra-strong coupling strengthsα, where g=αω0, taking amechanical frequencyΩ/2π=10 GHz, and two level
transition frequencyω0=Ω/2 (16).
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