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Reaching a target quantum state from an initial state within a finite temporal window is a challenging problem
due to nonadiabaticity. We study the optimal protocol for switching on interactions to reach the ground state of
a weakly interacting Luttinger liquid within a finite time 7, starting from the noninteracting ground state. The
protocol is optimized by minimizing the excess energy at the end of the quench, or by maximizing the overlap
with the interacting ground state. We find that the optimal protocol is symmetric with respect to /2, and can be
expressed as a functional of the occupation numbers of the bosonic modes in the final state. For short quench
durations, the optimal protocol exhibits fast oscillation and excites high-energy modes. In the limit of large
7, minimizing energy requires a smooth protocol while maximizing overlap requires a linear quench protocol.
In this limit, the minimal energy and maximal overlap are both universal functions of the system size and the

duration of the protocol.

DOLI: 10.1103/PhysRevB.99.245110

I. INTRODUCTION

Progress in quantum technologies relies on our ability to
manipulate quantum states, in particular, interacting many-
component quantum states. A key challenge is to engineer
the transfer of a quantum system from one ground state to
another, without excitations, in finite time. Such a transfer
is guaranteed by the adiabatic theorem if the duration of
parameter change is allowed to be infinite. When this is
performed in finite time, this is often referred to as a “shortcut
to adiabaticity.” Such techniques are an obvious route to
improving the viability of quantum annealing and adiabatic
quantum computing algorithms [1-3], for which unwanted
excitations are of serious concern.

The problem of optimizing a quantum quench of finite
duration has been addressed in the context of a variety of
quantum systems, including trapped particles or trapped Bose-
Einstein condensates [4—7], trapped interacting fermionic
gases [8—10], Luttinger liquids [11], Majorana qubits [12,13],
the Lipkin-Meshkov-Glick model [14-16], and spin systems
[15,17-20]. Optimal protocols have been studied in quantum
quenches through a quantum critical point [14,19,21,22] and
from a quantum critical point to the gapless phase of the
Luttinger liquid [11].

In this paper, we consider the optimization of ramps of
finite duration in a Luttinger liquid. Luttinger liquids appear
as effective low-energy descriptions of gapless phases in
various one-dimensional (1D) interacting systems [23-26].
For example, for fermions in one dimension, Landau’s Fermi-
liquid description breaks down for any finite interaction—the
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low-energy physics is described by bosonic collective modes
with linear dispersion and is characterized by anomalous non-
integer power-law dependences of correlation functions. The
Luttinger model similarly arises as the low-energy description
of spin chains or that of interacting 1D bosons [23-25]. In
addition to its rich history in equilibrium condensed-matter
physics, in the past dozen years the Luttinger model has also
been used as a model system for nonequilibrium phenomena.
Nonequilibrium studies using the Luttinger model include
investigations of instantaneous quantum quenches [27-42],
transport due to inhomogeneous initial conditions [43-49],
and, most relevantly to the present paper, quenches of finite
duration (finite rate) [50-57].

In the present paper, we consider quenches having a certain
duration t, governed by a quench shape function Q(¢) such
that Q(0) =0 and Q(¢t > t) = 1. The system starts at t = 0
in the ground state of the initial noninteracting Hamiltonian.
To proceed analytically, we assume a weak final interaction,
which allows for a perturbative, analytical treatment of the
ensuing Bogoliubov equations. In general, for finite 7 the
final state after the quench differs from the ground state of
the final Hamiltonian. The deviation can be quantified either
by the excess energy of the final state relative to the target
ground state, or by the overlap between the final state and the
target ground state, i.e., the vacuum-to-vacuum probability.
We consider both these measures, and find quench protocols
Q(t) that minimize the excess energy and those that maximize
the vacuum-to-vacuum probability.

We first show that both the excess energy and the overlap
depend only on the occupancies of bosonic modes at the end
of the quench. We find that the derivative of the optimal
protocol must be symmetric with respect to t/2, and the
protocol function itself must obey Q(¢r) = 1 — Q(t —1).
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The shape of the quench of finite duration is parametrized
as a Fourier series, and its coefficients are optimized. Fast
protocols excite high-energy modes, and thus are nonuniversal
in the Luttinger liquid sense. With increasing t, the excess
energy is minimized by a smooth protocol while the overlap
is maximized by a linear ramp. In this limit, the minimal
energy and maximal overlap are both universal functions of
the system size and the duration of the protocol.

In Sec. II, we first introduce the model, the quench proto-
col, and notations, and then derive expressions for the excess
energy and for the overlap with the final ground state. The
parity of the optimal quench protocol is considered in Sec. III.
In Secs. IV and V we report on the optimization of Q() by,
respectively, minimizing the final energy and maximizing the
final overlap with the target state. Section VI provides some
concluding discussion.

II. QUANTUM QUENCH IN THE LUTTINGER MODEL

The low-energy behavior of a one-dimensional electron
system is described by the Luttinger model. This model has
the advantage that both the noninteracting and the interacting
system can be diagonalized analytically. This is because both
the kinetic and the interaction energy can be expressed as
quadratic terms of bosonic creation and annihilation opera-
tors describing electron-hole excitations. The time-dependent
Hamiltonian governing the quantum quench is given as

H(t) = Hy + Q()V M
where
Ho =) oo(@)(b;by +bLb-y) @
q>0

is the Hamiltonian of the noninteracting system with
wo(q) = vlgq|. In the formula b, is the bosonic annihilation
operator corresponding to the wave number g. The second
term in Eq. (1) describes the electron-electron interaction:

V=" eg)bibt, +bgb_y) 3)
q>0

where g(g) = g2|gle ™9, Note that in the interaction only
backscattering (g») is considered. It can be shown that the
forward scattering (g4) does not effect the bosonic occupation
numbers to leading order in the interaction strength and,
hence, can be neglected. The time scale of 7y is introduced to
model the high-energy cutoff and is assumed to be inversely
proportional to the bandwidth of the electron system.

In Eq. (1), O(t) describes the quench protocol with the
duration of 7, i.e.,

0 ift <0
00)=30@) if0<t<rt “4)
1 ift >t

where the nontrivial time dependence happens in the interme-
diate interval.

If the quench is adiabatic, i.e., in the T — oo limit, the
system is expected to arrive in the ground state of the inter-
acting system after the quench and no bosonic excitations are
present. However, if the quench duration is finite, the final

state is presumably not the pure ground state of the interacting
Hamiltonian but is a linear combination of the ground state
and excited states.

The bosonic excitations of the interacting system are de-
scribed by the operators of

@ 1 @ 1
e = by A Py o3 O

which diagonalize the interacting Hamiltonian as

H(t)=Egs+ Y _ Qq)d, dy+d*d_g) (6)
q>0

where Egs = Y 4>0 [Q2(q) — wo(q)] is the ground-state en-
ergy and Q(q) = v/ wo(q)? — g(g)? is the spectrum of the
elementary excitations.
The dynamics during the quantum quench may be de-
scribed by the time-dependent annihilation operators as
by(t) = ug(t)by + vj(1)b*,

7
b_y(t) = uy(1)b_y + v:;(t)b:]r

where the coefficients obey

T w0(@  00)g(a)] [ug(t)
hat 1 - 1 8
: [vqm] [—Q(t)g(q) —0(q) ] [vqm} ®)

with the initial conditions u,(0) =1 and v,(0) = 0. At any
time instant |uq(t)|2 — |vq(t)|2 = 1 holds true.

By means of the u,(t) and v,(¢) coefficients, the time-
dependent wave function is expressed as

1 , A()
wo) =] [uz(t)exp <1wo(q)t + %b;btqﬂ 10) (9)

q>0

where |0) is the initial ground state of the noninteracting
system [58]. The wave function depends on the protocol
function Q(t) through the coefficients u,(¢) and v, ().

In the present paper, our main goal is to study the optimal
Q(t) protocol function with finite duration T which results
in a final state |W(t)) closest to the ground state of the
interacting Hamiltonian H (7). We investigate two different
quantities which both represent a measure of how far the
final state is from the interacting ground state. One of them
is the expectation value of the total energy in the final state
Er = (V(7)|H(7)|W(7)). The other quantity is the overlap
between the time evolved final state and the ground state of
the interacting system Pgs = [(GS|W(7))|>. In other words,
Pgs is the transition probability from the noninteracting to the
interacting vacuum. Note that this quantity has been consid-
ered numerically in Ref. [11] as the measure for optimization
in a related problem.

For generic quench protocol, the energy functional is ob-
tained by calculating the expectation value of Eq. (6) as

Ef[Q] = Egs + ) _ 2Q(q)n,[Q] (10)
q>0

where the occupation number is the expectation value of the
boson numbers in the +¢q or —g channel. The occupation
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number
n,[01 = (df,d.,) = 2;;((‘”)“ g ()P + vy ()]
8(q) X o 1
+ m[uq(f) Uq(f) + uq(t)vq(t) ] - 5 (1 1)

depends on the protocol function through the coefficients
ug(t) and v, (1).

The vacuum-to-vacuum probability is obtained by taking
the overlap of Eq. (9) with the ground state of the interacting
system. Interestingly, the probability depends on the protocol
function again through the occupation number only as

In Pgs[Q] = Zln(l + ng[Q)). (12)

q>0

The functionals E/[Q] and Pgs[Q] are highly nonlinear in
the protocol function and finding the optimum for arbitrary
interaction strength is very complicated using analytic meth-
ods. Therefore, the following discussion is restricted to the
limiting case of weak interactions. To leading order in the
perturbation theory, i.e., when g, < v holds, the occupation
number is given by

8(q)* :

4wo(q)?

nglQ] = 13)

T
/ dt Q/(t)eZia)g(q)t
0

where Q'(t) is the derivative of the quench protocol. It can be
shown that even if forward scattering (g4) were considered in
the interacting Hamiltonian the leading term in Eq. (13) would
not depend on g4. We substitute Eq. (13) into Egs. (10) and
(12) and keep terms to leading order in the perturbation. In the
thermodynamic limit, the summation over the wave numbers
turns into an integral leading to

E¢[Q] — Egs

el = =

_ _ 2
/dt/ e TNl Rk el RO
[z + (t_ﬂ)z]

with the ground-state energy of

L g% 1
Egs = — =) — 1
as l67rvto( v> Ty s
and
In P
Flo] = n Pgs[Q]
|Egs|7o

Y A AN S
—[ar| QO i (19

where the dimensionless and nonextensive quantities of &y
and F have been introduced. In Eq. (15), L is the length of
the system which is considered to be infinitely large in the
thermodynamic limit.

We note that the formulas in Egs. (14) and (16) are valid to
leading order of the perturbation theory which is maintained
as long as ny[Q] is small in all momentum modes.

III. PARITY OF THE OPTIMAL QUENCH PROTOCOL

An important feature of the optimal quench protocol is its
symmetries, e.g., the parity. If the protocol is known to have
a symmetry, this could reduce significantly the (numerical)
effort in determining the optimal ramp.

In Egs. (14) and (16), we observe that functionals depend
on the derivative of the protocol function. Let us split up the
derivative of the protocol function into even and odd parts as

Q'(t) = p(t) = pa(t) + ps(t) a7

where p,(t) = [Q'(t) — Q'(t —1)]/2 is the antisymmetric
part while p;(#) =[Q'(t) + Q'(t —)]/2 is the symmetric
part. The boundary conditions of the protocol function de-
mand

/Tps(t)dt =1 (18)
0

but the antisymmetric part can be an arbitrary, odd function
since its integral vanishes on [0, 7].

In both the energy functional and the vacuum-to-vacuum
transition probability, the kernel of the integral is symmet-
ric under t - v —¢ and ' — v — ¢/, i.e., when both time
variables are reflected. Therefore, the integral part of the
functionals is rewritten as

/ ‘ dt / r dt'ps(t)ps(tHK(t — 1)
0 0

+ /Tdr/Tdt’pa(t)pa(t/)K(t —1) (19)
0 0

and the cross terms proportional to the integral of py(t)p,(t')
vanish. K(¢) is the kernel of Eq. (14) or Eq. (16).

The kernel of the integral is positive (negative) definite for
the final energy ¢ (transition probability F). This is because
the total energy is bounded from below by the ground-state
energy and the probability Pgs is bounded from above by 1. In
principle, the boundedness would allow semidefinite kernels
but it can be proven by means of Fourier transformation that
the kernels of (14) and (16) have no zero eigenvalue on the
space of functions with finite duration.

As a consequence, the kernels are positive (negative) def-
inite and so are they on the subspaces of even and odd
functions separately. Therefore, the second term of (19) is
minimized (maximized) by p,(t) = 0. In the first term, the
symmetric part cannot be chosen as an identically zero func-
tion because it would not satisfy the boundary condition
Eq. (18). For the antisymmetric part, however, no such con-
dition is prescribed.

Thus, p,(t) = 0 minimizes the second integral in Eq. (19),
which means that the optimal Q’(¢) function must be an even
function, i.e., symmetric under the reflection of t — 7 —¢.
Consequently, Q(t) = 1 — Q(t —t) for the optimal quench.
In the following sections, protocol functions with this sym-
metry property will be considered only.

IV. OPTIMAL QUENCH MINIMIZING

THE FINAL ENERGY

This section focuses on minimizing the final energy &,[Q]
as defined in Eq. (14).
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FIG. 1. (a) The optimal quench for y = 2 with different values of j.x, the number of Fourier modes retained. Increasing the truncation
index jm,x leads to more oscillating behavior of the optimal quench. (b) The optimal quench minimizing the final energy for different values

of y and with j.x & y/(27).

Let us consider the Fourier expansion of Q'(t) as

(o]

o=y i—’ cos(w;t) (20)

j=0

where the frequencies w; =27 j/t have been introduced.
Note that the Fourier expansion does not involve any sine
function since even functions are considered only in accor-
dance with Sec. III. By using the Fourier expansion, our
goal is to find the optimal coefficients a;. The final energy
functional is obtained as

erlQ1= Y a;M;;d 1)

J,J'=0

where the matrix elements of M are defined as
1 1 1
M;; = —2/ dx / dx’ cos(2m jx) cos(2m j'x")
Y= Jo 0

L —(x—x)
D A (22)

(& + @ —x?)?
with
Yy =1/7% (23)

being the dimensionless quench duration. For the a¢ coeffi-
cient, a9 = 1 must hold, which ensures that the integral of
Q'(t) is 1. This condition and the minimization of Eq. (21)
result in the optimal coefficients of

Qopt,j = Emin - (Mil)jl (24)

where eni, = 1/(M™1),; is the minimal energy.

The matrix elements of M;; cannot be expressed in a
closed form for any j and j’. Therefore, numerical integration
is applied. For the numerical calculation, the Fourier series is
truncated at jp,x, i.e., only Fourier components from j = 0
to j = jmax — 1 are allowed. Then, the matrix M has the size
Of jmax X Jmax- In the simulation, the optimal coefficients are
computed based on Eq. (24) and the optimal protocol function
is reconstructed based on Eq. (20).

Let us first study shorter quenches, for
example, y = 2. The numerically computed optimal quench
is shown in Fig. 1(a) for different values of jy.x. As the
truncation index jm.x increases, the optimal quench exhibits
oscillations with larger and larger amplitude. If further
Fourier components are allowed in the quench protocol, the
optimal protocol function becomes even more oscillating with
even larger amplitudes. These high-frequency components
with large amplitude excite bosons far beyond the cutoff
energy 1/7p. In this regime, however, the linear spectrum
of the Luttinger model does not apply anymore and, hence,
the highly oscillating optimal quench is the consequence of
unphysical effects.

In order to stay inside the validity of the Luttinger model,
we allow Fourier components with frequencies up to the cutoff
energy, i.e., w; S 1/7p. In terms of j indices, j S y/(2m)
must hold, which means that j.x should be chosen around
y/(2m). This also implies that quenches shorter than 2 7
inevitably generate excitations in the high-energy regime and,
hence, are beyond the validity of the Luttinger model indepen-
dently from the quench protocol function.

Figure 1(b) shows optimal quench protocol functions in
which the truncation index jy.x is chosen as the integer part of
y /(2m). With this truncation, the optimal protocols are found
to be nonoscillating, smooth functions.

Numerical results indicate that the optimal protocol
function converges when the quench duration reaches the
range of 1007y. In this regime, it is also observed in the
simulation that increasing jm.x does not effect the optimal
quench protocol, nor does it lead to oscillations. It is an
interesting question, how the limiting protocol function can
be expressed analytically.

The long quench limit of the functional in Eq. (14) is
calculated as

In
4101 = ([FQOF +IrQ P T +007) (29
if the protocol function is an analytic function of time. Note

that Q' scales with !, therefore the leading term is propor-
tional to T~21In(t/7y). Interestingly, the leading term of the
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energy functional depends on the derivative of the protocol
function evaluated only at the edges of the quench interval. To
minimize the leading term in Eq. (25), the optimal protocol
function must fulfill

00)=0(r)=0 (26)

for long quenches. The exact characteristics of Q(¢) are then
chosen in such a way that next-to-leading corrections are
minimized.

Since this problem is complicated using analytical meth-
ods, numerical method is applied. During the simulation, it
is found that for a long quench duration the optimal Fourier
coefficients obey power-law behavior as

1 ifj=0
aopt,j = {—Jiﬂ lfj 2 1 (27)
where A and B are numeric parameters. The power-law behav-
ior is also expected for long quenches when the energy scales
1/7 and 1/7p are widely separated. Between these scales,
there is a wide energy range in which no dominant energy
scale is present and, hence, the a; coefficients are expected to
obey a scale-free j dependence.
Applying the condition of (26) to the protocol function
with power-law Fourier components described in Eq. (27),
1 — A 1
00)=-(1-) —|=0=A=_—+ (28)
T ; j? ¢(B)
where ¢ is the Riemann zeta function. Therefore, the optimal
protocol function reads as

o1 =\ sin(w;t)
00 =7~ Ty &
_ L _ 1 . i27rf
= 2n§(,3)1m{Llﬁ+l(e )} (29)

with Li, (x) being the polylogarithm function. The value of
the B parameter must be set in such a way that the next-to-
leading term in the energy functional proportional to y 2 is
minimized. The optimal value cannot be obtained analytically
but must be handled numerically. We performed simulations
with durations up to /79 = 10000 and where the truncation
index ranges from 10 to 50. The B parameter is obtained by
nonlinear curve fit on the optimal a; coefficients.

Based on the numerical study, the optimal quench of a long
duration has the form of Eq. (29) with approximately

B~ 1.4. (30)
The minimal energy is approximately &, &~ 8.0y ~2 and
2 L
Emin = Egs + 8.O(g—2) . 31)
v/ 16mvt?

The second term measures the energy amount which is in-
evitably present in the form of excitations after a quench of
finite length. Interestingly, this term is independent from the
cutoff 1/7p and is, therefore, universal for one-dimensional
systems within perturbation theory. The final energy as a
function of the quench duration is plotted in Fig. 3.

Finally, we note that for short times the optimal quench
protocol behaves as a power-law function with the exponent
of B as

in (2Z\r(— B
0t < 1)~ %(h%) (32)

where I'(x) is the gamma function.

V. OPTIMAL QUENCH MAXIMIZING THE
VACUUM-TO-VACUUM TRANSITION PROBABILITY

In this section, the optimal quench maximizing the overlap
between the final state and the interacting ground state as
defined in Eq. (16) is studied. Similarly to the final en-
ergy, the Fourier series of Q'(¢) is considered as given in
Eq. (20). Numerical results imply that Fourier components
with frequencies above the cutoff 1/ty result in unphysical
oscillations for shorter quenches. In order to stay within the
validity of the Luttinger model, Fourier components above the
cutoff should be omitted and, therefore, the truncation index
Jmax 18 chosen as the integer part of y /(2 for the numerical
simulation.

Numerical results are shown in Fig. 2. These indicate that
the optimal quench tends to be linear for longer quenches.
In the case of 7 > 79, the optimal quench can be derived
analytically. First, the functional F is rewritten as

Flo1= -~ / “ai / tdt/Q/(t)Q/(t/)SyC_t) (33)
Y Jo 0

T
where
1
Iy
8y (X)) = —4—— (34)
T — +x
Y
has been introduced. In the limit of long quench,

lim, _, o §, (x) = 8(x) is the Dirac-delta function and the func-
tional is obtained as

Flo1= -~ f dt T[Q ()P (35)
Y Jo

This functional is maximized by the linear quench

t
o) = -

T

(36)

Interestingly, this optimal, linear quench is the § — 1 limit of
the optimal quench for the minimal energy given in Eq. (29).

The maximal probability is calculated as Fi.x = —7/y and,
hence,
8&\? L
In Posmer = —(£2) —. (37)
v/ lévt

which is also a universal value since it is independent from
the cutoff, 7 !, Note that Eq. (37) describes the maximal
probability of finding the final state in the interacting ground
state if a quantum quench of finite duration is applied. The
maximal transition probability as a function of the quench
duration is plotted in Fig. 3.
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FIG. 2. (a) The optimal quench for y = 2 with different values of the truncation index ju.. For larger jn.x, the optimal quench has
more oscillations. (b) The optimal quench maximizing the vacuum-to-vacuum transition probability for different values of y and with

Jmax 2y [ (270).

VI. SUMMARY AND DISCUSSION

In this paper, we studied the nonequilibrium behavior of the
Luttinger model under quenches of finite rate. The low-energy
bosonic Hamiltonian in Eq. (1) depends on time through the
protocol function Q(¢) which switches on a weak interaction.
We optimized the Q(¢) so as to get the system as close to the
ground state of the final Hamiltonian as possible by the end of
the quench. Two measures of deviation from the target state
were used for this purpose: the excess energy at the end of the
quench and the overlap between the time evolved final wave
function and the interacting ground state.

024
\
‘\
0.1 1 \
\\\
0.0 =
—0.1 1
Y02+
—0.31 —— numerical result of ¢
o] e By
: —— numerical result of F
—0.51 ....... _71-/,\’,
20 40 60 80 100

v=1/T0

FIG. 3. The minimal energy as a function of quench duration
obtained by numerical simulation (blue/solid). For long quenches,
the simulation results converge to Eq. (31) (gray/dashed). The loga-
rithm of the vacuum-to-vacuum transition probability as a function
of quench duration obtained by numerical simulation (red/solid).
For long quenches, the simulation results converge to Eq. (37)
(gray/dotted).

We have shown that the optimal protocol must be sym-
metric with respect to the midpoint of the quench duration.
For short quenches t < 1o, the optimal quench exhibits sharp
oscillations which are related to bosons excited to very high
energies and are beyond the realm of the effective low-
energy model. To avoid these excitations, longer quenches
with T > 1 are considered within the validity range of the
Luttinger model. In this case, the optimal quenches do not
exhibit wild oscillation and the protocol functions are found
in closed forms in Egs. (29) and (36) for the case of weak
final interactions. The optimal protocols are shown in Fig. 4.

For these ramp protocols, the minimal energy and the max-
imal vacuum-to-vacuum probability are expressed in Egs. (31)
and (37). These values are independent of the cutoff and
are therefore universal within the perturbation theory. These

1.0

0.8 1

0.6

S

0.4 1

0.2 1
optimal quench for e
004 optimal quench for F
0.0 0.2 0.4 0.6 0.8 1.0

t/T

FIG. 4. The optimal protocol function which minimizes the fi-
nal energy (blue/solid) from Eq. (29), and which maximizes the
vacuum-to-vacuum probability (orange/dashed). The latter has a
simple linear time dependence.
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analytical protocol functions, shown in Fig. 4, are optimal in
the thermodynamic limit. It remains to be investigated to what
extent these protocols remain valid beyond the realm of weak
interactions.

Our approach of expanding in a Fourier series up to a
physically motivated cutoff is different in spirit from finding
numerically exact optimum paths by large-scale numerics
(e.g., as done in Refs. [11,18]), or from finding mathemat-
ically exact optimal protocols for systems having a simpler
description (e.g., as done in Refs. [4,15]). One could also ex-
pand Q(¢) in a power series; we have found that the same main
results [oscillatory Q(¢) for small T and different universal
curves for minimizing energy and for maximizing overlap]
are also found with such an expansion. However, we believe

that the Fourier description presented in this paper has a more
physical interpretation.
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