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We analyze the dynamics of an initially trapped cloud of interacting quantum particles on a lattice under
a linear (Stark) potential. We reveal a dichotomy: initially trapped interacting systems possess features
typical of both many-body-localized and thermalizing systems. We consider both fermions (z-V model) and
bosons (Bose-Hubbard model). For the zero and infinite interaction limits, both systems are integrable: we
provide analytic solutions in terms of the moments of the initial cloud shape and clarify how the recurrent
dynamics (many-body Bloch oscillations) depends on the initial state. Away from the integrable points, we
identify and explain the timescale at which Bloch oscillations decohere.

DOI: 10.1103/PhysRevLett.124.110603

Introduction.—Historically, many-body quantum phys-
ics in solid-state systems focused on low-energy parts of the
many-body spectrum. In contrast, in nuclear physics the
full spectrum was considered important [1-3]. This per-
spective gained prominence in recent years, as experiments
with cold atoms [4-7] have inspired the study of non-
equilibrium situations in isolated quantum systems [8—11].
In an isolated situation, energy conservation ensures that a
system with an initially high energy will never explore the
low-energy parts of the spectrum. The quantum dynamics
of isolated systems poses new challenging questions, such
as whether observables thermalize [8—10,12].

A well-known example for which isolation leads to
drastically different dynamics is the phenomenon of
Bloch oscillations [13,14]. Particles in a tight-binding lattice
subject to a linear potential, e.g., due to gravity or an electric
field, do not accelerate toward lower potentials, but rather
undergo local oscillations. For a single particle, the shape
and/or position of the particle wave function oscillates,
perfectly periodically [13-16]. Long after its prediction,
Bloch oscillations were observed in semiconductor super-
lattices [17,18], in cold atoms [19-22], and in periodic
photonic structures [23-25]. In cold atom experiments,
Bloch oscillations have by now been observed many times
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[5,19-22,26-43], and are used widely as a measurement
tool, e.g., for metrological applications [29,31,35,37], to
detect Dirac points [36], etc. Some experiments have also
explored the effect of interparticle interactions on Bloch
oscillations [26,28,32-34,39]. Theoretical treatments of
Bloch oscillations have addressed a variety of single-particle
situations [15,16,44-56], interacting few-particle systems
[57-61], and interacting many-body systems [46,48,62—82].
Interactions have been treated both in mean-field (e.g.,
Gross-Pitaevskii) regimes [46,48,64-69,73,77,82] and
beyond the mean-field regime [62,70-72,74,79,81].

Recent experiments [39] have found, by tuning bosonic
on-site repulsion, the collapse and revival of the oscillation
of the cloud position, with the revival period proportional to
interaction strength. In addition, sufficiently far from the
noninteracting point, the atom cloud was found to have
“chaotic” behavior leading to rapid relaxation.

In this work, we address the real-time dynamics of an
initially trapped interacting lattice system subject to a linear
potential. We present a comprehensive study for two
representative systems (featuring bosons and fermions),
for all interaction regimes. At zero or infinite interaction,
each model becomes integrable. For intermediate inter-
actions, away from integrability, we have an example of
many-body localization without disorder [83-89], where
nevertheless a version of thermalization is valid when we
focus on the part of the Hilbert space spanned by states in
which particles are confined within a connected spatial
region, i.e., the subspace explored by initially trapped
systems. We show that the dynamics within such a subspace
is thermalizing.

Published by the American Physical Society
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At the integrable points, the dynamics is perfectly
periodic. We provide a series of exact analytical results
for the cloud dynamics in these cases. For strongly
interacting (hard-core) bosons, we show dynamical gen-
eration (and periodic disappearance) of fragmented con-
densation of an initial uncondensed cloud. At strong (weak)
initial trapping, the dynamics consists primarily of width
(position) oscillations. At intermediate trapping, the skew-
ness undergoes unusual dynamics during every period, of
which we do not know of an analog in the literature. Near
the integrable points, we show and explain beating behav-
ior of the cloud dynamics, with linear dependences on the
integrability-breaking parameter. This explains and gener-
alizes the experimental observation of Ref. [39].

Models.—We consider N, particles on an infinite lattice
subjected to a tilt potential. The total Hamiltonian,

H=T+E+V, (1)

consists of a kinetic term 7 = —J/2 Zj(a;ajﬂ +H.c.),
with hopping amplitude J and site index j, a potential
term E=E) j ja;a j due to a constant tilt strength E,

and an interaction term V. We consider two families of
models: the Bose-Hubbard model (BHM) for which

V=U/2 Zj b;b;bjbj, in which case the particles are

bosons a; = b;, and the -V model (Ft-VM) with
V=V> j c;c; 41Cj41¢), featuring interacting spinless fer-
mions a; = c;.

As initial state |®,), we will mostly use the ground state
of the nontilted system in the presence of a harmonic

potential (Hy =7 +V+ W}, jza;aj), parametrized by
the dimensionless constant p = N p\/W/ J [90,91]. The
initial condition can be varied from an extended Gaussian-

like cloud (small p) to a highly packed state at large p. We
also consider initial states which are product states, e.g.,
of the form |®g) :aj+1aj+2---aj+1\/,,|0>- For bosons at
U = o0 and for fermions at all V # oo, the ground state
has this form at large p. The system undergoes dynamics
under Hamiltonian (1) with this initial state (a “quantum
quench”).

In addition to U, V =0, in both strong interacting
regimes (U, V — o), the dynamics is that of a set of
noninteracting particles. For U — co (BHM), double occu-
pancy is kinematically forbidden and the finite-energy
Hilbert space reduces to that of hard-core bosons. In this
limit the BHM maps to the Ft-VM with V = 0 via a Jordan-
Wigner transformation. The spectrum of the Ft-VM with
V — oo and L sites can also be shown to map onto that of a
Ft-VM with L — N, sites and V =0 [92]. In all these
(effectively) noninteracting cases, the spectrum of the tilted
Hamiltonian consists of equally spaced highly degenerate
levels, with spacing E. This yields periodic evolution,
with period T = 2xz/E, for any initial state. In fact, exact
analytical solutions can be found for the many-body

evolution [92]. Away from these “free” cases the dynamics
is nonintegrable: either because the nontilted model is
already so (BHM) or because a finite tilt breaks the
integrability present in the £ = 0 case (Ft-VM).
Longtime behavior and thermalization.—Figures 1(a)
and 1(a") show the eigenenergies ¢, of H, corresponding to
eigenvectors |a), as a function of the interaction strength,
color coded with |c,|?, with ¢, = (a|®,) the overlap
amplitude with the initial state. Only some eigenstates
have a non-negligible overlap with the initial state; the
other eigenenergies are not visible. For fixed N ,, increasing
the chain length L (with fixed N,) increases the Hilbert
space dimension polynomially, rendering the spectrum
dense at L — oo, but leaves Figs. 1(a) and 1(a’) invariant.
Density profiles of the many-body eigenstates which have
non-negligible |c,|*> are exponentially localized within a
length proportional to 1/E. This can be traced to the fact
that a cloud of atoms in an infinite system is always in the
dilute density regime; as interations are short-range, if the
cloud expands too much the particles cease to interact with
each other. Thus the exponential localization of the single-
particle eigenstates [13,14] ensures that the many-body
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FIG. 1. (a),(@) Spectra of the Ft-VM and of the BHM as a

function of the interaction strength. Line densities correspond to
the overlap squared |c,|* of the initial state |®@,), which is
[...0101010...) for Ft-VM and |...01110...) for BHM, shown as
insets. (b),(b") Inverse of effective dimension, d.g. (c),(c’) Strength
6 of temporal fluctuations around the asymptotic longtime
density average, for N, =3 and 4. (d.1)~(d.4) Asymptotic
average of the density profile 7; for two initial states with similar
energies. Error bars depict fluctuations & ; at each site. Three finite
values of U [marked by arrows in (¢')] and U = 0, co are used.
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eigenstates, and hence also the cloud dynamics, are
exponentially localized.

The effective dimensionality of the Hilbert space spanned
by the initial state is dogr = (>, |co|*) ™! [93,94], shown in
Figs. 1(b) and 1(b). This quantity is larger for intermediate
interactions than near the free points (small or large U, V).
d.s decreases algebraically with E and increases algebrai-
cally with particle number N ,.

We now analyze the longtime asymptotic behavior of the
cloud dynamics in light of these spectral properties. We define
the time averaged density 7i; = limy_ , 7~" [ din;(t), with

and o

n;(t) = (aj(t)a;(t)) the 12 =
limy_,, 77" [ dt[n;(r) — 71;]*, which quantifies the tempo-
ral deviations around the average. For a system with a
nondegenerate spectrum, these quantities are given by their
diagonal ensemble [12] values 7i; = Y, |c,|*(a|n;|a) and
5? =Y s |Cal* e [*[(@ln;]a’) |*. Some representative den-
sity profiles and & = (3 ; 07 )"/ for different values of U and
V are depicted in Figs. 1(c), 1(c'), and 1(d).

For systems fulfilling the eigenstate thermalisation
hypothesis (ETH) [12,95,96], temporal fluctuations of local
observables are strongly suppressed, decreasing exponen-
tially with system size [97,98]. In contrast, for integrable
models, ETH does not hold: The decrease is merely
polynomial. In the present case the system does not fulfill
ETH trivially—there are an infinite number of eigenstates
with the same energy but a vanishing overlap with the
initial state. Moreover, as all eigenstates are localized
throughout the spectrum, the system is many-body-
localized.

Nonetheless, away from the free points, equilibration may
still arise for sufficiently large N, i.e., large d.g;, in the sense
that (A) different trapped initial states with roughly the same
energy yield the same 7; profile and that (B) longtime

site  occupancy,

deviations from the average are suppressed as 6 ~ de_f}/ :
[97,98]. Property (A) is supported in Fig. 1(d). Comparison
of Figs. 1(b) and 1(b") and Figs. 1(c) and 1(c') supports
property (B) (as d;} and & are qualitatively similar). Also, &
substantially decreases with N, [Figs. 1(b)and 1(c)]. This
supports an equilibration scenario for both fermionic and
bosonic systems away from U, V =0 and U, V = 0. At
these special values the system becomes integrable and the
limits U, V — 0, oo and t — oo do not commute. At these
points & is much larger and decreases much slower with
particle number.

Dynamics near free points.—Figure 2 shows some BHM
time evolutions at finite interaction values near the free points
U = 0, co. The center of mass (x), = (>_;n;()j)/N, and
the width o, = [Y_; (j — (x),)*n;(1)/N,]"/? of the cloud
both generically show a “collapse and revival” or beating
behavior. Other cloud characteristics (skewness or kurtosis)
show the same effect [92]. To what extent the phenomenon is
visible varies with the initial state and the quantity observed,
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FIG. 2. Beating or relaxation of Bloch oscillations near the free
points. BHM, 3 particles in 49 sites, £ = 0.2J, product initial
state (...01110...). Arrows indicate beat periods.

but generically for U/J not too close to 1, a beat is visible.
The beat period is seen to have clear linear dependences,
o« U~'atsmall U/J and « U atlarge U/J, on the interaction.
The behavior at small U/J has recently been observed
experimentally [39]. We have found the same behavior in the
fermionic case as a function of V [92].

This remarkably simple dependence can be explained
using the many-body spectrum. At the free points, this
spectrum is exactly equally spaced (steps of E) and highly
degenerate. As one moves away from these simple points,
the degeneracy is lifted, so that the frequencies available for
the dynamics are a range of values around E, the range being
small compared to E. This explains the beat behavior. A
perturbative argument yields an energy level splitting of the
order of V¥ or U* with v = =+1 for weak or strong
interactions. The splitting scale provides the beat frequency.

Spectral considerations also explain why there is rapid
relaxation behavior without beats in the U, V ~ J regime.
In this regime, the eigenstates mix, destroying the ladder
structure, and the chaotic structure of the spectrum leads to
relaxation, as we have analyzed above. The present study in
terms of the spectrum thus explains the results of the
experiments of Ref. [39].

Cloud dynamics at free’points.—In contrast with the
equilibration seen for moderate interactions, at U, V = 0,
oo there are perfectly periodic oscillations. The long-term
state is not equilibrated and has strong dependence on the
initial condition.

Figure 3 shows time evolution for the Jordan-Wigner-
related cases V = 0 and U — o0, respectively labeled by F
or B. The cases of an initially spread-out and narrow cloud
(small and large p) are shown (top and bottom). The density
plots show the evolution of the density n;(¢) (identical for F
and B) and of the momentum occupation number 7 (k, 1)
and 7ig(k, ). For the bosonic system we also compute the
occupation numbers of the natural orbitals 4,(¢) [99,100]
(with Ay > 4y > ---), defined as the eigenvalues of the
single-particle density matrix pg; ;(t) = (b (t)b;(1)). A
macroscopic occupation (i.e., a 4; of order \/N7P) corre-
sponds to quasicondensation.

The density profile n(x, t) displays qualitatively different
dynamics for small and large 5: Bloch oscillations consist of
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FIG. 3. Time evolution of n(x), iiz(k) = >, (1/VL) >, pl. e, fp(k) = > .(1/VL) >, p8, . ,e™™, and 4, computed for
L =250,N, =20, E = 0.05J. Upper (lower) row: p = 0.1 (p = 10). The insets display the profiles of the different quantities for 1 = T,
t=T/4,and r = T/2, where T = 2x/E is the oscillation period. Right-hand panels show evolution of the center of mass and width of

the cloud.

mainly position oscillations for p < 1 and mainly width
oscillations for p > 1. For large p, the shape of the initially
localized cloud changes considerably within a period, the
shape becoming double peaked when the cloud widens. The
oscillation amplitude of the center of mass (x), is large for
p < 1 and small for p > 1. The cloud width ¢, shows the
opposite behavior (Fig. 3, far right.) This distinction is
analogous to that observed in single-particle Bloch oscil-
lations [15]. Additional shape dynamics appear at inter-
mediate p—the cloud becomes strongly skewed once every
period [92]. The amplitude of skewness oscillations is
nonmonotonic as a function of p, being zero for p — 0
and p — oo and nonzero for intermediate j. [Contrast the
amplitude of position (width) oscillations, which decreases
(increases) monotonically with p.] The exact behavior of the
skewness oscillation amplitude as a function of p depends on
the particle number N, in a complicated manner for small
N, but for N, 2 20 there is a unique (negative) minimum
that shifts to larger p with increasing N, [92].

For any Gaussian initial state, the subsequent cloud
dynamics (time evolution of moments) can be obtained
analytically as a function of the initial moments of correlators
[92]. The center of mass has purely sinusoidal oscillations,
(x), = —(2J/E)sin*(tE/2)u,. The width dynamics is
more complicated: 67 —o2_,=—(4J%/E?)sin*(tE/2)ui+
2(J/E)*sin*[(E/2)t][1—cos(E1)u,]. Here, p, = (1/2N,)x
Do <c;cy_a + c;_acy> .—o- (The behavior of y; and u, as
functions of N, and p is described in Ref. [92].) This allows us

to compute the amplitudes of oscillation of the moments, e.g.,
Ax = max,(x), — min,(x),, and Ac’ = max, 67 — min, 67
as a function of p for different N ,. The position oscillation
amplitude is Ax = 2J/E for p — 0, and at large p decreases
as Ax « J/(Ep) for N, > 1[92]. Conversely, Ac? increases
from zero to 2(J/E)? as p is increased (N, > 1) [92].

The momentum distribution of the fermionic system (F)
has simple time evolution: ng(k,t) = nglk — (2z/T)t, 0],
reminiscent of single-particle Bloch oscillations [92]. For
B, the momentum distribution ny(k, t) has similar behavior
for small p, but it is now a sharply peaked distribution that
traverses the Brillouin zone periodically, signaling quasi-
condensation in the initial state that survives during the
oscillations. The natural orbital occupancy accordingly
shows a dominant eigenvalue that stays dominant through-
out the evolution. The large p behavior is more intricate.
Although the condensate is initially noncondensed, two
well-defined coherence peaks appear. Remarkably, they
disappear periodically for a short fraction of the period
when returning to the initial state. The set {4; } now has rwo
dominant occupancies, 4y > 1,.(, signaling a fragmented
condensate that is dynamically generated [75,101] and
persists for almost all times within each period.

Discussion.—We have presented a thorough study of
many-body Bloch dynamics in two standard lattice models
in one dimension, one fermionic and one bosonic. A main
result is that generic many-body systems under a tilt
potential have a dichotomic nature, possessing both ETH
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and many-body-localized features. Although their eigen-
states are exponentially localized, and an initially trapped
cloud has finite overlap only with a zero-measure set of
eigenstates within the relevant energy window, the long-
time dynamics yield a thermalized state within a Hilbert
space of effective dimension d.; which increases with the
number of particles N,.

The approach to the thermalized state can be seen as the
destruction of the many-body Bloch oscillations which are
present at the integrable (free) limits, both for weak and
strong coupling. We show that the relevant timescale grows
as U (U™ or V (V1) away from the weak (strong)
integrable limit. At the free limits we present several
striking features of the cloud dynamics, including a
dynamical generation (and periodic disappearance) of
fragmented condensation for strong initial trapping.

M. H. thanks H. C. Négerl for useful discussions. P. R.
acknowledges support by FCT through the Investigador
FCT Contract No. 1F/00347/2014 and Grant No. UID/
CTM/04540/2019.
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