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Abstract

Cells can be linked to the person who produced them by examining the information

contained within their DNA. The challenge that a forensic analyst faces is to question

whether a collection of cells obtained from a crime scene supports the hypothesis that a

person of interest was present. The primary challenge is that cell samples collected at

crime scenes typically contain material from an unknown number of genetic sources in an

unknown mixture ratio. The standard genetic measurement protocol used in crime labs

produces a single, combined signal for the entire collection of cells. If there are a small

number of contributors, cells are in good condition, and the mixture ratio is not overly

imbalanced, armed with this measurement, informative inference is possible for a trier of

fact. If, however, the sample is complex, containing more than three genetic sources, or if

the mixture ratio is highly imbalanced, or if genetic information within cells is degraded,

the ability to confidently extract meaning from the measured signal is impaired. In high

profile work published in the late 1990s it was demonstrated that genotype information

could be extracted from individual cells. When used in a forensics context, single-cell

methods offer a potential solution to the complex mixture problem by providing genetic

information per-cell rather than solely for the whole collection. Advances in those mea-

surement methods mean that single cell technologies may soon be practicable in crime

labs. Significant challenges on the interpretation of the signals that result, however, re-

main. Instead of having a single high dimensional signal to assess, the trier of fact now

has one for each cell. In the present thesis we take one step towards enabling the res-

olution of the complex mixture problem by proposing and assessing two methodologies

that would facilitate the downstream analysis of genetic signal from a collection of single

cells. Our goal is to query whether it is possible to use unsupervised machine learning to

accurately and efficiently gather single cell signals into groups by genotype. If possible,

it would greatly reduce the computational complexity of the evaluation of evidence and

improve its accuracy. The results in this thesis suggest that this approach is viable and

advances the potential of this societally important technology.
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adventures around our beautiful Éire, games nights, socially distanced walks, and endless

phone calls. To all I have not mentioned by name, I thank you greatly.

Lastly I would like to thank myself, for certain there were many moments where I

was tempted to pack it in or doubted my ability to contribute. I am proud of myself for

completing, what was for me at times, an arduous journey.

vi



1
An Introduction to Forensic DNA Analysis

To understand the importance of single-cell research within the field of forensics, we

must first become accustomed with the current practices in forensic DNA analysis. This

includes familiarising ourselves with the creation of a DNA profile: the type of DNA

measured, the loci examined, the process in which it is measured and the complications

that may arise. We will come to understand that when identifying a person by their

DNA, we must focus our attention to short tandem repeats and that the allelic variation

within a population is not unique, thus, to strengthen the distinction between individuals

we now study a greater number of loci. Once a profile has been established, we will then

gain insight into its interpretaion, identifying the true alleles from the stochastic artefacts

that arise as a result of the measurement process.

Once we have a thorough understanding of DNA profiling, we must then consider

the use of such a technique in the context of forensics DNA analysis. We will focus

on the interpretation of a profile produced from crime scene DNA samples, in particular

complex and low-template stains. The likelihood ratio is a powerful tool for evaluating the

weight of crime scene evidence and so a brief understanding of its calculation is required.

Although the interpretation of complex mixtures has advanced from traditional methods,

often referred to as binary methods, many modern probabilistic genotyping software still

employ various binary techniques and so we will review a selection of these.

1.1 Human Identification

1.1.1 Human DNA

Cells are the fundamental building blocks of humans, within the nucleus of each human

cell is 46 chromosomes with one half inherited from the biological mother and one half

from the biological father to give us 23 pairs [9]. These chromosomes are made up of

tightly packed Deoxyribonucleic Acid (DNA) which holds the “instruction manual” for

our cells.

1



1.1. HUMAN IDENTIFICATION

Human DNA is stored in a coded fashion using a sequence of four bases- the nucleotides

Thymine (T), Adenine (A), Cytosine (C) and Guanine (G). Ts can only pair with As, Cs

only with Gs (and vice versa). This pairing is referred to as base pairing. Due to this

base pairing, the unit of length of a strand of DNA is described as a number of base pairs

(bp) [9].

The particular sequence of these bases determines the information available for build-

ing and maintaining an organism, they can be thought of as the words written in our

“instruction manual”. A gene is a DNA sequence that contains the instructions to make

a protein, it encodes proteins. This coding DNA is not unique to an individual and ac-

counts for about 2% of our DNA, giving way to seen traits such as eye colour or hair type

[35].

1.1.2 Short Tandem Repeats

Figure 1.1: Composition of the human genome in terms of DNA classes. (Image adapted
from [35].)

The remaining 98% is our non-coding DNA. Non-coding DNA, which was once dis-

missed as “useless junk DNA”, is now broken up into sub-types with growing research

into their uses [12]. Non-coding satellite DNA is used as a genetic marker for identify-

ing one human from another. Satellite DNA consists of arrays of tandemly repeating

non-coding DNA, or Short Tandem Repeats (STRs), that differs sufficiently in their base

composition.

An STR occurs when a short segment of a DNA sequence, 2-6 base pairs, gets repeated

back-to-back along a portion of a chromosome [23]. Fig. 1.2 gives an example of 3 different

DNA sequences all containing an STR of four base pairs long, CTAA. The number of

times this repeat is seen back-to-back is the allele/allelic variant [9]. In this way an allele

can be thought of as a count; the allelic value represents the number of times an STR

appears back-to-back in a DNA sequence at a given point or loci along a chromosome. For

2



1.1. HUMAN IDENTIFICATION

Figure 1.2: Three different DNA sequences with a detectable STR. Each STR is 4 base
pairs long (CTAA), and yet they differ in number of repeats. Figure (A) shows integer
repeats only, while figure (B) shows imperfect repeats.

example, taking the sequences from Fig. 1.2(A) Person(1A) has an allele = 5, Person(2A)

has an allele = 6 and Person(3A) has an allele = 7. Note that imperfect repeats can also

occur and are recorded as modulo alleles, expressed as non-integer valued alleles seen in

Fig. 1.2(B). Put more simply, Person(1B) has allele = 5.1 or 5 repeats + 1 bp, Person(2B)

allele = 6.2 or 6 repeats + 2 bps and Person(3B) has allele = 7.3 or 7 repeats + 3 bps.

Humans are diploid organisms as we have two chromosomes, hence two alleles at

each genetic locus with one allele inherited from the biological mother and one from the

biological father. As a result, if an STR allelic measurement is made, two unordered

numbers, one per chromosome, is recorded. Genotypes are described as homozygous if

there are two identical alleles at a particular locus and as heterozygous if the two alleles

differ [28].

3



1.2. DNA PROFILING AND MEASURING STRS

1.1.3 Variation of STRs in the Human Population

Allelic variants found in humans are not entirely distinct, that is to say, we not only share

genetic variants with our biological families but also with unrelated individuals. For ex-

ample, both you and an unrelated stranger may have an allele = 8 for the locus CSF1PO.

When looking at the larger picture, an array of loci across different chromosomes, the

distinction between individuals can become clearer. Thanks to research such as The 1000

Genome Project, a wider view of allelic variation across 26 human populations has been

studied, and in 2015 they found the typical difference between the genomes of two unre-

lated individuals was estimated at 20 million base pairs [1]. This high variability means

that although individuals may share alleles, once examining a sufficient number of loci,

the likelihood that two unrelated individuals have the same genome becomes negligible.

This large scale study by Auton et. al. [1] also highlights that alleles occur at different

frequencies in different human populations, more specifically those of differing geographi-

cal origin. For example, if we look at an allele frequency table for 1036 unrelated samples

in the U.S. population [57], it is far more likely to see the allelic variant 8 present at

the locus CSF1PO in African-Americans than in Caucasians with frequencies 0.0556 and

0.0055, respectively.

Allele frequency tables have been established to estimate the likelihood of shared allelic

variants among a population. These are compiled by taking a subset of a population,

determining their genotypes and subsequently their allele frequency, where allele frequency

is found on a locus basis as follows:

Allele Frequency =
Total Num. of Allele X Present

Total Num. of All Alleles Present
.

�� ��1.1

For clarity, if we take a subset of 20 people from a population, this means our total

number of alleles present at any locus is 40 (2 alleles per individual). We would like to

note that these 40 alleles are not expected to be distinct. If we find the allelic variant 8

appears at the locus CSF1PO 6 times within this sample, then the frequency of the allelic

variant 8 at locus CSF1PO is said to be 6/40 = 0.15 for this subset of the population.

This value is then assumed to be representative of the full population as an estimate for

the expected frequency of said allele at said locus.

1.2 DNA Profiling and Measuring STRs

DNA profiling is the process of correlating an individual’s identity to characteristics of

their DNA. It can be used to aid forensic investigation and track down blood relatives.

Customarily, this can be done as follows: i) take a sample of human cells such as a cheek

swab or blood sample; ii) extract DNA from the cell by lysis; iii) quantise the DNA; iv)

4



1.2. DNA PROFILING AND MEASURING STRS

amplify the DNA via Polymerase Chain Reaction (PCR) to generate hundreds of millions

of copies of that particular DNA segment [98]; and finally v) separate the DNA through

gel electrophoresis, a traditional separation technique that is based on the movement of

ions in an electric field - shorter STRs will move faster and further through the gel than

longer ones. This method is often referred to as bulk-processing due to the fact it is

applied to a collection of cells. An electropherogram (EPG) is a record produced as a

result of electrophoresis. They are used to distinguish allelic variants by their lengths.

An electropherogram is a plot of measured fluorescence intensity versus potential allelic

variant.

1.2.1 Forensic DNA Profiling and the Core STR Loci

When entering the genome of an individual into a national or international database,

generally used to link criminals, a common set of STR markers or core loci are required.

Multiple loci are examined when testing human identity with the intention of reducing the

possibility of a random match between unrelated individuals. As satellite DNA tolerates a

high degree of variability, the core loci have been chosen as markers found between genes,

allowing equivalent genetic information to be compared and shared [22]. As of January 1st

2017, the FBI’s Combined DNA Index System (CODIS) has expanded their core loci to

now include 21 STR markers: CSF1PO, FGA, TH01, TPOX, VWA, D3S1358, D5S818,

D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D1S1656, D2S441, D2S1338,

D10S1248, D12S391, D19S433, D22S1045, and Amelogenin [55]. When creating DNA

profiles we will examine 20 of these 21 core loci, excluding Amelogenin the sex determining

marker. Fig. 1.3 is an example of an EPG, the 20 CODIS STR loci for a single source

sample chosen at random from the PROVEDIt database [4].
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1.2. DNA PROFILING AND MEASURING STRS
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Figure 1.3: The 20 CODIS STR loci of Genotype 15, generated from the PROVEDIt
database [4] (Sample.File: A02 RD14-0003-15d2U60-0.25GF-Q4.5 01.5sec.hid). Vertical
bars indicated detected fluorescence at potential allelic variants and red dots indicate the
true alleles. 0.25ng of DNA was extracted using the PicoPure kit and amplified via the
GlobalFiler amplification kit (29 cycles).
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1.2. DNA PROFILING AND MEASURING STRS

1.2.2 Interpreting EPG Artefacts: Stochastic Effects

Fig. 1.4 shows six different EPGs where each one is an example of a common artefact.

Fig. 1.4(A) is an EPG of the heterozygous locus D7S820, generated from a single source

sample from the PROVEDIt database [4]. We have prior knowledge of the ground truth

for this genotype and we know that for this locus the allelic variant = (10, 11) as indicated

by red dots. Fig. 1.4(A) is an ideal post-processing resultant EPG, as the only detected

fluorescence is that of the true allelic variants, however this is not regularly the case.
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Figure 1.4: Examples of the various artefacts found in EPGs. All plots have been gener-
ated using three samples of Genotype 15 from the PROVEDIt database [4]. In all plots,
(A through to F) true allelic variants for each loci are indicated by red dots while recorded
fluorescence at an allelic variant are indicated by the black vertical bars. (A) is an ex-
ample of the ideal case; a perfectly clean sample where the only fluorescence detected is
that of the true alleles. (B) and (C) document the by-products of the PCR amplification
process - reverse stutter and forward stutter, respectively. (D) is an example of a noisy
EPG. (E) shows the common case of allelic drop-out while (F) shows that of drop-in,
where the blue triangles indicate the presences of drop-in allelic variants.
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1.2. DNA PROFILING AND MEASURING STRS

Stutter

Reverse stutter (or back stutter) peaks are common and well documented by-products of

the PCR amplification of STR regions typically occurring as strands which are one repeat

unit shorter than the parental allele, (true allele−1) [116]. Reverse stutter can be seen in

Fig. 1.4(B) at 12 and 14 repeat units. Gill et. al. [45] experimentally observed that reverse

stutter signal tends to be less than 15% of the detected parent allele peak. As stutter is

such a prevalent feature of PCR, The SWGDAM Interpretation Guidelines for Autosomal

STR Typing by Forensic DNA Testing Laboratories 2.6 recommends the inclusion of a

laboratory established stutter-threshold [107]. In contrast, forward stutter, one repeat unit

longer, and double-back stutter, two repeat units shorter, have been reported to occur less

frequently than reverse stutter, with the latter occurring least frequently. [42, 121]

Forward stutter occurs when the polymerase enzyme slips forward and skips a template

strand, (true allele + 1) [56, 117]. Forward stutter can be seen in Fig. 1.4(C) at 18

repeat units. Gibb et. al. [42] observed that parent peak height has an influence on the

relative magnitude of forward stutter. Their results confirm that an all-loci encompassing

guideline for the forward stutter in DNA mixture analyses does not reflect the nature of

this artefact and proposed that it would be more appropriate for a general guideline per

locus to be applied.

Double back stutter, (true allele − 2), can occur when the polymerase enzyme slips

backward on an already back stuttered strand. Signal at 15 repeat units is observed in

Fig. 1.4(C) and this can be classified as forward stutter from the 14 parent allele or double

back stutter from the 16 reverse stutter allele. Weusten et. al. [121] found that the peak

area of double stutters is generally below 1% of the allelic peak. The results of Gibb et.

al. [42] shows that double-back stutter has the potential to interfere with interpretation

of minor profiles within mixtures but to a lesser degree.

Noise

Noise peaks can be seen in Fig. 1.4(D). These are considered to be noise where, in the

context of the experimental sciences, noise can refer to any unknown or random fluctuation

of data that hinders inference of signal. Noise is an independent artefact that although

does not occur at every potential allele position, it can occur at any potential allele

position. It has also been experimentally observed that noise occurs at approximately

15% of potential allelic positions, and when it does occur it is best described by a log-

normal distribution as found by Monich et. al. [82].
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1.2. DNA PROFILING AND MEASURING STRS

Amplification Failure

Total Failure of Amplification (TFA) may occur during the PCR amplification process

of both single-cells and larger DNA samples, although it is seen much less frequently for

the latter. It is noted by Piyamongkol et. al. [89] that generally TFA affects 5-10%

of single-cells subjected to such an amplification process. They consider several likely

causes for amplification failure: the isolated cell might have been lost during transfer to

the PCR tube, the cell could have been anucleate, the cell may have been in the process

of degeneration, or the DNA might not have been accessible to the PCR reagents due to

a failure of cell lysis, however, they also acknowledged that it is immensely difficult to

determine the reason for total amplification failure in all cases.

Allele Drop-out

Allele Drop-Out (ADO) is the failure to amplify one of the two alleles in a heterozygous

cell due to one allele having insufficient amplification, a problem that is unique to PCR

of minute quantities of DNA such as single-cells. ADO can affect either of the alleles

of a given locus and occurs at random giving a heterozygous cell the appearance of

homozygosity [89]. The frequency at which we see ADO is in part related to the choice

of lysis used pre-amplification and Kim et. al. [68] found that DNA extraction using

an alkaline lysis buffer results in less allele drop-out when compared to other methods

of DNA extraction tested. An extended PCR protocol has also proven to reduce ADO

frequencies as seen in [120]. An example of ADO can be seen in Fig. 1.4(E) where the

ground truth for the locus D7S820 is (10, 11) but only the allelic variant 11 has been

amplified.

Allele Drop-in

Allele drop-in is the presence of an allele not associated with the sample and remains

unexplained by the sample contributor. Drop-in is typically restricted to 1 or 2 alleles per

profile. If multiple alleles are observed at more than two loci then these are considered

as alleles from an extra contributor and analysis can proceed as a mixture of two or

more contributors [46]. In Fig. 1.4(F) we observe potential drop-in indicated by the

blue triangles. These “extra” alleles are only found at two loci and so we can attributed

this to drop-in and not consider a potential DNA mixture. The authors of [46] and [8]

suggest probabilistic approaches and likelihood ratio principles that can be applied to

DNA profiles containing drop-in, both recommending that these probabilities be assessed

and their relevance to a DNA profile be considered, with Gill et. al. [46] highlighting

awareness that their approaches described are based on simplified assumptions.
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1.3. CRIME SCENE DNA EVIDENCE

1.3 Crime Scene DNA Evidence

When a crime has been committed it is often the case that DNA from an assailant has been

left behind which, when profiled appropriately, which can aid in criminal investigation,

be it linking a suspect to the crime or eliminating them. It has become a standard

forensic technique to gather such DNA evidence for the wide spectrum of crime types,

from volume crime such as burglary or autocrime to major crime. Properly collected and

processed DNA evidence can be compared with known samples from specific suspect(s)

or databases such as CODIS in the hopes of linking suspect(s) to a crime through the

utilisation of a Likelihood Ratio (LR). The likelihood ratio test is an accepted approach

to quantitatively assessing match information between a suspect and a piece of evidence

found at the crime scene. It is the ratio of probabilities of observing the evidence under

two distinct hypotheses,

LR =
P(E|Hp)

P(E|Hd)
,

�� ��1.2

where Hp represents the prosecution’s hypothesis, Hd the hypothesis of the defense and E

represents the the evidence. The evidence in our case, will be a crime scene DNA profile

or simply Crime Scene Profile (CSP) .

When establishing E, the DNA profile of a crime-stain, one is often faced with complex,

Low-Template DNA (LTDNA) samples that exhibit allele sharing. The three main factors

determining complexity are: i) the Number of Contributors (NoC) in the sample, the

more contributors the more complex a sample is; ii) the mixture ratio of the sample, how

much DNA is present from each contributor; and lastly iii) the quality of the DNA, how

degraded the sample is [90].

Traditionally analysts have constructed the LR using a binary approach to interpret

the TrueNoC of these complex LTDNA profiles, often applying a stochastic and/or ana-

lytical threshold along with other biological parameters such as Maximum Allele Count

(MAC), heterozygote balance and stutter ratios [27]. As sensitivity and instrumentation

continue to improve, there has been a movement from the binary methods of interpreta-

tion to probabilistic methods of interpretation, employing the development of Probabilistic

Genotyping Software (PGS) such as STRmix, LRmix and CEESIt [91, 16, 104]. PSG’s

can determine the LR by factoring in the probabilities of allelic drop-in, drop-out, and

some of the aforementioned biological parameters using mathematics to approximate what

happens in a real mixture, but majoritively, they still require an assumption regarding

the TrueNoC.
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1.3.1 The Likelihood Ratio

For crime scene DNA samples, the weight of this evidence can be supplied by calculating

the likelihood ratio. The numerator is the probability of observing the evidence given

the prosecution’s hypothesis and the denominator is the probability of observing the

evidence given the defense’s hypothesis. Likelihood ratios often make use of peak height

information, assume a number of contributors to the mixture and always make use of the

Person Of Interest’s (POI’s) genotype (the suspect) [19]. If the LR >1, the prosecution’s

hypotheses is supported by the evidence, conversely if the LR <1, the defense’s hypotheses

is supported by the evidence. For a LR = 1 neither hypotheses is supported by the

evidence. LRs are complex, can be hard to phrase, and the development of the hypotheses

may be difficult, particularly that of Hd. In the context of crime scene DNA evidence,

equation
�� ��1.2 can be interpreted as such:

P(E|Hp)

P(E|Hd)
=

P(EPG|POI,G2, ...Gnp)

P(EPG|G1, ..., Gnd
)

,
�� ��1.3

where np and nd are the prosecution and defenses assumed number of profiles contributing

to crime scene EPG, and G is an unknown genotype.

The numerator, P(EPG|POI,G2, ...Gnp) is the probability of seeing the EPG, given

the genotype of a POI and np unknown genotypes. The denominator P(EPG|G1, ..., Gnd
)

is the probability of seeing such an EPG given nd unknown genotypes, typically assumed

to be independent. G1 is drawn with probabilities determined by allele frequency tables

with the same ethnicity of the assumed POI, as is the case under the defenses hypothesis.

We note that in practice np and nd can be chosen to maximise the prosecution and

defenses probabilities respectively and therefore are not necessarily equal [46, 104].

To understand the challenges faced when determining a LR, we must first consider

the simplest case, np = nd = 1 and build up our understanding from there. The LR

will vary depending on the probabilistic model used for its calculation but at minimum

any probabilistic model that aims to model an EPG requires true allele signal, stutter

signal and noise. Many models have been developed to include a greater proportion

of the information seen in an EPG incorporating forward stutter, drop-in, or drop-out

[93, 67, 15, 109]. Let G be the set of genotypes such that G = {G1, ..., Gn}. For clarity in

notation, Gi is the full genotype on an individual, Gli is the genotype of an individual at

a given locus. Moreover Gli = {Ali1 , A
l
i2
} where Ali1 and Ali2 are the alleles at said locus.

For any hypothesis H,

P(EPG|H) =
∑
g

P(EPG|G = g)P(G = g|H).
�� ��1.4

We will begin with a general description of P(EPG |Gi), the probability of seeing an EPG
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given a genotype Gi, employing a toy model for an EPG and then elaborating how the

prosecution and defense compute their respective P(EPG |G) and P(G|H)

Simple Model for an EPG

If we treat each locus as being probabilistically independent, to describe a model for a

full EPG it is sufficient to restrict our attention to describing a model for a single EPGl

(single locus l). We will construct a toy model that only incorporates the key features:

true allele signal, noise and reverse stutter.

True allele signal is the amount of fluorescence in RFU that comes as a result of de-

tecting a true allelic variant during the process of electrophoresis. There exists insufficient

characterisation of the true distribution of the signal detected at a true allelic variant (Z),

with Peters et. al. [88] declaring it cannot be easily described by a simple distribution

class. The gamma distribution has been adopted by Puch-Solis et. al. [95] as it gives a

simple yet flexible class of unimodal and asymmetric densities that best fit their simulated

data. However, it has been suggested by Bright et. al. [15] that one could determine the

distribution directly when one has sufficient data to do so as it can vary with the quantity

of DNA present.

Different loci have a different range of potential alleles and we will define the set of

potential alleles for a given locus, l, as Bl. We will establish a toy model EPGlj that

describes the signal recorded at allele j ∈ Bl for locus l as follows:

EPGlj = Nj + Z11Al
1=j

+ Z21Al
2=j

+ λZ11Al
1=j−1

+ λZ21Al
2=j−1

,
�� ��1.5

where Nj is the noise recorded in RFU at allele j. In this model the occurrence of noise

can be determined by a binomial distribution. Z1 and Z2 are the fluorescences recorded

in RFU at true allelic variants. Here we assume Z follows a log-normal distribution as

it appears to reasonably describe our data, seen in section 4.2. Al1 and Al2 are the true

alleles for a given locus, λ is the stutter ratio and 1 is the indicator function.

This simple model can now be used to determine the probability of an EPG given a

genotype, P(EPGl |Ali1 = ali1 , Ali1 = ali2) = P(EPGl |Gli) . However, we are interested in

the probability of the EPG given a genotype, P(EPG |Gi):

P(EPG|Gi) =
∏
l∈L

P(EPGl|Gli) ,
�� ��1.6

where L is the set of all loci studied in a forensic DNA profile. L can be determined from

CODIS or similar.
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The Prosecution’s Calculation

The prosecution is concerned with the probability of seeing the crime scene EPG given

the genotype is that of the POI. Henceforth, the genotype of the POI shall be referred to

as s. This yields:

P(E|Hp) =
∑
g

P(EPG|G = s)P(G = s|Hp).
�� ��1.7

If the genotype corresponds to a POI then Al1 and Al2 become fixed and there exists

a genotype s such that P(G = s|Hp) = 1 thus P(E|Hp) collapses to:

P(E|Hp) = P(EPG|G = s) =
∏
l∈L

P(EPGl|Al1 = sl1, A
l
2 = sl2).

�� ��1.8

The Defence’s Calculation

The defence is concerned with the probability that any other individual of the same

gender and ethnicity as the POI could be responsible for the crime scene EPG. Under

their hypothesis, there exists a distribution of G as determined by allele frequency tables

which we call P(G = g|Hd). Applying this to equation
�� ��1.4 we get:

P(E|Hd) =
∑
g

P(EPG |G = g)P(G = g|Hd).
�� ��1.9

In principle, the defense’s calculation must consider all possible combinations of allele

frequencies for g, which is both the feature and the flaw. By design, the large combi-

natorial diversity is what makes for a strong candidate in identifying an individual but,

conversely, choosing two alleles per loci with replacement yields a near infinite amount of

possibilities for g;

∏
l∈L

(
|Bl|+ 1

2

)
.

�� ��1.10

To comprehend the sheer number of combinations, we can take a numerical example

considering the cardinality of potential alleles per loci from our data and determine that

there are 1.9× 1064 possible combinations for g (see Appendix A). To try and put this

number into perspective, there are more possible combinations than atoms on Earth (it

is estimated that the Earth is comprised of 1.33× 1050 atoms). In practice, this leads

to a computationally infeasible sum and so instead of calculating equation
�� ��1.9 directly,

P(E|Hd) is typically approximated using a Monte Carlo sampling algorithm [104, 16]. In

its base form:
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∑
g

P(EPG|G = g)P(G = g|Hd) ∼=
1

M

M∑
i=1

P(EPG|Gi)P(Gi|Hd).
�� ��1.11

We draw G1, ..., GM independently from the distribution of P(G = g|Hd), to ensure they

occur with the correct frequency. The strong law of large numbers [36] tell us as M →∞
the sample average will almost surely converge to the expected genotype.

Increasing the Number of Contributors

Satisfied with the LR calculation for np = nd = 1, we now increase the complexity,

considering multiple contributors in the sample. We will focus on np = nd = 2 as

it is easily generalised to higher n. The prosecutions hypothesis now becomes: there

are two contributors, one of whom is the POI, the other is some unknown genotype

(Hp : G1, G2 such that G1 = POI and G2 = Random Genotype). While the defenses

hypothesis is now extended to the case of two independent unknown genotypes (Hd :

G1, G2 are independent Random Genotypes). The LR can now be defined as:

P(E|Hp)

P(E|Hd)
=

P(EPG|POI,G2)

P(EPG|G1, G2)
.

�� ��1.12

Once the number of contributors has been assigned, the mixture ratio of the two

genotypes must be accounted for in the calculation. When n = 1 it was reasonable to

assume the DNA mass was present in the sample at every location however, for n > 1,

we must also make a model decision about the proportion of the sample that comes

from each genotype. Let Θ be a vector with components Θi, the mixture proportion

of each contributor such that 0 < Θi 6 1 for i ∈ {1, ..., n} and
∑n

i=1 Θi = 1. More

precisely, for two contributors, Θ = 〈Θ1,Θ2〉 such that Θ1 is the proportion of the sample

contributed by person 1 and Θ2 is the proportion of the sample contributed by person 2.

The probability of the prosecution and defense hypotheses can be expressed as:

P(E|Hp)

P(E|Hd)
=

P(EPG|G1 = s,G2 = g2,Θ = θ)

P(EPG|G1 = g1, G2 = g2,Θ = θ)
,

�� ��1.13

which, for either hypothesis H, can be expanded to:

P(E|H) =
∑
g1

∑
g2

∫
θ

P(EPG|G1 = g1, G2 = g2,Θ = θ)P(G1 = g1, G2 = g2,Θ = θ|H).�� ��1.14

The joint probability P(G1 = g1, G2 = g2,Θ = θ|H) simplifies to the product of

probabilities due to independence of the random variables G1, G2, and Θ, yielding:
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∑
g1

∑
g2

∫
θ

P(EPG|G1 = g1, G2 = g2,Θ = θ)P(G1 = g1|H)P(G2 = g2|H)P(Θ = θ|H),�� ��1.15

for the prosecution G1 = s and so P(G1 = s|H) = 1 as before. For the defense G1,

is determined by allele frequency tables. For both the prosecution and defense G2 is

determined by allele frequency tables and assumed to be independent of s and G1. Again,

to account for the vast number of combinations for G1, and now G2, a Monte Carlo

approximation or similar can be made.

Focusing next on P(EPG|G1 = g1, G2 = g2,Θ = θ) we can make one of two assump-

tions:

(1) Θl = θ for all l

(2) Θl is drawn independently from distinct distributions.

Under (1) the mixture ratio is assumed to be equal across all loci, as assumed by [95, 29],

yielding:

P(EPG|G1 = g1, G2 = g2,Θ = θ) =
∏
l∈L

P(EPGl|Gl1 = gl1, G
l
2 = gl2,Θ

l = θ),
�� ��1.16

Θl is fixed for each locus l. If there is a single mixture ratio across all loci one must

first condition on θ, calculate the likelihood of the EPG given random g1s and g2s, then

change θ, again calculate the likelihood of the EPG given random g1s and g2s and repeat

until a sufficient number of θs have been calculated and then evaluate the product.

Alternatively, under (2) the mixture ratio can be assumed independent at each locus

as was the assumption made in Model B by [106], yielding:

P(EPG|G1 = g1, G2 = g2,Θ = θ) =
∏
l∈L

P(EPGl|Gl1 = gl1, G
l
2 = gl2,Θ

l = θl),
�� ��1.17

such an assumption allows one to independently compute the proportion at each locus and

then evaluate the product directly. For computational simplicity many authors assume

the mixture ratio is independent at each locus [87, 109].

We have already noted the number of genotypes is practically infinite but the combina-

tion of proportions is actually infinite and so we must approximate once again. Therefore,

for multiple unknown contributors, with an unknown mixture ratio, if we take multiple

selections of ratios and genotypes then, again by the strong law of large numbers, we may
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converge to the probabilities of the prosecution and the defense. It is clear to see that as

the number of contributors increase the computational cost in determining the LR will

become substantially greater.

1.3.2 Low-Template DNA

Low-Template DNA (LTDNA) refers to any situation where a small amount of DNA is

present in a sample, such as a touch sample. Samples containing less than 100pg to 200pg

of total DNA available for amplification fall into the range generally considered to be

Low Copy Number (LCN) DNA by most practitioners [48]. Establishing a DNA profile

from LTDNA may require additional PCR cycles in an attempt to compensate for the

low starting template. LTDNA profiles can be characterised by frequent drop-out, low

EPG peak heights, exaggerated peak imbalance and large stutter artefacts (due to the

increased PCR cycles) [8], making it challenging to establish a clear and complete DNA

profile for comparison with suspects.

1.3.3 Complex Mixtures

Currently there is no consensus on how to decide if a mixture (often referred to as an ad-

mixture) is “too” complex for interpretation, with different labs having different protocol

on which samples they attempt to interpret [90]. Labs are increasingly developing new

methods and tools to deal with these complex DNA mixture samples. These developments

not only update the existing tool set but also introduce fundamental new approaches to

forensic DNA analysis. To consider the challenges of interpreting complex DNA mixtures

we will begin by taking a simple admixture, introduce varying levels of complexity and

consider the challenges faced in identifying all genotypes present.

Number Of Contributors (NoC): Fig. 1.5 considers admixtures where contribution

is in equal ratio and so to add complexity only the NoC has been increased. When in-

terpreting these EPGs of the locus vWA, the black vertical bars indicate the fluorescence

recorded at potential allelic variants while the pairwise coloured dots indicate the true

allelic variant of each genotype present in the admixture. Interpretation of DNA mixtures

with three or more contributors is challenging due to the inevitability of allele sharing.

For example, the three distinct genotypes share the allelic variant 16 in Fig. 1.5(B) and

so one could mistakenly determine this as a two source sample. Looking to (D), a five

person admixture, one could determine this as a single source sample with true alleles

= (16, 18) repeat units accompanied by reverse stutter at 15 and 17 repeat units. The

occurrence of such EPG artefacts along with common alleles means as the NoC increases

one cannot by eye accurately determine the true NoC from a DNA admixture.

16



1.3. CRIME SCENE DNA EVIDENCE

●

●

●●●●●●

●●●●●●

0

200

400

600

14 15 16 17 18

(A) NOC = 2

●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

0

250

500

750

1000

15 16 17 18

(B) NOC = 3

●

●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

0

200

400

600

12 14 16 18 20

(C) NOC = 4

●

●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

0

100

200

300

15 16 17 18

(D) NOC = 5

Allelic Variant (repeat units)

F
lu

or
es

ce
nc

e 
(R

F
U

)

Figure 1.5: A study of complexity for an increase in the number of con-
tributors at the locus vWA. These plots have been generated using true ad-
mixture samples from the PROVEDIt database [4]. For all admixtures se-
lected, DNA contribution was in equal ratio. The various genotypes are indi-
cated by dots, coloured pairwise and the vertical black bars represent recorded
fluorescence’s at potential allele variants. Selected samples are drawn from
PROVEDIt 1 − 5-Person CSVs UnFiltered / PROVEDIt 1 − 5-Person CSVs UnFil-
tered 3500 F6C29cycles hlfrxn / 2 − 5-Persons. Samples: (A): B01 RD14-0003-31 32-
1;1-M1a-0.25GF-Q1.2 02.5sec.hid (B): B06 RD14-0003-46 47 48-1; 1; 1-M2a-0.375GF-
Q0.4 02.5sec.hid (C): B01 RD14-0003-40 41 42 43-1; 1; 1; 1-M3a-0.5GF-Q0.9 02.5sec.hid
(D): A05 RD14-0003-30 31 32 33 34-1; 1; 1; 1; 1-M3I22-0.315GF-Q1.3 01.5sec.hid

Mixture Ratio: Fig. 1.6 considers admixtures where the ratio of contribution has been

varied, looking at cases where there may be a single major or single minor contributor.

Interpretation of these EPGs is similar to above. One could determine that Fig. 1.6(A) is

the result of a single source sample, with true alleles (18, 19), stutter at 17 repeat units,

and noise at 16 and 15 repeat units however, we know this not to be the case. When

dealing with an admixture that has a minor contributor it can be the case that after

quantisation, only the DNA of the major contributor remains. For this reason it is of

great importance to produce more than one EPG in the hopes of capturing the minor

contributors DNA, which may only be detectable in a handful of the EPGs. When the

ratio of minor to major contributor’s DNA is less than 1:10, Isaacson et. al. [61] finds

that EPG measurements are not sensitive enough to detect the minor contributor DNA

signatures. Considering Fig. 1.6(B) we see that in the presence of a major contributor,
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although detectable minor contributors could be disregarded as noise. Similarly, in the

case of Fig. 1.6(C), multiple major contributors and a single minor, the minor contributor

is completely indistinguishable from the major contributors. The unshared allele could be

disregarded as noise while the allelic variant at 17 repeat units is shared with two major

contributors.

Figure 1.6: A study of complexity for various ratios of contribution at the lo-
cus vWA. (A) major-minor two source admixture in ratio 1 : 4, (B) two mi-
nor, one major three source admixture in ratio 1 : 9 : 1 and (C) one mi-
nor, three major four source admixture in ratio 1 : 4 : 4 : 4. These plots
have been generated using true admixture samples from the PROVEDIt database
[4]. The various genotypes are indicated by dots, coloured pairwise and the ver-
tical black bars represent recorded fluorescence’s at potential allele variants. Sam-
ples: (A): F01 RD14-0003-40 41-1;4-M1S30-0.625GF-Q3.2 06.5sec.hid (B): C03 RD14-
0003-41 42 43-1; 9; 1-M2a-0.693GF-Q0.6 03.5sec.hid (C): C10 RD14-0003-48 49 50 29-
1; 4; 4; 4-M3a-0.195GF-Q0.4 03.5sec.hid

1.3.4 Binary Methods of Interpretation

Analytical and Stochastic Thresholds: When assessing the presence of an allele both

an Analytical Threshold (AT) and a Stochastic Threshold (ST) are often used. The aim

of introducing an AT is to exclude most of the baseline noise from analysis, while the aim

of the ST is primarily to alert the DNA analyst that all of the DNA typing information
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may not have been detected for a given sample. The ST is defined as the peak height value

below which it is reasonable to assume that allelic dropout may have occurred within a

single-source sample [107]. The SWGDAM Interpretation Guidelines for Autosomal STR

Typing by Forensic DNA Testing Laboratories 1.1 states that an AT should be estab-

lished on signal-to-noise analysis of internally derived empirical data and should not be

used for purposes of avoiding artefact labeling, which may result in loss of data should

an exceedingly high AT be used [107]. Additionally, SWGDAM Interpretation Guidelines

for Autosomal STR Typing by Forensic DNA Testing Laboratories 1.7.1 states that a

ST must be based on empirical data derived within the laboratory and specific to the

quantitation and amplification system (e.g kits) and the detection instrument used [107].

Maximum Allele Count : The Maximum Allele Count (MAC) is a commonly used

approach for estimating the minimum number of contributors to a mixture sample. This

is done by first determining the locus that has the greatest number of allelic peaks and

then counting these peaks. A single individual should only contribute a maximum of two

peaks per locus and so should we find five peaks, one can infer the presence of at least

two other contributors because for a two-person mixture, the expected number of alleles

is four. Dembinski et. al. [32] found that the MAC method is not reliable beyond three

person mixtures, highlighting the limited use of this binary approach.

Heterozygote Balance: Heterozygote balance refers to the ratio of peak heights be-

tween the two alleles of a heterozygote. Balding et. al. [8] highlights LTDNA profiles

experience exaggerated peak imbalance. This amplified imbalance can make it especially

challenging to reliably pair alleles into major and minor genotypes when dealing with a

mixture as reflected in [21].

Stutter Ratio: As stuttering is a common artefact, it follows that predicting the rate

of stuttering is important for interpretation of DNA profiles. A simple measure of how

repetitive a strand is would be to consider its length [17]. It has been shown that when

the structure of the STR region is simple there exists a linear relationship between the

stutter ratio and the allele length [56, 117]. Klintschar et. al. [56] found that the number

of uniform repeats is relevant for the degree of stutter and that polymerase slippage

correlates to the length of the longest homogeneous repeat stretch. This assumption was

also made by Walsh et. al. [117] after the determination of different sequence structures

of vWA alleles. Specifically when considering LTDNA, we recognise the increased stutter

peak heights as a result of the increased rounds of PCR, similarly observed in [8].
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1.4 Goal of This Research

The capability of the LR is dependent on a combination of the NoC assumption and

the ratio of contribution. As the complexity increases, these difficulties necessitate the

use of statistical methods to make deductions. The goal of this research is to reduce the

computational strain of the LR by restricting its calculation to the case of a single contrib-

utor, thus removing the approximation of proportionate contribution. We seek to develop

methods that allow for an appropriate grouping of single-cells into their genotype by first

separating all cells into distinct single sources and then creating an EPG from the signal

produced by each individual source. Traditionally, EPGs have been created using bulk

samples, that is to say EPG signal may stem from multiple sources and post-processing

it is not possible to disaggregate into per-cell signal. By considering the complex mixture

with a single-cell approach, we can overcome this signal separation problem, allowing

for a much simpler assessment of an EPG from a single genetic source. We expect by

doing so one will be able to determine the true NoC for mixtures of greater than three

contributors, distinguish minor contributors more frequently, or when dealing with touch

samples, produce a more complete DNA profile. If we can successfully group single-cells

by genotype we can restrict the LR calculation to the case of a single contributor and

although the defense’s probability will still require some approximation, that of the prose-

cution’s will be a straightforward computation. One of the challenges faced when dealing

with single-cell DNA profiles is the sheer volume of data one has to work with. They

must now simultaneously assess many EPGs from possibly distinct sources, creating a

combinatorial explosion.

1.4.1 Resolution Achieved in This thesis

When treated in a forensic agnostic way, irrespective of their size, single-cell EPGs have

a notably smaller similarity measure if they are from the same genetic source than those

from distinct sources. By setting aside the clear distinction between loci recordings we can

express an EPG as a high dimensional vector and subsequently visualise a collection of

EPG-vectors in a low dimensional space. Such a visualisation allows an analyst determine

the number of genetic sources comprised in the collection of EPGs. We establish that

clustering complex mixtures is possible using a combination of dimensionality reduction,

low dimensional visualisation and an appropriate similarity measure. We then demon-

strate the capabilities of model-based clustering using two transformations of the data;

first the recorded fluorescence of each EPG is normalised, second the logarithm base ten

of each normalised fluorescence is taken.
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1.5 Thesis outline

In this thesis, we have first introduced the reader to the the field of Forensic DNA Anal-

ysis, discussing terminology and common practices. Chapter 2, section 2.1 continues to

summarise the current practices with a focus on the analysis techniques employed when

faced with low-template and complex DNA profiles. We then shift our focus to the more

recent studies of single-cells in a forensic context, providing a brief history of their role

and the current analysis pipeline of singe-cell EPGs, see section 2.2. An overview of our

data has been presented in Chapter 3, including a detailed description of the data, section

3.1, the application of a quality control, section 3.2, and a novel data transformation that

allows us to manipulate the data into high dimensional vectors as opposed to a collection

of per locus signal, section 3.3. In Chapter 4, we establish that distinct genotypes are

distinguishable in this high dimensional format, section 4.1, and we determine that the

logarithmic transformation of our data is reasonably Gaussian, section 4.2. We consider

two methods that enable a 2D visualisation of our high dimensional EPG-vectors in sec-

tion 4.3. In Chapter 5, we layout our experimental design, section 5.1, and propose two

solutions for non-parametric unsupervised learning, sections 5.2 and 5.3, concluding with

our results, section 5.4. And finally an in-depth discussion is carried out in Chapter 6.
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2
History Of Single Cell Analysis

To fully appreciate the need for a single-cell analysis pipeline, we will first familiarise

ourselves with the current bulk processing pipeline and the subsequent challenges faced,

particularly when dealing with low-template and/or complex DNA mixtures. We will

then give a brief historical account of the introduction of single-cell measurements into

the field of forensic analysis, followed by a discussion as to why it has yet to be fully

adopted. We then focus on the development of methods for the collection and processing

of single-cells and subsequently the inference techniques that have been developed for the

interpretation of the resulting collection of EPGs.

2.1 Current Practice for Determining the NoC in Complex, Low-

Template DNA Samples

The interpretation of Low-Template DNA (LTDNA) crime scene samples can rely on the

assumption that such a sample is in-fact composed of multiple genotypes originating from

n unknown contributors. Determining an appropriate Number of Contributors (NoC)

assumption is crucial for an effective use of a likelihood ratio and so, an analyst must

first establish the LTDNA profile, followed by an analysis of such a profile to estimate the

NoC.

2.1.1 Establishing Low-Template DNA Profiles

With the constant advances of instrumentation sensitivity, DNA profiles can be obtained

from low level DNA amounts, corresponding to just a few cells. Gill et. al. [48] highlights

that the starting quantity of DNA material is an important factor for successfully creating

a full DNA profile, noting that if the amount of DNA is less than 100 pg then obtaining

a full DNA profile by utilising normal PCR conditions becomes less likely. With the

intention of enhancing detection sensitivity, they recommend increasing the number of

PCR cycles from 28 to 34, a practice still seen today with certain kits recommending it as
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their standard. However, thanks to the increased number of cycles, these LTDNA profiles

are subject to stochastic effects, such as allele dropout and highly variable stutter peak

heights, making the interpretaion of these profiles substantially more challenging than

those produced from high-template samples.

Even with this detection advancement, one must still consider at what point a de-

tection technique can no longer deliver reliable results. Butler and Hill [21] examine the

“Stop Testing” approach which reflects this concern. They consider the increased number

of cycles to be an “enhanced interrogation technique”, suggesting a follow up of further

testing measures to avoid reporting incorrect results due to the observed stochastic effects.

One such test is to include replicate PCR amplifications to produce a consensus profile.

Replicate analysis involves dividing the DNA into several tubes prior to amplification to

produce multiple EPGs, one per tube, for the same sample. The motivation for doing

replicates is that the analyst can now compare multiple EPGs from the same sample,

potentially providing more information about the genetic source as the stochastic effects

will vary from one replicate to another. Gittelson et. al. [49] found that two replicates,

each having an average allelic peak height as low as 43RFU, generally have a greater

expected net gain than a single DNA analysis. They comment that it is a worthwhile

technique to employ even when the expected average allelic peak is greater than 43RFU.

There has also been meaningful research into the use of direct PCR which allows for

the generation of LTDNA profiles without the need to increase the PCR cycle number

beyond the manufacture’s recommendation. Sim et. al. [103] validated the feasibility of

a direct PCR system for establishing a DNA database as a substitute for conventional

PCR. They found a noticeable increase in detectable peak heights when using direct

PCR. Templeton et. al. [111] found that omitting the DNA extraction step is the key

success if there is limited sample DNA. They found that sufficient DNA can be isolated

from enhanced touch samples, such as fingerprint deposits, using direct PCR but with its

merits comes limitations. For instance, the quantification of the DNA sample cannot take

place and there is no opportunity to remove potential PCR inhibitors. There is much

research advocating widespread implementation of direct PCR into forensic laboratory

practice [24, 6, 25] due to the faster sample turnaround times, improved results, and

fiscal savings this method offers. Alternatively, Wong et. al. [123] offers a modified direct

PCR amplification method, recommending the combined use of direct PCR and replicate

PCR. Although this method adds 30 minutes to the processing time, with the inclusion of

an additional pre-amplification step, they find this method offers a significant advantage

in consensus-based interpretation of DNA mixture profiles.
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2.1.2 Analysis of Low-Template DNA Profiles

Bio-statistical interpretation of LTDNA profiles was originally achieved by a binary inter-

pretive approach and named as such since the probability of a crime scene profile given

a proposed genotype was assigned zero (genotype exclusion) or one (genotype inclusion).

Binary approaches include the application of an analytical and/or stochastic thresholds,

stutter ratios, and peak height ratios, and therefore necessarily involves the assumption

that all alleles are either unmistakable or may be masked by an artefact such as stutter

[26, 20, 44]. The binary approach does not consider the stochastic effects, drop-in and

drop-out, nor does it make full use of the available information regarding peak heights

[19]. These shortcomings restrict the ability of binary methods and subsequently the Ran-

dom Man Not Excluded (RMNE) calculation when dealing with complex LTDNA and

consequently led to the development of probabilistic software that factors the probabilities

of such stochastic effects. The Random Man Not Excluded (RMNE) or the Probability

of Exclusion (PE) is a statistic that can be calculated and presented in a court of law

that represents the weight of the evidence. The method establishes a nonexclusion by

fragmenting the population into those that can not be excluded as a contributor [19]. It

is a two step process where first the suspect is determined excluded or not, followed by a

statistical calculation. Although conceptually equivalent to the likelihood ratio discussed

in section 1.3.1, Gill et. al. [44] states that the RMNE simply does not make use of as

much information contained in the signal as the LR approach, and later Gill et. al. [46]

observes that though RMNE is still employed in practice, this method of evaluation is

being replaced with the LR approach.

Moving away from binary methods, instead trying make use of more of the informa-

tion contained in the signal, led to the development of what are called semi-continuous

and fully-continuous models that can calculate rigours LR values, such as LikeLTd, Lab

Retriever, LRmix Studio, EuroForMix, STRmix and CEESIt [94, 60, 39, 13, 16, 104] to

name but a few. These are probabilistic models for the generation of EPGs given a geno-

type that try interpret the data by including both continuous and discrete features such

as drop-out and drop-in [46, 104, 54]. Semi-continuous methods threshold the data and

therefore only try probabilistically explain large effects while the fully-continuous methods

intend to have a probabilistic model that interprets the raw EPG [5]. Semi-continuous

models were initially in wider use primarily due to the accessibility of software being

open source, secondly the fact that their algorithms and computations are more straight-

forward and tertiarily, their workings and results can be easily presented and discussed

in courtrooms [15, 27]. However, fully-continuous approaches are seen as more powerful

since they exploit more of the available LTDNA profile information and in recent years an

increasing number of open source, fully-continuous software have been published [77, 5].
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Alladio et. al. [5] found that fully-continuous models appear to be the most appropriate

bio-statistical methodology to perform analysis of LTDNA mixtures. Although models

such as these can account for both the qualitative and quantitative data provided by the

EPGs, they rely on model specific parameterisation and various distributional assump-

tions of the signal intensities [47], for example STRmix performs Markov chain Monte

Carlo simulations to estimate the distribution of peak heights [16], while EuroForMix

uses the gamma distribution to model peak heights [13]. It is expected that different

models will produce different LRs for a given sample and a given set of hypothesis.

2.2 Advances in Single-Cell Analysis

2.2.1 A Brief History of Single-Cell Analysis within the Field of Forensics

Looking to sidestep the issues presented when processing LTDNA, there has been a move-

ment toward directly profiling single-cells from evidence material. The application of

cellular separation techniques before the DNA extraction step offers to potentially re-

duce the complexity of downstream interpretation. The study of single-cells is not a new

phenomenon, its analysis allows the study of cell-to-cell variation both within a cell pop-

ulation, e.g. organ or tissue of a distinct individual, and outside a cell population, e.g.

comparing individuals for such ends as parental lineage. The study of single-cells has had

significant implications for genetic disease diagnosis, drug development, in-depth analysis

of stem cell differentiation, cancer and much more [40, 119, 72]. In its infancy, it had

been suggested that an analysis of single-cells, particularly whole genome amplification of

single-cells, could potentially aid forensic investigation [125], but it was Findlay et. al. [38]

who first reported a system for determining STR profiles from single-cells using modern

forensic techniques in 1997. Since this recommendation there has been extensive research

to progress the pipeline for single-cell DNA typing [74, 73, 18, 41]. Johnson and Ferris

[63] assess the application of single-cell gel electrophoresis to evaluate the postmortem

cell death process, however this does not involve the profiling nor following analysis of

crime scene stains. Dean et. al. [31] utilised an analytical technique in an attempt to

group single-cells by genotype prior to PCR yet they do not establish single-cell EPGs,

instead choosing to bulk process cells they believe to belong to a distinct source. Simi-

larly Huffman et. al. [59] have demonstrated that it is possible to extract single source

DNA autosomal STR profiles from the case of a two person admixture in equal ratio by

introducing a mixture de-convolution technique, Direct Single Cell Subsampling (DSCS).

Although interest in single-cell technologies for the forensic sciences has been rekindled

more recently, the literature would suggest limited post-profiling analysis of single-cells,

particularly in the case of sorting large numbers of profiles.
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2.2.2 Collection of Single-Cells and Establishing EPGs

In the single-cell process, each cell is separated prior to DNA extraction. As a result, the

data consists of n EPGs from n distinct cells, rather than one EPG from m not necessarily

distinct cells. There exists many methods for cell separation, to list but a few: pico-

pipetting [66], microfluidic cell sorting [70], Laser Capture Microdissection (LCM) [114],

Fluorescence-Activated Cell Sorting (FACS) [31], and notably DEPArray technology [7], a

microchip-based digital sorter, which combines microfluidic and microelectronic methods

enabling precise image-based isolation of single-cells. This image-based isolation allows

the analyst an opportunity to manually infer the quality of a cell. Cell features such as

the nucleus or cell wall are tagged by various coloured dyes illuminating their presence (or

lack there of). The analyst can then record cells where a nucleus has not been detected

and choose to discard these cells from further study.

Post cell sorting, the processing pipeline of separated cells is akin to direct PCR

wherein the cells are added directly to the amplification mixture, omitting the need for

an extraction step. This requires the choice of extraction reagents to be compatible with

forensically accepted PCR components, a choice that is cautiously determined, as DNA

extraction has been shown to have the greatest contribution to loss of DNA yield [43].

Sheth et. al. [102] have very recently demonstrated that the Arcturus®PicoPureTM ex-

traction method resulted in the most promising DNA yield for the GlobalFilerTM STR loci

amplified at half volume when assessing the compatibility of four extraction treatments

on pico-pipetting single buccal cells. Their work focuses on optimising the chemistry so

that the extraction and amplification process works in concert.

This pipeline is not frequently availed of within forensic practise largely due to two

main factors: i) exuberant costs, a combination of the initial expense to separate cells

coupled with the vastly increased number of cells undergoing individual rounds of PCR,

resulting in a larger need of chemicals, and ii) a lack in development of suitable inference

tools for analysing the vast quantity of resultant EPGs. Although we cannot directly

affect the financial demand of a single-cell pipeline, we aim to introduce an appropriate

analysis technique to handle the large volume of resultant EPGs.

2.2.3 Analysis of Single-Cell DNA Profiles

The Interpretation of single-cell EPGs (SC-EPG) is one of the same to that of LTDNA

EPGs, true allele signal, increased stutter peaks, noise, high imbalanced stutter ratios

and allelic drop-out/drop-in [59]. Anslinger et. al. [7] detected stutter peaks as high as

34% of the parent allele in single-cell profiles. When interpreting SC-EPGs while aware

of occasional drop-in, we need not concern ourselves with the presence of more than a

single contributor instead we must be acutely aware of the increased chance of drop-out
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[89, 7]. Drop-out rates occur more frequently when amplifying low amounts of DNA and

single-cells are no exception to the rule. Using LCM, Sanders et. al. [99] report drop-out

rates of 26.9% for 75 sperm cells. Kim et. al. [68] reported an average drop-out rate

of 18.3% for the five methods they tested, with a notable high of 43.9% for one of their

methods. Anslinger et. al. [7] reported a drop-out rate of 18% per cell and detected

stutter peaks as high as 34% of the parent allele in single-cell profiles.

2.2.4 Enabling the Assessment of Single-Cell EPGs

Both semi-continuous and fully-continuous interpretive approaches have been wholly es-

tablished in the case bulk processed DNA samples but the literature would suggest this

has yet to be considered for the interpretation of single-cell EPGs. We propose unsuper-

vised machine learning techniques which will enable the assessment of groups of SC-EPGs

by removing the computational hurdle of evaluating high volumes of EPGs from not nec-

essarily distinct sources, and thus reducing the computational strain of the LR. The LR

tends toward one as the number of contributors increases or the DNA template level

decreases resulting in reduced inference power [88, 110]. Our method would allow for

each genotype present in a mixture sample to be described by their own distinct collec-

tion of EPGs hence the LR computation would concede to its simplest case of a single

contributor.

We suggest two methods: i) a two step process wherein the data must first be visualised

and a number of contributors inferred followed by similarity based clustering to group

EPGs by genotype. ii) An automated method that determines the number of contributors

while simultaneously grouping EPGs by genotype. Both methods offer promising results

with the latter marginally outperforming the former.
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3
An Analytical Study of the Single-Cell Data

We intend to cluster single-cell EPGs by genotype and thus reduce the computational

strain when computing the LR for a collection of single-cell EPGs. If we can successfully

cluster single-cell EPGs into their distinct genotypes, we can restrict the LR calculation

to the case of only one contributor. We are in the fortunate position where our wet lab.

collaborator has created more than 500 single-cell EPGs with buccal epithelial cells from

known genotypes. This allowed us create simulated admixtures where the true number

of contributors and their ratio of contribution is known prior to clustering, of course this

knowledge would not be available in real world situations. A full description of the the

data including data specific drop-out rates and its processing pipeline have been included.

Not all EPGs are of a high quality, some contain little to no information and since

the aim is to develop a method to effectively group single-cell EPGs by contributor, we

shall use high-quality EPG data to validate the clustering performance against ground

truth. We develop a method to discard scant EPGs. To determine the quality of an EPG,

we aim to use information that is measurable even in the case of an unknown genotype,

therefore we focus on the total fluorescence of a given EPG. For an EPG to be included

in our study, we apply a high-pass filter to the total fluorescence of said EPG, one that

corresponds to a minimum requirement of 20 true alleles being detected.

Once satisfied with the remaining collection of EPGs for our study, we consider alter-

native forms which we may choose to express the information of an EPG. In doing so,

we have established a format in which one can store the recorded fluorescence in a loca-

tion corresponding to an allelic variant of a loci within a high dimensional vector space.

Although this representation permits the consideration of a wider range of methods for

statistical comparison between single-cell EPG information, in doing so there is a trade

off, one must sacrifice an awareness of both loci boundaries and allelic variant represen-

tation, that is to say, looking at a single EPG-vector one could not alone establish the

original EPG.

28



3.1. DESCRIPTION OF THE DATA

3.1 Description of the Data

3.1.1 Collection and Processing of the Data

The data has been generated from single-cell experiments performed by our wet lab. col-

laborators, headed by Professor Catherine Grgicak, in the Department of Chemistry at

Rutgers, Camden, New Jersey, USA. DNA was extracted from epithelial cells, namely

saliva using the PicoPure® extraction kit [115] and processed as follows: i) single-cells

were separated via micropipette, each cell was placed in a 96-well microtiter plate already

containing 5µL of extraction mix; ii) the plate was then placed in a thermal cycler for 3

hours at 65°C, followed by a 10 minute 95°C incubation to inactivate Proteinase K used

for cell lysis; iii) the genetic material of each single-cell was then amplified for 30 cycles

using the GlobalFilerTM Amplification Kit [118]. The PCR reaction consisted of 5µL of

extraction mix, 5µL of the master mix, and 2.5µL of buffer to bring the total reaction

volume to 12.5µL; iv) the amplified fragments were separated and detected using capil-

lary electrophoresis and laser induced fluorescence, respectively. All amplified products

were prepped and run in the same way on the Thermofisher 3500 Genetic Analyzer®

capillary electrophoresis machine; and finally v) all data was analysed in OSIRIS [51] at

the lowest analytical threshold allowed (5RFU). The Genotype Tables, which included

the File Name, Marker, Dye, Allele, Size and Height, were exported for further analysis.

3.1.2 Reading Tabulated Raw Data

The data is expected to be publicly available in the PROVEDIt database [4] after publi-

cations are complete and therefore we are providing a description of the current Grgicak

lab. naming convention so that the interested reader can identify original data from which

all figures are made. The Sample.File column contains a long character string which is

the naming convention for each single-cell. We expect a unique character string to appear

at most 24 times in this column as 24 markers have been recorded for each cell. The

Marker column specifies the loci being examined and the Dye column indicates which

colour DNA-binding dye has been added for the measurement of fluorescence. Columns

Allele X, Size X and Height X are the measurement’s recorded at each loci. Although we

see Allele 1, Allele 2, and so on for each loci, these are in fact potential alleles not true

ones. This numbering is such that Allele 1 is the first allelic variant where a peak has

been detected for a locus, it may be noise, stutter or a true allele. Off-ladder readings are

recorded as OL. Size refers to the length of an STR in bps and Height is the height of a

peak in relative fluorescence units (RFU).

29



3.1. DESCRIPTION OF THE DATA

3.1.3 Grgicak Lab. Naming Convention of Single-Cell EPGs

Understanding the full naming convention is not paramount for our analysis of the data

but we do require at minimum, an understanding of how one determines the genetic source

identifier of an EPG by reading this character string. This is best done through example,

see Fig. 3.1. We are mindful that this naming convention is subject to change as more

data is made readily available, such as the inclusion of a cell type indicator once various

other cell types (namely bloods and sperm) begin to be processed. At its core the naming

convention will include the well plate number, the project number, the genetic source,

the extraction kit, the amplification kit and the capillary number and so we will identify

these in the current convention.

Figure 3.1: Example of how single-cell EPGs are currently named within the Sample.File
column of the raw data.

Well Plate Number The location in the 96 well plate that this single-cell was
run.

Project Number It is to be noted that each sample is designated by the
combination of project number and source identifier.

Source In this example, 06 is the source identifier, that is to say
this cell has come from Genotype 06.

Extraction Kit The type of kit used to extract the DNA, p0 indicates that
the PicoPure kit has been used.

Cell Pluck Number Which cell it is that has been plucked, for this example it
was the 8th cell plucked by the micropipette.

Amplification Kit The type of kit used to amplify the genetic material of the
cell, GF indicates that the GlobalFilerTM kit has been
used.

Capillary Number: The capillary this cell was run in, for this example the cell
has been run in Capillary #01.
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3.1.4 Description of All Sources

The GlobalFilerTM kit allows the amplification of 24 loci: the 20 core CODIS loci, SE33,

AMEL, Y-indel and DYS391 [108]. When plotting a complete EPG we have only in-

cluded 21 loci. The loci AMEL, Y-indel and DYS391 have been removed for analytical

interpretaion of the data as these are not autosomal STRs. DYS391 is an STR found

on the Y-chromosome, Y-indel is a Single Nucleotide Polymorphism (SNP) on the Y-

chromosome and AMEL is the amelogenin sex-determining locus. Although not a core

CODIS locus, we have included the SE33 in our study. There has been recent studies into

the reliability of the SE33 locus as a genetic marker for forensic DNA analysis systems

[14, 11] with Karantzali et. al. [65] demonstrating further distinction between true and

false matches in the case of paternity and full-sibling matches.

To visualise the raw data, we have plotted all single-cell EPGs overlaid for each geno-

type. This allows us a broad overview of potential complications in the downstream

analysis. For example, Fig. 3.3 indicates potential allelic drop-in at the locus D2S441 for

Genotype 02. We can trace back to EPGs associated with noisy loci for future reference,

these EPGs have been recorded in Table 3.2. Ground truth for each genotype has been

recorded in Table A.2, see Appendix A. For all genotypes at least 1 complete profile could

be found and at least 4 profiles recorded no true allelic variants after applying a detection

threshold (DT) of 30RFU to the data. On average the loci D10S1248 and D2S441 expe-

rience the lowest drop-out rates at 25% while the loci D7S820 and SE33 experience the

highest drop-out rates at 56% and 57% respectively. Genotype 05 experienced both the

highest average drop-out rates for heterozygote loci (57%) and homozygote loci (38%).

A full description of drop-out rates can be found in Appendix A, section A.3.1.
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Genotype
Total Num.

EPGs
Num. Complete

Profiles
Num. Profiles No
Alleles Detected

01 111 11 4
02 110 5 6
05 100 1 11
06 102 5 20
07 103 3 5

Table 3.1: The number of EPGs per genotype, the number of profiles where all true
alleles were detected above 30RFU AT and the number of profiles where no true alleles
were recorded for each genotype.

Genotype EPG Locus

01 B01 RD16-0003-01-p0-81-GF 02.hid D2S441
E10 RD16-0003-01-p0-67-GF 05.hid D2S441

D2S441
H10 RD16-0003-02-p0-70-GF 08.hid D3S1358

02 D22S1045
D2S441

H11 RD16-0003-02-p0-77-GF 08.hid D3S1358
D10S1248

D8S1179
06 A05 RD16-0003-06-p0-31-GF 01.hid D10S1248

D19S433

Table 3.2: EPGs believed to be associated with drop-in and the loci which they can be
observed in.
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Genotype 01

We observed both the greatest number of complete profiles and the least amount of empty

profiles for this genotype. On average approximately 71% of the alleles could be obtained

per single-cell for Genotype 01. Looking at all cells for this genotype, there is an average

drop-out rate of 28% across all heterozygote loci. A notable high of 51% of expected

alleles are absent from recordings at D7S820, while the lowest ADO for a heterozygote

locus was 15% at D2S441. When studying drop-out of homozygote loci we can only

determine if total ADO has occurred or not and we find that for the four homozygote loci

of Genotype 01, D1S1656, D3S1358, D22S1045 and TH01, total ADO can be observed

in 14%, 12%, 10% and 17% of profiles respectively. Looking to the locus D2S441 in Fig.

3.2, we suspect drop-in is responsible for the high recordings at 7.3 repeat units.

vWA
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Figure 3.2: All wet lab. data for Genotype 01 plotted as points, coloured by cell. Ground
truth is indicated by bold black vertical lines.
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3.1. DESCRIPTION OF THE DATA

Genotype 02

Although we only obtain five complete profiles for Genotype 02, on average this genotype

has the strongest profiles with a mean of approximately 78% of alleles obtained per single-

cell, the highest for any genotype tested. The lowest average ADO across heterozygote loci

is observed for this genotype at 22% and ranges from 13% at the locus D2S441 to 36% at

the locus TPOX. Genotype 02 experiences the most homogeneity with total ADO ranging

between 13%− 20% for the five homozygote loci, the second lowest average drop-out rate

for a genotype. Two particularly noisy loci, D2S441 and D3S1358 can be observed in Fig.

3.3. Although the colouring looks similar, these recordings stem from two cells, again we

suspect drop-in is accountable for these chaotic values.
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Figure 3.3: All wet lab. data for Genotype 02 plotted as points, coloured by cell. Ground
truth is indicated by bold black vertical lines.
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3.1. DESCRIPTION OF THE DATA

Genotype 05

The profiles established for Genotype 05 were of the poorest quality, on average approx-

imately 45% of the alleles could be obtained per single-cell, only one complete profile

was obtained and this genotype experiences an average drop-out rate of 57% across het-

erozygote loci and 38% across homozygote loci. In fact, of all the cells profiled for this

genotype, less than half of the expected alleles were detected for 12 of the 17 heterozy-

gote loci, with substantial ADO of 76% observed at D7S820. For the homozygote locus

D21S11, true allelic variants are only observed in 50% of profiles.
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Figure 3.4: All wet lab. data for Genotype 05 plotted as points, coloured by cell. Ground
truth is indicated by bold black vertical lines.
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3.1. DESCRIPTION OF THE DATA

Genotype 06

For Genotype 06, on average approximately 50% of the alleles could be obtained per single-

cell. 20 of the profiles established for Genotype 06 had no true alleic variants detected,

the most observed for any genotype. Although not quite as frequent as Genotype 05, we

still observe relatively high ADO across all loci for Genotype 06 with an average of 51%

across heterozygote loci (a notable high of 61% at D2S1338) and 38% across homozygote

loci.
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Figure 3.5: All wet lab. data for Genotype 06 plotted as points, coloured by cell. Ground
truth is indicated by bold black vertical lines.
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3.1. DESCRIPTION OF THE DATA

Genotype 07

For Genotype 07, on average approximately 59% of the alleles could be obtained per

single-cell. D3S441 is the only homozygote locus and the true allelic variant could be

determined in 82% of profiles. An average drop-out rate of 41% was observed across

heterozygote loci, and the second highest drop-out seen for all genotypes was 67% at

D7S820.
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Figure 3.6: All wet lab. data for Genotype 07 plotted as points, coloured by cell. Ground
truth is indicated by bold black vertical lines.
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3.2. HIGH-PASS FILTER

3.2 High-Pass Filter

We introduce a high-pass filter restricting the use of EPGs with very little fluorescence

recorded which corresponds to restricting the use of EPG’s where few true alleles have

been recorded. We recognize that the decision to apply a high-pass EPG threshold for

single-cell purposes may have implications to casework, though additional research would

be required to characterize to what degree. However, we begin with high-quality data to

develop and validate a method for forensic purposes, such that it is tested against real

data that is known to exhibit signal from a “ground truth” contributor unambiguously.

We have defined an EPGs intensity, Ik, as the sum of all peak heights, fi, recorded for

EPGk, i, k ∈ N+ and we use this intensity as a proxy for the information contained in

an EPG.

Ik =
∑
i=1

fEPGk
i .

�� ��3.1

As this is known data, we can determine how many alleles were recovered above a

DT of 30RFU, plotted against the EPG intensity Ik, seen in Fig. 3.7. We observe a

correlation between how many alleles were recovered and an EPG’s intensity, however,

this is not linear as we might expect. In fact, as the number of true alleles recovered

increases, the relationship becomes almost superlinear.

Analysis of the marginal distributions of true alleles suggests that they can be approx-

imately modeled via a log-normal distribution. Thus, taking the logarithm of the data is

a natural transformation to get the normality of these marginal distributions. Where the

intensity Jk is determined considering the sum of log transformed peak heights,

Jk =
∑
i=1

log10(f
EPGk
i ),

�� ��3.2

and we visualise in the same way as in Fig. 3.7, we find that there is a linear relationship

between the EPG intensity, Jk, and the number of alleles recovered. This suggests to

threshold the EPG quality based on the sum of the log transformed fluorescences. Here

we chose to do so such that linear regression would suggest we remove EPGs for which 20

or less alleles have been recovered, as indicated by the red dashed line seen in Fig. 3.8.

Post filtering, a total of 351 EPGs remain, most of which have at least 20 true alleles

detected. Three EPGs from Genotype 06 that have less than 20 true alleles detected

escaped the high-pass filter, summarised in Table 3.3. Three of the EPGs associated

with noisy loci are removed from the study by applying this filter to the data. The

average drop-out rate post filtering decreased to less than 20% for all genotypes, with

the locus D10S1248 still experiencing the lowest drop-out rate, reduced to an average of
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Figure 3.7: EPG intensity, Ik, versus the number of true alleles recorded for that EPG.
We expect a linear relationship but observe as the number of true alleles present increases,
the relationship becoming almost superlinear.

4.8%, while the locus D7S820 now experiences on average the highest drop-out rate at

36%. Genotype 05 still sees the highest drop-out rate for heterozygote loci (18.9%), while

Genotype 06 sees the highest (3%) for homozygote loci. A full description of drop-out

rates post filtering can be found in Appendix A, section A.3.2.

Genotype
Total Num.

EPGs
Num. Complete

Profiles
Min. Num. Alleles

Detected

01 91 11 20
02 93 5 23
05 43 1 20
06 55 5 18
07 69 3 20

Table 3.3: The number of EPGs per genotype post filtering. The number of profiles
where all true alleles were detected above a 30RFU AT was unchanged by filtering. The
minimum number of alleles detected above a 30RFU AT is expected to be 20, however
three profiles of Genotype 06 escaped the filtering.
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Figure 3.8: EPG intensity, Jk, versus the number of true alleles recorded for that EPG.
We see a linear relationship as indicated by our linear model, the blue line. The red
dashed line is a high-pass filter removing EPGs where 20 or less true alleles have been
recovered for an EPG.

3.3 Creating EPG-vectors

An EPG can be described by a series of triples, 〈l, ai, fi〉, where l is the locus, l ∈
{1, ..., 21}, ai is the allelic variant and fi the corresponding fluorescence recorded at ai,

for i ∈ N+. In the standard paradigm, the fluorescence measurement at each locus of an

EPG are treated differently and indeed typically they are measurements with different

fluorophores, having many different ranges of intensity. In order to make these data

comparable it makes sense to embed them in a single high dimensional space. The way

in which we are going to do so is to take each potential allele location and assign it a

unique vector index. Here in, we describe the process of doing so. It effectively amounts

to concatenating the per locus EPGs in a consistent manner.

3.3.1 Vector Construction

We have chosen to construct forensic ignorant vectors such that one vector, VG
k , will

describe an EPG in full, dubbed EPG-vectors. G is the genotype id, G ∈ {1, 2, 5, 6, 7}
and k ∈ {1, ..., nEPG} where nEPG is the total number of EPGs for genotype G. We

say forensic ignorant as we have concatenated the fluorescences in such a way that one
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3.3. CREATING EPG-VECTORS

cannot readily determine at which loci a fluorescence was recorded thus treating an EPG

as a single high dimensional signal. The method we use in creating EPG-vectors can be

applied to any EPG data but the dimensions will be data specific. We construct V G
k as

follows:

Create a zero vector of length m, such that

m =
21∑
l=1

nl.
�� ��3.3

where nl is the data specific set of all potential allelic variants for the locus l such that

nl = 4(dalmaxe − balminc) + 1,
�� ��3.4

with almin and almax as the minimum and maximum allelic variants recorded for locus

l across all genotypes in our data. As discussed in section 1.1.2, we can be faced with

non-integer allelic variants and so to account for this we must take the floor and ceiling

of our min and max respectively. It is also for this reason that we must multiply by a

factor of 4. We have an offset of +1 to ensure we have the correct number of positions

available. We choose almin/max across all genotypes present in the data to ensure | V G
k |

is constant for all G and k.

To ensure each vector is comparable we must concatenate our loci consistently. The

order we choose to concatenate is arbitrary but once selected it must remain constant.

We have chosen the order: {CSF1PO, D1S1656, D2S1338, D2S441, D3S1358, D5S818,

D7S820, D8S1179, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11,

D22S1045, FGA, SE33, TH01, TPOX, vWA}

Now we can populate our vectors with their corresponding fluorescences. The element

vpli
∈ V G

k is the fluorescence recorded at 〈l, ai〉 for EPG k of genotype G. Moreover we

can say vpli
= f li , where pli is the position index such that

pli = 4bali − alminc+ 10(ali − almin − bali − alminc) + χ,
�� ��3.5

where ali is the ith allelic variant, recorded at locus l. The first term in pli accounts for

the integer part of an allelic variant while the second term accounts for the non-integer

part. If an allele is an integer the second term will be zero. Finally the third term, χ is

an offset such that,
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χ =


1 if l = 1

l − 1 + 4
l−1∑
j=1

(dajmaxe − bajminc) if l > 1

�� ��3.6

3.3.2 EPG-vector Example

For this example we will only consider the positioning of the first four non-zero entries

of V 7
1 as these vectors can be of lengths greater than 1000. This corresponds to taking

the first EPG, A02 RD16-0003-07-p0-48-GF 01.hid, of Genotype 07 and determining the

vector position for the fluorescence recorded at the loci CSF1PO and D1S1656.

l al1 f l1 al2 f12 almax almin nl

1 11 23 12 351 13 7 25
2 16.3 41 17.3 643 20 8 49

Table 3.4: Data used to position and populate the first four non-zero entries in V 7
1 .

ali and f li have been taken from the EPG A02 RD16-0003-07-p0-48-GF 01.hid at the loci
CSF1PO and D1S1656. almax/min have been determined across all our data (see Appendix

A, Table A.1). nl have been calculated using equation
�� ��3.4 .

Using the data from Table 3.4 along with equation
�� ��3.5 we can assign f li to its appro-

priate position in V 7
1 . If we take l = 1 and i = 1 we find,

p11 = 4ba11 − a1minc+ 10(a11 − a1min − ba11 − a1minc) + 1

= 4b11− 7c+ 10(11− 7− b11− 7c) + 1

= 17

⇒ v17 = 23 = f11 , i.e the 17th element of V 7
1 is the fluorescence recorded at the first

allele detected at the locus CSF1PO. This process can be followed through to determine

v21 = 351 = f21 , v60 = 41 = f12 , v64 = 643 = f22 . A visualisation of this can be seen in

Fig. 3.9. These are high dimensional, sparsely non-zero vectors.
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Figure 3.9: Visual representation with commentary for the first 74 entries of V 7
1 .
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4
Distinguishing Single-Cell Electropherograms

We wish to determine if we can distinguish EPG-vectors by genotype using a similarity

measure. We would have reason to believe they can be clustered by genotype if such a

distinction can be made. By looking at the similarities across EPG-vectors using various

metrics, we find the similarity of EPGs from the same genotypes are distinguishable from

the similarity of those from distinct genotypes. Through an exploratory analysis via Prin-

cipal Component Analysis (PCA) and Uniform Manifold Approximation and Projection

(UMAP), we investigate if our single-cell EPG-vectors naturally fall into groups, that is

trying to determine if an analyst can optically anticipate how many groups are present in

an admixture. If this visualisation of our high dimensional vectors proves successful, one

is led to believe that an analyst-in-the-loop solution is a reasonable end solution to our

problem.

UMAP makes use of a distance metric to measure distances between our input data

points, a metric we will select from our similarity analysis. PCA does not require a

distance metric, however makes an assumption about the distribution of our input data.

As PCA is a method that fits a Gaussian hyper-ellipsoid to the data, it assumes that

the data is Normally distributed [112]. Although we will not be making use of such

a fit, we must still consider the distribution of our data if we wish to make effective

use of PCA as a visualisation tool. We will also consider non-similarity based methods

of clustering, methods that make kindred assumptions about the Gaussianity of input

data and so a study of the data distribution will prove useful for later solutions sought.

We find evidence that the log of data is reasonably Gaussian and subsequently that

PCA marginally outperforms UMAP as a visualisation tool for determining the potential

number of groups in a complex DNA mixture.
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4.1 Distinguishing Genotypes using Similarity Measures

A Euclidean distance is appropriate for data measured on the same scale, for which

magnitudes are comparable [92]. When we consider our data, it is quite likely that two

distinct vectors have high values yet originate from different contributors. If a Euclidean

distance is chosen, observations with high values will be clustered together and those

with low values will be clustered separately thus incorrectly grouping single-cells by their

magnitude rather than their genotype.

We want to identify clusters of single-cells with the same overall profiles irrespective of

their magnitudes as is often the case in gene expression data analysis [92] and so we need to

consider metrics which forgo magnitude altogether. Cosine similarity relates observations

by measuring the cosine of the angle between two non-zero vectors projected into a n-

dimensional space, thus ignoring any reliance on magnitude. Observed values may be far

apart in terms of a Euclidean distance but they may have a small angle between them

implying high similarity [52]. Vectors with the same orientation have a cosine similarity

of 1 while two vectors with a perpendicular orientation have a cosine similarity of 0.

We will establish a cosine metric based on this logic that equates to saying EPG-vectors

originating from the same genotype will lie close to 0 whereas EPG-vectors form different

genotypes will lie close to 1. This is a cosine dissimilarity measure such that the cosine

metric = 1− the cosine similarity.

We can deduce from Fig. 4.1 that a cosine metric is capable of distinguishing EPG-

vectors originating from one genotype to another. We have chosen three genotypes at

random and compared the distributions of the “Self-Self” pairwise distances between the

EPGs of a single genotype and “Self-Non-Self” pairwise distances between the EPGs of

two distinct genotypes. We see extreme overlap in distinguishing Self-Self from Self-Non-

Self when using a Euclidean distance, peaks lie relatively close to each other which is

likely to cause problems. Comparing this to the use of a cosine dissimilarity measure we

get peaks close to 0 in Self-Self and close to 1 for Self-Non-Self indicating that these are

distinguishable.
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Figure 4.1: Distribution of the similarity measure between 60 pairs of single-cell EPG-
vectors taken from the same genotype (Self-Self) or from distinct genotypes (Self-Non-
Self). A high-pass filter as descibed in section 3.2 was applied before EPG-vector selection.
We have used the Euclidean and the cosine metrics. We see much overlap in distinguishing
Self-Self from Self-Non-Self when using a Euclidean distance, peaks lie relatively close to
each other which is likely to cause problems. Comparing this to the use of a cosine
dissimilarity measure, we get peaks close to 0 in Self-Self and close to 1 for Self-Non-Self,
indicating that these are distinguishable.

4.2 Distribution of True Allele Peak Heights

Total EPG signal is dominated by true allele peak heights and so to determine which

distribution best describes our data, we will focus on true allele signal. We consider both

a Normal and a log-normal distribution. We compare these distributions on raw-signal

recorded in RFU and on normalised-signal. We have normalised our fluorescences as

follows:

fEPGk
i

Ik
,

�� ��4.1

where fEPGk
i are the fluorescences recorded for EPGk, i, k ∈ Z+ and Ik is the intensity

of EPGk, see equation
�� ��3.1 .

We have shown log transformed true allele peak heights and log transformed nor-

malised true allele peak heights are well described by the Normal distribution. The
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4.2. DISTRIBUTION OF TRUE ALLELE PEAK HEIGHTS

Normal distribution provides good statistical fit where we transform our response vari-

able (the signal) by taking the logarithm to the base 10 and find the best fit of the Normal

distribution as indicated by the green dotted line seen in Fig. 4.2. We observe that this

fit falls closely in line with our response variable, the red line, when compared to the best

fit Normal of our raw-signal data or normalised-signal data, the blue dashed line.
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Figure 4.2: The Empirical cumulative distribution of true allele signal recorded (red)
along with the best fit Normal to the signal (blue) and best fit Normal to the log10 of the
signal (green). The parameters of both best fit models were determined using recorded
true allele heights. The left plot is of the raw-signal while the right is of normalised-signal.
The x-axis is taken logarithm base 10.

We have separated true alleles into one of three classes; i) Homozygous Alleles; ii) Het-

erozygous Non-Adjacent Alleles (alleles with a difference strictly greater than one); and

iii) Heterozygous Adjacent Alleles (alleles with a difference of one). When considering al-

leles from class three, we have two sub-classes: Hetero-Adjacent Left and Hetero-Adjacent

Right. We refer to the left as the smaller allelic variant of the two true alleles and the

right as the larger allelic variant. In Fig. 4.3, we see the Normal distribution fitted to the

log10 of the signal continues to show superiority over the Normal distribution fitted to

the (untransformed) signal when we consider the distinct classes of true alleles present in

our data, furthering the belief that log transformed signal is well described by the Normal

distribution. As a result when using methods such as PCA or mclust, which assume that
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4.3. VISUALISATION OF HIGH DIMENSIONAL DATA

the data are normally distributed, we will take the logarithm base ten of our data (either

raw or normalised) as the input.
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Figure 4.3: The Empirical cumulative distribution of true allele signal recorded, break-
ing into the four classes of true alleles for a closer examination of our claim that for
normalised-signal a log-normal distribution best describes our data. Again, the x-axis is
taken logarithm base 10. The top row of plots is of the raw-signal and the bottom row of
plots is the corresponding normalised-signal.

4.3 Visualisation of High Dimensional Data

When working with high dimensional data one may wish to project it to look at it in

a low dimensional space and informative way. There are traditional methods, widely

used in genealogical and genome-wide association studies [85, 80, 37] including Principal

Component Analysis (PCA) [97], Independent Component Analysis (ICA) [84] and more

modern methods, particularly driven by single-cell RNA sequencing data [10, 71, 75],
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which has led to a range of methodologies such as Uniform Manifold Approximation and

Projection (UMAP) [78] and t-Distributed Stochastic Neighbour Embedding (t-SNE)

[113]. We have shown PCA and UMAP when projecting our data in a low dimensional

space, however a preliminary examination with ICA and t-SNE was also carried out. We

found when transformed, the data seems reasonably Gaussian resulting in ICA plots that

are very similar to the PCA and again t-SNE showed similar results to UMAP (data not

shown). As one would expect, given the logarithm of the data look Gaussian, PCA does

by far in a way, the best with the logarithm of both raw-signal and normalised-signal

but, quite interestingly it is evident that there is more information to be gleaned from

the PCA than the UMAP particularly for imbalanced mixtures. There is something to

be learned by applying the PCA dimensional reduction techniques on the raw data too as

it becomes apparent that the distance from the origin in a PCA plot is a good surrogate

for EPG intensity.

4.3.1 Principal Component Analysis (PCA)

Principal Component Analysis is one of the oldest and most widely used techniques for

interpretable dimensionality reduction of large datasets [86, 58, 50]. It is a method that

identifies a new basis (one that is orthogonal) on which to represent the original data.

The new coordinate system is determined sequentially such that the first dimension or

Principal Component (PC) describes the greatest variance in the data, the second PC is

computed with the constraints of being orthogonal to the first PC and describes the second

greatest variance in the data and so on. These new variables are found as uncorrelated

linear combinations of the original data set and so, to retain as much of the original

variance as possible. This reduces to either solving an eigenvalue/eigenvector problem or,

alternatively obtaining the Singular Value Decomposition (SVD) of the (centered) data

matrix [64].

Although PCA as a descriptive tool needs no distributional assumptions, for infer-

ential purposes PCA usually assumes the mean and variance are sufficient statistics to

entirely describe the probability distribution of the data and the only zero-mean prob-

ability distribution that is fully described by the variance is the Gaussian distribution

[112, 64]. PCA has a nice interpretation if the data is Gaussian; larger variance corre-

sponds directly to more variability. Seen in section 4.2, the log transform of our data is

reasonably Gaussian and so, any meaningful PCA analysis is going to take the data and

log transform it before use.

When considering the number of PCs returned, Jolliffe et. at. [64] gives a detailed

explanation of the underlying mathematical theory behind this choice, however, suffice to

say the number of PCs returned equates to the rank r of the original data matrix where
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in general, the rank of an m × n matrix is r ≤ min{m,n} (or r ≤ min{m − 1, n} for

column-centered matrices). Genomic data frequently presents datasets where there are

fewer individuals than variables hence, the number of individuals often dictates r in these

types of data. This is in part due to technological advances enabling the ease of observing

variables coupled with the high expense of repeating observations (i.e. in the context of

our work, it is costly to process a single-cell but once processed we can observe a great

many alleles).

By using a limited number of principal components each admixture can be represented

by relatively fewer variables instead of thousands. Admixtures can then be explored

graphically on a PCA plot of the individuals making it possible to visually assess similar-

ities and differences between observations within an admixture and determine which, if

any, individuals can be grouped [2]. Specifically, EPGs from the same genetic source will

have little variability in their detected alleles thus, we expect they will lie close together

when compared with EPGs from a distinct source.

Applying PCA

PCA was applied to our simulated admixtures using the R function prcomp [96], centering

but not scaling the data. We will focus our attention on an example admixture of three

sources (Genotypes 05, 06 and 07) in equal ratio to discuss the functionality of PCA and

prcomp. We found 60 principal components, called PC1−60. Note that we have obtained

a number of dimensions which corresponds to the number of observations (and not the

number of variables). This is due to the fact there is only 60 non-zero eigenvalues, hence 60

PCs accounts for the total variability of the admixture. Table 4.1 shows the importance

of our first 6 principal components. PC1 explains 41.86% of the total variance, which

means two-fifths of the information in these new variables can be described by just this

one principal component. PC2 explains 31.57% of the total variance and so with just

the first two principal components almost three-quarters of the overall variance has been

encapsulated.

PC1 PC2 PC3 PC4 PC5 PC6

Standard Deviation 0.04061 0.03527 0.01114 0.009593 0.008567 0.00843
Proportion of Variance 0.41855 0.31566 0.03150 0.023360 0.018620 0.01803
Cumulative Proportion 0.41855 0.73421 0.76571 0.789070 0.807690 0.82572

Table 4.1: Summary statistics of the first 6 principal components.

We have plotted the individuals using the first two principal components in Fig. 4.4

of this simulated admixture with Genotype 05 represented by circles, Genotype 06 repre-
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sented by triangles and Genotype 07 represented by squares. This plot has been coloured

by EPG intensity. Although somewhat indicated on this plot (mostly for Genotype 05),

if we plot the corresponding raw-signal PCA we see for certainty a correlation between

an EPGs intensity and its distance from the origin. We notice three “spokes” almost

stemming from the origin, with low intensity EPGs closest to the origin and as we move

away from the origin EPG intensity increases. Due to the three-spoke nature of this plot,

the analyst determines there are three genotypes contributing to this admixture.
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Figure 4.4: We have generated a PCA plot of the individuals for a three source admixture
using the log transformed signal. Circles indicate Genotype 05, triangles Genotype 06, and
squares Genotype 07. Individuals have been coloured by EPG intensity, Ik. We observe
a three spoke nature indicating the presence of three genotypes in this admixture.

We observe the PCA plots of both the log10(raw-signal) and log10(normalised-signal)

present distinguishable clusters, particularly when multiple major contributors are in-

volved in the admixture. As we can see in Fig. 4.5 when visualising an admixture with

a single minor contributor, the log10(normalised-signal) presents a more prominent sep-

aration between clusters, conversely, when visualising an admixture with a single major

contributor, all four genotypes are presented in clearly distinct clusters when plotting

log10(raw-signal), where as Genotype 05 and Genotype 07 lie a little too close for distinc-

tion when plotting log10(normalised-signal). However, we note this observation is just as

frequently seen in reverse. (See Appendix A, Fig. A.3 for examples of the converse). We

note that for admixtures of four or five contributors, it is equally likely that log10(raw-
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Figure 4.5: PCA Plots for simulated admixtures of 4 contributors in various mixture
ratios. Circles are Genotype 02, triangles are Genotype 05, squares are Genotype 06, and
crosses are Genotype 07. Individuals have been coloured by EPG intensity, Ik. The first
row of PCA plots have been generated using log transformed data. The second row of
PCA plots, representing the same admixtures as above, are resultant of data that has
undergone two transformation, first signal has been normalised, second the logarithm of
normalised-signal has been taken. Each column of plots corresponds to a type of mixture
ratio from equal contribution through to highly imbalanced. Four distinct groups can be
determined for each mixture ratio when using the log transformed data. When plotting
the PCA of the log transformed, normalised data for the highly imbalanced admixture
one may incorrectly infer the number of contributors.

signal) or log10(normalised-signal) will present a more appropriate visualisation and so,

it is our recommendation that the analyst should plot both and choose the larger number

of potential contributors.
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4.3.2 Uniform Manifold Approximation and Projection (UMAP)

One of the most recent techniques for both understanding and visualising large, high

dimensional datasets is Uniform Manifold Approximation and Projection (UMAP), pub-

lished in 2018 by McInnes et. al. [78]. In its simplest sense UMAP constructs a high

dimensional graph representation of the data, then it optimises a low dimensional graph

to be as structurally similar as possible [10]. UMAPs strong theoretical foundations al-

low the algorithm to strike a balance between emphasising local versus global structures.

UMAP has rapidly been adopted by the population genetics community thanks to its non-

linear neighbour graph-based dimensionality reduction. Among the many dissimilarities

between PCA and UMAP there are two that we would like to highlight: i) UMAP does

not make any assumption about the distribution of the data, so we need not transform our

data when using UMAP; and ii) UMAP does not have a straight forward interpretation

of distance once projected into a low-dimensional space, we gain no meaningful insight

into the distance between observations in the high dimensional space when observing the

distance between observations once projected. This second point is due to the fact that

the UMAP algorithm focuses on preserving neighbourhood topology rather than absolute

distance [33].

Applying UMAP

UMAP was applied to our simulated admixtures using the R package umap [69]. To first

discuss the basic functionality of UMAP we will visualise the same example admixture

seen in Fig. 4.4 using most of the default settings of UMAP. UMAP offers an array

of metrics in R and for consistency with our earlier observation on its suitability as a

measure of similarity of EPGs, we chose the cosine metric. UMAP has quite a few default

configuration parameters. For instance, the parameter n components determines how

many dimensions umap returns with a default of two. As we intend to project our data

into a two-dimensional space for visualisation ease, we will not alter the default option

but we will consider altering the more commonly used parameters, n neighbors and

min dist.

The number of approximate nearest neighbours used to construct the initial high

dimensional graph corresponds to the n neighbor parameter. In practice this parameter

effectively controls how umap balances local and global structures. Low values will push

more focus on the local structure while higher values will push the focus to the global

structure. The default for n neighbors is 15. The min dist parameter controls how

tightly umap “clumps” points together in the low dimensional graph with low values

yielding tightly packed clusters and high values, looser clusters [10] with a default of 0.1.

Fig. 4.6 is a plot of the observations, coloured by EPG intensity, in the new UMAP co-
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ordinate system which have been determined using a cosine metric and all other settings

remain as the default. This time instead of a spoke shape, we see three distinct and

tightly packed clusters but here the distance from the origin bears no significance to the

intensity of an EPG, nor can we infer anything about the distance from one cluster to

another.
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Figure 4.6: UMAP with default configuration settings and a cosine metric for a three
source admixture, coloured by EPG intensity, Ik. UMAP has been run on the raw-signal.

Reporting the visualisation of the admixtures in Fig. 4.5, but now using UMAP (this

time including the results when using raw-signal), we observe in Fig. 4.7 that UMAP

presents similar visual results, with only small variations in the plot orientation for all

data types (raw and transformed). This is largely due to the fact that UMAP makes no

assumption regarding the distribution of the data. We also see that for admixtures where

there is a single minor contributor, umap when used with default settings cannot separate

this genotype from a major contributor. Similarly, when considering admixtures with

a single major contributor, the analyst would not be able to identify any of the minor

contributors due to the excessively loose cluster of the major contributor. To improve the

use of UMAP as a visualisation tool we consider optimising the parameters, n neighbors

and min dist.

First we alter the n neighbors parameter, deciding to focus on smaller values as

our aim is to improve the local structure. We evaluate the effects of choosing 2, 3 or

4 neighbours for admixtures in equal ratio, multiple major and one minor contributors
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Figure 4.7: Corresponding UMAP plots for simulated admixtures in Fig. 4.5 of 4 con-
tributors in various mixture ratios. These plots have been generated using a cosine metric
and the default settings of n neighbors = 15 and min dist = 0.1. Circles are Genotype
02, triangles are Genotype 05, squares are Genotype 06 and crosses are Genotype 07.
Data types are grouped by each row of plots while mixture ratios are grouped by each
column of plots. As we can see there is no distinguishable improvement on the quality of
a UMAP plot when we plot raw-signal, the log of the signal or the log of the normalised-
signal. Only the orientation of the clusters has varied. We notice with the default settings,
UMAP performs sufficiently when in equal ratio but cannot identify a single or multiple
number of minor contributors when in the presence of major contributors.

and one major multiple minor contributors. Fig. 4.8 shows the results of varying this

parameter for a four person admixture. As we can see, two is too few and choosing

three or four results in rather similar plots. Choosing n neighbors = 3 (or 4) does not

eliminate all problems but when handling an admixture with one minor contributor, we

can now clearly identify all genotypes present. As a consequence however, when handling

admixtures in equal ratio the clusters are no longer as tightly packed. We will next aim

to empirically optimise the min dist parameter which may remedy this problem. For

admixtures with a single major and multiple minor contributors little improvement is

observed. We also note that for two and three person admixtures no optimal number of

neighbours could be found.
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Figure 4.8: UMAP plots of 4 contributors in various mixture ratios with a cosine metric
and the default setting min dist = 0.1 but varying n neighbors parameter from 2 − 4.
The plot rows indicate which n neighbors parameter has been used. Circles are Genotype
02, triangles are Genotype 05, squares are Genotype 06 and crosses are Genotype 07.
n neighbors = 3 and 4 present similar results. We see improved the visualisations of
admixtures containing a single minor contributor. For a highly imbalanced mixture there
is some improvement but one of the minor contributors is still completely masked by the
major contributor.

Altering the min dist parameter offers little remedy to the problem. To discuss the

effects we have included a four person admixture example, Fig. 4.9. We considered

decreasing the minimum distance close to zero (min dist = 0.00001) with the intention

of tightening the individual clusters when in equal ratio and highly imbalanced mixture

ratio. However, this instead resulted in a slight separation of Genotype 02 as seen in

the first plot of Fig. 4.9 and lessened the distinction between Genotype 05 and 07 in

the highly imbalanced mixture (two of the minor contributors are now almost completely

over-laid). We also considered increasing the minimum distance (min dist = 0.5) with

the intention of increasing the separation between the multiple minor contributors with no

success as seen in the last plot of Fig. 4.9. In fact, regardless of the min dist parameter,

for highly imbalanced mixtures (column 3) minor contributors are indistinguishable from
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one another or the major contributor. We conclude, for the resulting UMAP visualisations

to be as effective as our PCA plots, one would be required to modify potentially many

more of UMAPs parameters without the promise of success. Therefore, we terminate our

study of UMAP and regard PCA as the preferable of the two methods for visualising an

admixture with the intention of determining the number of contributors present in the

sample.
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Figure 4.9: UMAP plots of 4 contributors in various mixture ratios with a cosine metric
and n neighbors = 3 but varying the min dist parameter using 0.00001, 0.3, and 0.5.
The plot rows indicate which min dist parameter has been used. Circles are Genotype
02, triangles are Genotype 05, squares are Genotype 06 and crosses are Genotype 07.
An optimal min dist that satisfies all mixture ratios cannot be recommended as minor
contributors indistinguishable from one another when dealing with highly imbalanced
mixtures.
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5
Clustering Single-Cell Electropherograms

Satisfied that we can distinguish single-cell EPGs as seen in section 4.1, we now wish

to cluster these single-cell electropherograms. We first considered traditional clustering

methods that assume one has prior knowledge of how many groups/clusters they are

looking for which is equivalent to knowing the true NoC in advance. This requires a

two step process where first one must visualise the data with the aim of determining a

potential number of clusters, followed by using a similarity based clustering algorithm to

then do the clustering. Due to this first step we regard our traditional methods as the

“Analyst-in-the-loop” solution. We then wished to automate this process, considering

other methods that would simultaneously try to determine how many groups there are as

well as group by membership which we regarded as a “computerised-end-to-end” solution.

5.1 Experimental Design

The likely use for single-cell methods in DNA forensics is when complex or LTDNA

mixtures are anticipated. While not reported in this thesis, the Grgicak Lab. has made a

range of low-template and complex true admixtures. We have mimicked these to evaluate

the approaches considered in this thesis. We took real EPGs and simulated a range

of low-template admixtures from low-template balanced with an increasing number of

contributors through to highly imbalanced with an increasing number of contributors.

We simulate 11 types of admixtures (described in Table 5.1) as these are starting from

simple through to highly complex. For each admixture, the complexity grows in two ways;

one in the number of contributors and two in the imbalanced contribution ratio. For ad-

mixtures of three or more contributors we consider two types of imbalance, multiple major

contributors and a single minor contributor (imbalanced) or a single major contributor

and multiple minor contributors (highly imbalanced). We simulate 300 admixtures for

each of the 11 types where ground truth is always known. We then run all admixtures

through our respective clustering methods working strictly with our EPG-vectors.
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NoC Mixture Ratio Num. EPGs Shorthand

2 1:1 〈20, 20〉 N2R1
2 1:19 〈2, 37〉 N2R2
3 1:1:1 〈20, 20, 20〉 N3R1
3 1:9:10 〈2, 18, 20〉 N3R2
3 1:1:18 〈2, 2, 36〉 N3R3
4 1:1:1:1 〈20, 20, 20, 20〉 N4R1
4 1:6:6:7 〈3, 18, 18, 21〉 N4R2
4 1:1:1:17 〈2, 2, 2, 34〉 N4R3
5 1:1:1:1:1 〈20, 20, 20, 20, 20〉 N5R1
5 1:4:4:4:5 〈4, 16, 20, 20, 20〉 N5R2
5 1:1:1:1:16 〈2, 2, 2, 2, 32〉 N5R3

Table 5.1: Description of the 11 types of admixtures that have been simulated. When
reading the shorthand NX for X ∈ {2, 3, 4, 5} indicates the number of contributors found
in the mixture. RY , for Y ∈ {1, 2, 3} indicates the mixture ratio type. R1 = a bal-
anced admixture, R2 = an imbalanced admixture (multiple major and a single minor
contributor) and R3 = a highly imbalanced admixture (multiple minor, a single major
contributor).

5.2 Analyst-in-the-loop Clustering of Single-Cell EPGs

Cluster analysis is the formal study of methods and algorithms for grouping or clustering,

objects according to measured or perceived intrinsic characteristics or similarity [62].

Cluster analysis does not use categorical labels that tag objects with prior identifiers.

The lack of categorical information is what distinguishes data clustering (unsupervised

learning) from classification/discriminant analysis (supervised learning). Clustering has a

long and rich history in a variety of scientific fields as it aims to find structure in data. We

aim to cluster single-cell samples such that they are grouped according to their genotype.

K-means is one of the most popular and simple clustering algorithms, it was first pub-

lished over 50 years ago [76], and despite countless clustering algorithms being published

since, K-means is still widely used today. K-means clustering is a simple yet elegant

approach of partitioning a data set into k distinct, non-overlapping clusters. To perform

K-means clustering we must first specify the desired number of clusters k (Step 1) and

then employing the amap R package, the K-means (Kmeans) algorithm will assign each

observation, single-cell EPG-vectors in our case, to exactly one of the k clusters (Step 2).

K-means is an iterative algorithm which assigns data points to a cluster such that the

sum of squares distance between the data points and a centroid is at a minimum [62].

The less variation within a cluster, the more similar the data points are within the same

cluster. Traditionally this sum of square distance is established using a Euclidean distance
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but as we have seen in section 4.1 a Euclidean metric is inappropriate for distinguishing

EPGs from distinct genotypes. As a result, when employing K-means we will choose

to use a cosine similarity measure as we have previously determined this is an effective

metric in distinguishing EPGs.

Step 1: Determine K

To determine an appropriate tool for visualising our data, an analysis of dimensionality

reduction techniques was carried out in section 4.3, concluding in the use of PCA. Specif-

ically, we suggest that the analyst should establish a PCA plot of both log10(raw-signal)

and log10(normalised-signal) and choose the larger number of potential contributors as

their k value.

Step 2: K-means Clustering

The analyst runs K-means using the k chosen in step 1 and records the cluster assignment

of each EPG. The result of this clustering can be visualised on the same PCA plot as

before. Fig. 5.1 shows the clustering assignment of K-means when run on the raw-

signal (and normalised-signal for comparison) of the three simulated admixtures from

Fig. 4.5, in which the analyst observed four distinct clusters (i.e. k = 4). EPGs have

now been coloured by their cluster assignment, and as before the genotype is indicated

by shape. K-means has successfully grouped each EPG into their respective genotype for

the balanced four person mixture. In this example, when faced with the imbalanced and

highly imbalanced admixtures we see incorrect cluster assignment for both the raw and

normalised signal. For corresponding two, three and five person admixtures see Appendix

A, section A.5.

This particular example was selected to highlight the process of the analyst but it will

not always be the case that the analyst will correctly assign k. Often times when dealing

with admixtures where there are many contributors and/or major-minor contribution,

the choice of k can become obscure as highlighted in Fig. 5.2, a four person imbalanced

admixture. Distinct genotypes are indicated in Fig. 5.2 by the symbol shape as we

have prior knowledge of ground truth. Without the genotype being thus indicated it

is possible that an analyst could determine EPGs from Genotype 02 and Genotype 06

originate from the one genetic source as the minor contributor is completely masked by

the major contributor in this visualisation. Similarly it can be the case that there exist

a separation between EPGs originating from the same source, potentially leading to the

case of the analyst inferring the NoC to be greater than ground truth. To quantitatively

assess the impact of correct or incorrect NoC assignment, we perform an experiment where

simulated admixtures are created and the analyst either infers TrueNoC/TrueNoC±1.
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Figure 5.1: PCA plots coloured by K-means cluster assignment when choosing k = 4
for the simulated admixtures from Fig. 4.5. K-means was run on both raw-signal and
normalised-signal however, we have plotted the log10(raw-signal) and log10(normalised-
signal) as we have previously observed log transformed data is preferential for low dimen-
sional visualisation. K-means has correctly grouped EPGs by genotype for the balanced
admixture.
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Figure 5.2: PCA plots coloured by the K-means cluster assignment when choosing k = 3
and 4 on a simulated admixture of four sources in an imbalanced mixture ratio. The plot
has been generated using log10(raw-signal) while the K-means has been performed on
the raw-signal. In the visualisation of this simulated admixture, the minor contributor
(Genotype 02) is completely masked by one of the major contributors (Genotype 06)
hence the analyst may infer k = TrueNoC−1.
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5.3 Computerised-end-to-end Clustering of Single-Cell EPGs

We wish to consider the possibility of removing the analyst from the loop by investigating

other methods of clustering that will simultaneously determine the number of clusters

along with EPG cluster assignment. Finite mixture models have often been proposed

and studied in the context of clustering [34, 30, 122] with more recent applications of

such methodologies in the field of molecular biology, in particular, microarray and gene

expression data [124, 79, 83]. Model-based clustering, also known as Mixture Models

(MM), is a broad family of algorithms designed for modelling an unknown distribution as a

mixture of distributions. The probability distribution of observed data is approximated by

a statistical model and cluster analysis is performed by estimating the model parameters

from the data where the parameters define clusters of similar observations [81]. Yeung et.

al. [124] standardised the performance of model-based clustering on both synthetic and

real gene expression data showing a key advantage of suggesting the number of clusters

and an appropriate model when compared to leading heuristic clustering algorithms.

We adopt a model-based clustering method which considers the data as coming from a

distribution that is mixture of two or more Gaussian distributions, employing the R pack-

age mclust [100]. This is a popular R package for model-based clustering, classification,

and density estimation based on finite Gaussian mixture modelling. Each component k

is modeled by a Gaussian distribution, characterised by the mean vector, µk, the covari-

ance matrix, Σk, and an associated probability in the mixture (each observation has a

probability of belonging to each cluster). These parameters are estimated using the Ex-

pectation and Maximisation (EM) algorithm and each cluster k is centered at µk, with

increased density for points near the mean. The geometric features of each cluster, the

shape, volume, and orientation, are determined by Σk [3]. In addition, the mclust pack-

age provides functions for performing the EM algorithm to different Gaussian mixture

models, for simulating data as well as for visualising fitted models along with clustering,

classification and density estimation results [101].

5.3.1 Running Mclust

The Mclust function assumes that in each cluster k the data follows a Gaussian distribu-

tion and so we compare the performance of Mclust on log10(raw-signal) and log10(normalised-

signal) as the log transformation of our data is well described by the Normal distribu-

tion (see in section 4.2). Fig. 5.3 is a visual representation of the EPG cluster assign-

ment for the four person admixtures considered in Fig. 4.5. For corresponding two,

three, and five person admixtures see Appendix A, section A.6. In this example, we ob-

serve that Mclust has correctly clustered EPGs by distinct genotype for both log10(raw-

signal) and log10(normalised-signal) however, we will come to see that Mclust run on the
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log10(normalised-signal) consistently outperforms the alternatives.

●

●

●●
●
●●

●

●

●

●

●●

●

●

●

●●

●

●

−10

−5

0

5

−10 −5 0 5 10
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

Equal Contribution

●

●
●●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

−10

−5

0

5

10

−10 −5 0 5
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

3 Major, 1 Minor Contributors 

●
●

−10

−5

0

5

−10 −5 0 5
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

1 Major, 3 Minor Contributors 

lo
g 1

0 (
R

aw
−

S
ig

na
l)

●
● ●●● ●●

●

● ●
●

●
●

●●●
●●

●
●

−0.03

0.00

0.03

0.06

−0.050−0.025 0.000 0.025 0.050
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

●
● ●●●

● ●

●
● ●

●● ●
● ●

●
●

●

●

●
●

−0.04

−0.02

0.00

0.02

0.04

−0.06 −0.03 0.00 0.03
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

●

●

−0.025

0.000

0.025

0.050

−0.06 −0.03 0.00
PC−1

P
C

−2

mclust 
cluster
●

●

●

●

1
2
3
4

lo
g 1

0 (
N

or
m

al
is

ed
−

S
ig

na
l)

Figure 5.3: PCA plots coloured by the Mclust classification of EPGs for the simulated
admixtures from Fig. 4.5. Circles are Genotype 02, triangles are Genotype 05, squares
are Genotype 06, and crosses are Genotype 07. Mclust has correctly clustered EPGs by
distinct genotype for both log10(raw-signal) and log10(normalised-signal) for all types of
admixture.

To generate the results presented above in Fig. 5.3, we only provide the data to

Mclust. Then, the optimal model is selected based in the Bayesian Information Criterion

(BIC). Initially, many finite Gaussian mixture models are fitted with different numbers

of clusters and covariance structures, from the simplest compound symmetric structure

of the EII model, through to the complex unstructerd VVV model (A full description of

models fitted can be found in Table 3 of [101]) and then, all models fitted are compared via

BIC [101]. Hence, the final model is which has the optimal BIC given a specific number

of clusters and covariance structure. Further, the idea of using BIC to select the best

model is to balance the number of clusters and the increase in the log-likelihood function

due to the addition of more components in the model. A plot of the BIC traces (see

Fig. 5.4 for the twice transformed signal model selection plot) for all models considered is

then obtained. There is a clear indication of a four-component mixture with covariances

having spherical distributions and unequal shape and volume (VII). The VII and EII
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(spherical distribution with equal shape and volume) are most prevalent selections across

all admixtures seen in Table 5.1
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Figure 5.4: BIC plot for the model fitted to the log10(normalised-signal) for the four
person admixture in equal contribution observed in Fig. 5.3. This plot shows both,
the optimal number of clusters and which model has been selected. The VII model
was selected. This is a Gaussian mixture model, which assumes a multivariate Normal
distribution for each cluster, that has clusters with spherical shape and varying volume
(see Table 3 and Fig. 2 of [101] for more details).

5.4 Results

When clustering, we encounter incorrect groupings and we first consider the source of

error. We determine two causes, mis-clustering and over-clustering which are responsible

for incorrect EPG classification. We then analyse the results of the analyst-in-the-loop

clustering when we have conditionally assigned the correct number of groups and compare

this with the computerised-end-to-end clustering of EPGs.

5.4.1 Source of Incorrect Grouping

When analysing our results for either K-means or Mclust, we must first define the types

of errors we encounter. We observe two types of error:

(1) mis-clustering

(2) over-clustering
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These are not orthogonal results both can, and do, occur in a clustering event.

Mis-clustering

We define mis-clustering as an incident were two or more distinct genotypes are found

in one cluster (Fig. 5.5). We consider an incident of mis-clustering with greater concern

as this can lead to an incorrect description of a genotype. If EPGs from two (or more)

distinct genotypes are clustered together, this may lead to mistaken genetic identification

in a downstream pipeline.

Figure 5.5: An example of mis-clustering. Shape corresponds to the genotype and the
colour corresponds to the cluster assignment. (A) is the correct cluster assignment for
each genotype. For the same collection of EPGs, (B) shows an example of mis-clustering.
Squares and some circles have been grouped in one cluster, the red cluster.

Over-clustering

We define over-clustering as an incident where a single genotype has been grouped into two

or more distinct clusters (Fig. 5.6). As an error we believe it will not have as significant

an impact as mis-clustering in downstream interpretaion. At most, when there has been

no mis-clustering, over-clustering will imply the presence of too many contributors.

We would like to note when interpreting incidents of over-clustering there is some

overlap with incidents of mis-clustering. More precisely, should the example in Fig. 5.5

occur, this will also be recorded as an event of over-clustering since the genotype indicated

by circles now appears in more than one distinct cluster. Both mis-clustering and true

over-clustering (such as the case in Fig. 5.6) can occur in a single event and so we cannot

separate simply the recordings of such incidents. We ask the reader to be mindful of this

and be aware when interpreting results, if we see a high volume of mis-clustering, we will

see similar or higher results for over-clustering. However, should we see a low volume of
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Figure 5.6: An example of over-clustering. Shape corresponds to the genotype and the
colour corresponds to the cluster assignment. (A) is the correct cluster assignment for
each genotype. For the same collection of EPGs, (B) shows an example of over-clustering.
Triangles have been split into two distinct clusters, now the red and orange clusters.

mis-clustering but a high volume of over-clustering, then we can be assured the majority

of this over-clustering is due to incidents of true over-clustering.

5.4.2 K-means Results

When performing K-means clustering we considered the situation where an analyst assigns

the TrueNoC, TrueNoC−1 or TrueNoC+1. If the analyst has underestimated how many

groups there are (TrueNoC−1), then it necessarily results in mis-clustering. If the analyst

over estimates how many groups there are (TrueNoC+1), it does reduce the amount of

mis-clustering that occurs but unsurprisingly the frequency of over-clustering undoubtedly

increases. For this reason we have focused our attention on results where the analyst has

correctly determined how many groups there are.

We have compared the results of running Kmeans on raw-signal and normalised-signal

(see Table 5.2). Complexity can increase in one of two ways, the number of contribu-

tors increases or the mixture becomes more imbalance. K-means performs exceptionally

well when faced with two person admixtures of equal contribution with a 98% success

rate. However, the performance decrease acutely with every increase of complexity but

most notably when faced with admixtures comprised of one major and multiple minor

contributors, K-means correctly groups EPGs by genotype less than 15% of the time.

We consider which, if either error is most prevalent, see Table 5.4 and Table 5.3. We

observe frequent mis-clustering, increasingly so with increasing complexity. When faced

with admixtures of four or less contributors in equal mixture ratio, more than half of the

time kmeans can successfully group EPGs by genotype, yet when faced with admixtures

of five contributors in any mixture ratio, kmeans miss-clusters more than 60% of the time.
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We have included two examples of the post analyst-in-the-loop processing. The first

one is a balanced two person admixture that was successfully grouped by genotype and

the second, a highly imbalanced five person admixture that includes an incident of mis-

clustering. Fig. 5.7 is a plot of all EPGs involved in the first example over-laid. We

have coloured EPGs by their cluster assignment which manifests the presence of two

genotypes but without any colouring the interpretaion of such an EPG plot would be

highly similar to that of a bulk processed sample. For a closer examination we can plot

the over-laid EPGs of each individual cluster and have done so in Fig. 5.8 and Fig. 5.9.

By experimental design, ground truth is always known so we have included this in our

plots, indicated by the black vertical bars yet, even without these the analyst could almost

read of the genotype of each cluster directly.

Fig. 5.10 is a plot of all EPGs involved in the the second example over-laid and again

coloured by cluster assignment. One could almost certainly infer something about the

genotype of the major contributor, however, interpretation regarding the minor contribu-

tors from this plot alone is challenging. By plotting the over-laid EPGs of the individual

clusters, it becomes suspect that EPGs have been incorrectly grouped in cluster 1, Fig.

5.11 where we have identified genotype by shape and EPG by colour. We can see that

cluster 1 is in fact an incident of mis-clustering as the EPGs of two minor contributors

have been grouped together.
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Table 5.2: The percentage of Kmeans runs where no mis-clustering or over-clustering
has occurred for raw and normalised signal with a 95% binomial confidence interval. In
general, raw-signal outperforms normalised-signal. A full description of the admixtures
can be found in Table 5.1.
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Table 5.3: The percentage of Kmeans runs where mis-clustering has occurred for raw and
normalised signal with a 95% binomial confidence interval. We note that mis-clustering
and over-clustering are not orthogonal events, both can occur in an individual run. We
observe mis-clustering is the preponderant issue when clustering via K-means. A full
description of the admixtures can be found in Table 5.1.
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Table 5.4: The percentage of Kmeans runs where over-clustering has occurred for raw and
normalised signal with a 95% binomial confidence interval. We note that mis-clustering
and over-clustering are not orthogonal events, both can occur in an individual run. A full
description of the admixtures can be found in Table 5.1.
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Figure 5.7: Plot of all EPGs present in a balanced admixture of two contributors (Geno-
type 01 and Genotype 05). EPGs have been coloured by their K-means cluster assignment.
This is an example of a correct clustering result. Without colouring EPGs, interpretaion
of such a plot would be similar to that of bulk processed sample but with colouring we
can see an indication of two genotypes present.
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5.4. RESULTS
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Figure 5.8: Plot of all EPGs assigned to cluster 1. As ground truth is known we have
included the known genotype, indicated by the black vertical bars. By plotting cluster 1
on its own we can visually confirm that K-means has correctly assigned all EPGs from
this genotype (Genotype 01) to a distinct cluster. One could almost read the genotype of
this cluster directly from the plot without including ground truth.
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Figure 5.9: Plot of all EPGs assigned to cluster 2. As ground truth is known we have
included the known genotype, indicated by the black vertical bars. Similarly, by plotting
cluster 2 on its own we can visually confirm that K-means has correctly assigned all
EPGs from this genotype (Genotype 05) to a distinct cluster. One could almost read the
genotype of this cluster directly from the plot without including ground truth.
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Figure 5.10: Plot of all EPGs present in a highly imbalanced admixture of five contribu-
tors. EPGs have been coloured by their K-means cluster assignment. This is an example
where frequent mis-clustering occurred. With colouring, we can infer something about
the major contributor, but little about the minor contributors.
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Figure 5.11: Plot of all EPGs assigned to cluster 1. As ground truth is known we can
identify EPGs from different genetic sources as indicated by the shape. In this example,
the EPGs from two minor contributors have been grouped together. One could not
attempt to correctly read off the genotype if ground truth was unknown.
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5.4.3 Mclust Results

We have compared the performance of Mclust when using log10(raw-signal) and log10(normalised-

signal), see Table 5.5. Using Mclust on the twice transformed data consistently outper-

forms the use of log transformed data. When we consider “perfect” results (i.e no mis-

clustering or over-clustering has occurred) Mclust out performs K-means when clustering

all but a two person balanced admixture. In fact, it is this admixture that performs

the poorest when using Mclust, with just over a 50% perfect-clustering rate. Similar to

K-means, we see a decrease in perfect clustering as we increase complexity however, this

decrease in performance is minimal in comparison, with the exception of a three person

imbalanced mixture out performing a three person balanced mixture by 3.33%. We note

the exceptional improvement of our computerised end-to-end solution over our analyst-

in-the-loop solution when grouping the most complex mixture ratio, a five person highly

imbalance mixture, where Mclust successfully assigns EPGs to their distinct genotype

almost five times more frequently than kmeans.

As we have stated mis-clustering is the more severe error and so we consider the

frequency of mis-clustering compared with the frequency of over-clustering when applying

mclust (see Tables 5.6, 5.7 respectively). We discover that over-clustering occurs far more

frequently than mis-clustering, noting that although Mclust appears to under-perform

when faced with balanced two person mixtures, there is infrequent mis-clustering when

using the log transformed data (< 5%) and none when using the twice transformed data.

Moreover, when compared to kmeans, we are seeing a vast improvement on the rate of mis-

clustering, only when faced with highly imbalanced mixtures do we see the mis-clustering

rate exceed 5%.

To consider the severity of over-clustering, we examine how frequent Mclust finds X

number of clusters for each mixture type, see Fig. 5.12. For highly imbalanced mixtures,

when fewer clusters have been determined than there are contributors in the admixture

this is necessarily due to mis-clustering. When we observe over-clustering, Mclust most

frequently separates at most one genotype into two distinct clusters returning TrueNoC+1

groupings. For mixtures of three or more genotypes, Mclust determines the correct NoC

more than 75% of the time, with the exception of a five person highly imbalanced mixtures,

which falls just short of this. Balanced mixtures of two contributors experience the most

regular over-clustering and about an 1/8 of the time, both genotypes are being separated

into two distinct clusters resulting in TrueNoC+2 groupings.

We have included two examples of the computerised end-to-end clustering results,

first a highly imbalanced five person admixture where EPGs have been correctly grouped

by genotype followed by an balanced two person admixture where an incident of over-

clustering has occurred. By plotting all EPGs over laid and colouring by their cluster
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assignment, the genotype of the major contributors is apparent in Fig. 5.13. However,

to make observations regarding the minor contributors, all clusters must be plotted in-

dividually, so we have plotted one such cluster, Fig. 5.14. By plotting the superposition

of these two EPGs we are gaining coverage of the dropped alleles resulting in a more

complete image of the true genotype as indicated by the black vertical bars.

Our second example considers the case of over-clustering, two sources in equal con-

tribution have been assigned to three distinct clusters in Fig. 5.15. This time instead

of plotting each cluster individually, we have plotted the superposition of clusters one

and two as we can see much overlap in signal of EPGs assigned to these clusters. By

over laying all EPGs from cluster one and two, as shown in Fig. 5.16, we see an almost

perfect alignment of all EPGs and the true genotype with the exception of the noisy locus

D2S442. Such a plot indicates that over-clustering has occurred and that these EPGs do

in fact originate from the one genetic source.
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Table 5.5: The percentage of Mclust runs where no mis-clustering or over-clustering has
occurred with a 95% binomial confidence interval using the log transformed signal and
the twice transformed signal where in, first signal is normalised, second the logarithm is
taken. A full description of the admixtures can be found in Table 5.1.
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Table 5.6: The percentage of Mclust runs where mis-clustering has occurred with a 95%
binomial confidence interval using the log transformed signal and the twice transformed
signal where in, first signal is normalised, second the logarithm is taken. We note over-
clustering and mis-clustering are not orthogonal events, both can occur in an individual
run. A full description of the admixtures can be found in Table 5.1.
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Table 5.7: The percentage of Mclust runs where over clustering has occurred with a 95%
binomial confidence interval using the log transformed signal and the twice transformed
signal where in, first signal is normalised, second the logarithm is taken. We note over-
clustering and mis-clustering are not orthogonal events, both can occur in an individual
run. We observe over-clustering as the preponderant issue when clustering via Mclust.
A full description of the admixtures can be found in Table 5.1.
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Figure 5.12: A study of the degree of over-clustering for twice transformed data. Here
each row corresponds to the number of contributors while the columns correspond to the
mixture ratio. When considering the highly imbalanced results we would like to highlight
when fewer cluster than contributors have been observed this is necessarily due to mis-
clustering. When we are seeing over-clustering, Mclust most frequently separates at most
one genotype resulting in one extra cluster. Error-bars were determined using a binomial
confidence interval.
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Figure 5.13: Plot of all EPGs present in a highly imbalanced admixture of five contribu-
tors. EPGs have been coloured by their Mclust cluster assignment. This is an example of
a correct clustering result. Without colouring EPGs, interpretaion of such a plot would be
similar to that of bulk processed sample but with colouring we can see a clear indication
of major contributors genotype. To see any indication of the minor contributors we must
plot the individual clusters.
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Figure 5.14: Plot of all EPGs assigned to cluster 1. As ground truth is known we
have included the known genotype, indicated by the black vertical bars. By plotting
cluster 1 on its own we can visually confirm that Mclust has correctly assigned all EPGs
from this genotype (Genotype 01) to a distinct cluster. For this example we have used
colour to indicate which results come from which EPG. By doing so we can emphasise
that regardless of drop-out (see loci D2S1338 and D19S433) a complete profile can be
obtained from just these two correctly grouped EPGs.
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Figure 5.15: Plot of all EPGs present in a balanced admixture of two contributors. EPGs
have been coloured by their Mclust cluster assignment. This is an example where one
genotype has been over-clustered, Genotype 01 has been split into two distinct clusters,
group 1 and group 2.
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Figure 5.16: Plot of all EPGs assigned to cluster 1 and 2 over-laid. Aside from the
particularly noisy locus D2S441, even without ground truth indicated, one could visually
determine these two clusters originate from the same genetic source, as EPGs from both
clusters stack almost seamlessly together.
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6
Conclusion

6.1 Discussion and Future Work

The assessment of single-cell EPGs offers the potential to solve the complex mixture

problem, but in order to make it practically reasonable, advances are needed in the

analytical pipeline. Here we make a step in that direction by demonstrating that after

single-cell EPGs have been created, unsupervised machine learning is capable of grouping

them with reasonable accuracy by genotype for assessment, once in a vectorised format

rather than the per locus EPG. If clustering is correct, we can reduce the computational

strain of the likelihood ratio to the case of a single contributor, thereby removing the

added complexity of multiple contributors in an unknown mixture ratio for both the

prosecution and the defenses calculation thus allowing for a straightforward calculation

by the prosecution. The probabilistic software CEESIt [104] is a fully continuous method

that currently calculates the LR (among other statistics) of a bulk processed sample,

which is undergoing developments that will further its usability (or establish a sister

software) by enabling a similar calculation when instead faced with a collection of single-

cell EPGs. We believe the proposed grouping of single-cell EPGs will be well suited for

the downstream computations of such a software.

Even though we did not set out to call a genotype, and ultimately one would take

the fluorescence measurements of all the EPGs in a given group followed by a detailed

LR computation, one could consider using the cluster results to effectively do a binary

interpretation, simple allele calling. If the analyst were to do this, they would do so based

on the centroid of a K-means cluster or mean and variance of an Mclust grouping. We

do not claim this as an proxy solution to the LR computation, instead accentuating the

extensive information that can be gleamed from these cluster results. However, visual

inspection of cluster contents, similar to those seen in Fig. 5.8 and Fig. 5.14, suggests

the viability of this approach.

Based on this initial study, the primary failure mode of the analyst-in-the-loop solution
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appears to be mis-clustering (i.e. EPGs from more than one genotype have been assigned

to one cluster) by the Kmeans function. When mis-clustering does occur spiking a cluster,

particularly in the case of a minor contributor spiking the grouping of a major contributor,

may still lead the cluster to give accurate inferences with possibly lower the LRs. By

plotting the over laid EPGs of such a cluster it is sometimes evident that this grouping

cannot be explained by a single genotype and so other possibilities suggest themselves.

One could further investigate a possible mis-clustering by re-applying one of the solutions

put forward in this work (example follows), or perhaps consider determining the NoC

using the traditional Maximum Allele Count (MAC) method or a program such as a

single-cell counterpart to NOCIt [105].

Under the assumption that the analyst has identified a grouping in which mis-clustering

has occurred, they may wish to repeat either clustering process, that is plot the PCA of the

suspect cluster, determine how many groupings should be assigned and run K-means or

feed this new grouping through Mclust. Taking the example of one of the miss-clustered

groupings from a five person highly imbalanced admixture (see Fig. 5.11, section 5.4.2)

we have considered one such manual intervention. We have plotted the PCA of the log

transformed signal, coloured by the second round K-means cluster assignment, which

was run on the raw signal. We chose k = 2, which is the TrueNoC, and k = 3 due to

the configuration of the PCA, Fig. 6.1. When k = 2, K-means correctly assigned both

sets of EPGs to their genotype in this second run, however, it is unlikely the analyst

would have determined k = 2 due to the vast separation between the EPGs of Genotype

01 but surprisingly, when using k= 3 the algorithm over-clustered Genotype 05 instead.

For comparison we have taken the same incorrect grouping, twice transformed the signal

and fed this new grouping into Mclust. Again we see over-clustering this time splitting

Genotype 01 into two distinct clusters.

Alternatively, the analyst could consider forensic relevant techniques applied to the

true signal to debate the number of contributors present such as the binary maximum

allele count evaluation (see section 1.3.3 for more detail). We have taken the same miss-

clustered example as above and plotted the over-laid signal of all four EPGs (indicated by

colour) along with a DT set at 30RFU in Fig. 6.2. The locus D8S1179 has the greatest

number of peaks above this DT, with all six peaks greater than 30RFU and so by MAC

we can certainly confirm there is more than one contributor within this grouping. This

has been presented as a suggestive example but with a further study one could determine

a more appropriate DT and subsequently use MAC to determine if there is in fact two

contributors within this grouping as MAC has been shown to be effective for mixtures of

three or less contributors [32].

Another avenue one could pursue is the use additional computational methods that

infer the number of contributors of a DNA sample such as NOCIt [105]. NOCIt is an
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Figure 6.1: One may wish to repeat either clustering process on a grouping they believe
to contain more than one distinct genotype. We have taken the miss-clustered example
from Fig. 5.11, re-run K-means assuming k = 2 on the raw signal and plotted the PCA
using the log transformed signal of these four EPGs coloured by cluster assignment. We
note that the analyst may not have inferred k correctly from this PCA plot considering
the large separation between the two EPGs from Genotype 01 and so we have included
the result of re-running the analyst-in-the-loop solution with k = 3 which unexpectedly
resulted in an over-clustering of Genotype 05. We have also re-run Mclust on the twice
transformed signal for comparison and this has also resulted in an over-clustering, however
here, as expected Genotype 01 has been split into two distinct groups.

algorithm that calculates the a posteriori probability (APP) on the number of contributors

given an EPG, taking into account signal peak heights, population allele frequencies, allele

drop-out and stutter [105, 53]. Although originally designed for bulk processed samples,

it would not be challenging for future versions of NOCIt (or alternate software) to instead

handle a grouping of single-cell EPGs in a similar manner. Notably, NOCIt can determine

with high accuracy if a sample contains one or two contributors, becoming less confident

as the number of contributors increases [53]. In this way, when faced with a grouping

believed to contain more than one distinct genotypes, a program similar to NOCIt could

offer confident clarity on the matter. By applying such a software to a suspect grouping,

the analyst at minimum could confidently determine if a mis-clustering has occurred or

not.

In contrast to the preponderant source of error when implementing our analyst-in-

the-loop solution, the computerised-end-to-end solution seems to experience a far greater

level of over-clustering (i.e. EPGs from one distinct genotype have been grouped into two

or more clusters) resulting in an over estimation of the number of contributors. Once

satisfied that each grouping contains at most one genotype, done so by applying one of

the possible methods suggested above or otherwise, a resolution to over-clustering could
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Figure 6.2: One may wish to confirm the presence of additional genotypes within a
grouping they suspect to be the result of mis-clustering using maximum allele count. We
have taken the miss-clustered example from Fig. 5.11, plotted the over laid peak heights
of detected signal for the four EPGs found in this grouping. Signal has been coloured
by EPG and an analytical threshold of 30RFU is indicated by the horizontal red dashed
line. By employing the MAC method (see section 1.3.3) for each locus we see at most,
four substantial peaks indicating the presence of more than one genotype.

be determined by employing pairwise choosing of the groupings coupled with a similar

aforementioned technique to determine a cluster as a single contributor grouping. If we

consider the example of over-clustering in Fig. 5.15, a balanced two person mixture

consisting of 40 EPGs was fragmented into three distinct clusters, where cluster 1 and

2 contained EPGs from Genotype 01 and cluster 3 contained EPGs from Genotype 05.

If the analyst were to join cluster 1 with cluster 2 and apply either the MAC technique

or a single-cell NOCIt program to this new grouping, they could determine with high

accuracy that this new grouping is in fact described by a distinct genotype. Without our
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proposed grouping methodology, one could consider the pairwise combinations of each

EPG, resulting in 40C2 = 780 possible combinations, but by considering the groupings as

opposed to distinct EPGs, the number of pairwise combinations is reduced drastically to
3C2 = 3. In reality the number of possible combinations can be reduced even further as

this process can be done sequentially, that is each time a pair of clusters is amalgamated,

the number of groups is instantly reduced.

To validate the clustering performance against ground truth it was necessary to remove

low quality EPGs, whether they came about because the cells were degraded or because

further optimisation of the extraction and amplification chemistry might lead to improved

signal quality is unknown but work is ongoing. Areas for future work involve testing on

EPGs that have been generated using the extraction methods suggested by Sheth et. al.

[102] for epithelial cells, evaluating the cluster performance when faced with low quality

and/or degraded EPGs. We would also like to extend the study to include the grouping

of single-cell EPGs generated from blood, another common sample type found at crime

scenes and sex cells, such as sperm which only contain half the genome. As a result, even

if high quality EPGs can be made, there are issues of imputation in the case of sex related

crimes.

6.2 Conclusion

We have shown that single-cell EPG-vectors are distinguishable from distinct genetic

sources when using a cosine dissimilarity measure and subsequently can be clustered by

employing one of two solutions, an analyst-in-the-loop solution or the highly effective

computerised-end-to-end solution. We can visually infer the NoC of a balanced mixture

with high accuracy, an imbalanced mixture with moderately high accuracy, and a highly

imbalanced mixture with accuracy (less so for the case of five contributors) by applying

PCA to the log transform of our high dimensional EPG-vectors and plotting the first

two principal components. Alternatively, we could use a more modern technique such as

UMAP which works well on balanced mixtures, but less impressively on imbalanced or

highly imbalanced admixtures. Informally the author of umap is apparently aware the

performance of his function is not well suited to small data sets, and mixtures of these

types that we have simulated in general contain between 40 and 80 EPGs.

The computerised-end-to-end solution has shown to perform exceedingly well on log

transformed signal that has first been normalised, particularly when compared to the

capabilities of the analyst-in-the-loop solution for complex mixtures. Although occasional

mis-clustering (where EPGs from two or more contributors have been grouped together),

and frequent over-clustering (where a single genotype has been grouped into two distinct

clusters) is observed, we believe this issue will be highly manageable in downstream
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interpretation, as the clustering can be refined by returning to the consideration of the

forensic information contained in the single-cell EPGs. There is good reason to hope that

single-cell EPG technologies can be made practical in future crime scene investigation.
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A
Appendix A

A.1 Potential Allele Information Per Locus

Locus - l Set of Potential Alleles - Bl Cardinality - |Bl|

CSF1P0 B1 = {7.0, 7.1, 7.2, 7.3, 8.0, ...12.3, 13.0} 24
D1S1656 B2 = {8.0, 8.1, 8.2, 8.3, 9.0, ...19.3.20.0} 48
D2S1338 B3 = {11.0, 11.1, 11.2, 11.3, 12.0, ...25.3, 26.0} 60
D2S441 B4 = {5.0, 5.1, 5.2, 5.3, 6.0, ...16.3, 17.0} 48
D3S1358 B5 = {1.0, 1.1, 1.2, 1.3, 2.0, ...18.3, 19.0} 72
D5S818 B6 = {7.0, 7.1, 7.2, 7.3, 8.0, ...15.3, 16.0} 36
D7S820 B7 = {6.0, 6.1, 6.2, 6.3, 7.0, ...12.3, 13.0} 28
D8S1179 B8 = {4.0, 4.1, 4.2, 4.3, 5.0, ...18.3, 19.0} 60
D10S1248 B9 = {3.0, 3.1, 3.2, 3.3, 4.0, ...18.3, 19.0} 64
D12S391 B10 = {14.0, 14.1, 14.2, 14.3, 15.0, ...26.3, 27.0} 52
D13S317 B11 = {7.0, 7.1, 7.2, 7.3, 8.0, ...14.3, 15.0} 32
D16S539 B12 = {8.0, 8.1, 8.2, 8.3, 9.0, ...14.3, 15.0} 28
D18S51 B13 = {9.0, 9.1, 9.2, 9.3, 10.0, ...17.3, 18.0} 36
D19S433 B14 = {6.0, 6.1, 6.2, 6.3, 7.0, ...18.3, 19.0} 52
D21S11 B15 = {24.0, 24.1, 24.2, 24.3, 25.0, ...37.3, 38.0} 56
D22S1045 B16 = {1.0, 1.1, 1.2, 1.3, 2.0, ...17.3, 18.0} 68
FGA B17 = {16.0, 16.1, 16.2, 16.3, 17.0, ...44.3, 45.0} 116
SE33 B18 = {12.0, 12.1, 12.2, 12.3, 13.0, ...34.3, 35.0} 92
TH01 B19 = {5.0, 5.1, 5.2, 5.3, 6.0, ...9.3, 10.0} 20
TPOX B20 = {6.0, 6.1, 6.2, 6.3, 7.0, ...20.3, 21.0} 60
vWA B21 = {13.0, 13.1, 13.2, 13.3, 14.0, ...22.3, 23.0} 40

Table A.1: Set of potential alleles for each locus determined empirically from the (unfil-
tered) data along with the set cardinality.
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A.2. GROUND TRUTH FOR ALL GENOTYPES

A.2 Ground Truth for All Genotypes

Locus Geno 01 Geno 02 Geno 05 Geno 06 Geno 07

CSF1P0 11, 12 10, 10 11, 12 11, 13 11, 12
D1S1656 11, 11 15, 16 12, 18 15, 15 12, 17.3
D2S1338 18, 19 17, 23 17, 19 20, 23 19, 26
D2S441 11.3, 14 11, 14 13, 14 14, 14 11, 14
D3S1358 17, 17 16, 17 15, 17 15, 17 17, 17
D5S818 11, 12 10, 11 12, 12 8, 12 12, 13
D7S820 11, 12 7, 11 10, 12 8, 12 10, 12
D8S1179 11, 15 14, 14 15, 16 14, 15 13, 14
D10S1248 13, 16 13, 14 15, 15 14, 16 13, 17
D12S391 19, 22 23, 25 18, 23 15, 24 19, 25
D13S317 8, 13 11, 14 10, 12 12, 14 9, 12
D16S539 9, 12 10, 12 9, 12 9, 12 11, 14
D18S51 12, 13 14, 14 16, 17 14, 18 13, 15
D19S433 13, 15.2 14, 15.2 14, 14 13, 15 13.2, 15
D21S11 28, 30 29, 29 30, 30 28, 30 28, 32.2
D22S1045 11, 11 15, 16 11, 15 16, 16 16, 17
FGA 21, 23 20, 24 20, 23 23, 23 21, 22
SE33 22, 31.2 19, 19 20, 25.2 19, 26.2 16, 27.2
TH01 6, 6 8, 9.3 6, 9.3 6, 9.3 7, 9.3
TPOX 8, 9 8, 11 8, 10 8, 11 8, 10
vWA 16, 17 15, 19 17, 19 16, 17 17, 18

Table A.2: Ground truth for each genotype present in our study.
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A.3. DROP-OUT RECORDINGS

A.3 Drop-Out Recordings

We have undertaken a preliminary empirical study of drop-out rates by means of a binary

approach. An allele is counted if it exceeds a standard Analytical Threshold (AT) of

30RFU. When studying homozygote loci, we only consider the case of total allele drop-

out and if signal is detected above the AT we count this as one true allele has been

recovered. We examine these data specific drop-out rates for both the unfiltered and

filtered data.

A.3.1 Drop-Out Pre-Filtering

Locus Geno 01 Geno 02 Geno 05 Geno 06 Geno 07
Average
per locus

CSF1P0 29% 62% 59% 49% 50%
D1S1656 17% 54% 37% 36%
D2S1338 34% 33% 69% 61% 62% 52%
D2S441 15% 13% 45% 28% 25%
D3S1358 15% 47% 46% 36%
D5S818 16% 16% 45% 31% 27%
D7S820 51% 28% 76% 59% 67% 56%
D8S1179 19% 48% 38% 31% 34%
D10S1248 18% 13% 39% 31% 25%
D12S391 28% 21% 63% 52% 45% 42%
D13S317 30% 24% 60% 52% 42% 42%
D16S539 30% 27% 63% 56% 41% 43%
D18S51 28% 54% 54% 47% 46%
D19S433 29% 26% 42% 28% 31%
D21S11 23% 50% 42% 38%
D22S1045 14% 42% 25% 27%
FGA 28% 22% 49% 36% 34%
SE33 46% 66% 59% 56% 57%
TH01 35% 61% 50% 35% 45%
TPOX 38% 36% 67% 58% 53% 49%
vWA 17% 19% 52% 45% 31% 33%

Average
per Geno

28% 22% 57% 51% 41%

Table A.3: Percentage of alleles that drop-out per heterozygote loci for each genotype.
An analytical threshold of 30RFU has been applied to the data, any signal below this is
considered to be noise. Red indicates the highest drop-out observed for each genotype.

94



A.3. DROP-OUT RECORDINGS

Locus Geno 01 Geno 02 Geno 05 Geno 06 Geno 07
Average
per locus

CSF1P0 16% 16%
D1S1656 14% 41% 29%
D2S441 35% 35%
D3S1358 12% 18% 15%
D5S818 42% 42%
D8S1179 13% 13%
D10S1248 29% 29%
D18S51 14% 14%
D19S433 31% 31%
D21S11 14% 50% 32%
D22S1045 10% 32% 21%
FGA 37% 37%
SE33 20% 20%
TH01 17% 17%

Average
per Geno

13% 15% 38% 36% 18%

Table A.4: Percentage of total drop-out observed per homozygote loci for each genotype.
An analytical threshold of 30RFU has been applied to the data, any signal below this is
considered to be noise. Red indicates the highest drop-out observed for each genotype.
For homozygote loci we only consider the case of total allele drop-out.
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A.3.2 Drop-Out Post-Filtering

Locus Geno 01 Geno 02 Geno 05 Geno 06 Geno 07
Average
per locus

CSF1P0 17% 16% 29% 26% 22%
D1S1656 5% 10% 12% 9%
D2S1338 21% 22% 36% 28% 43% 30%
D2S441 4% 2% 10% 5% 5.3%
D3S1358 7% 6% 14% 9%
D5S818 5% 5% 9% 4% 5.8%
D7S820 40% 14% 47% 27% 55% 36.6%
D8S1179 7% 8% 5% 4% 6%
D10S1248 7% 3% 3% 6% 4.8%
D12S391 13% 9% 27% 15% 18% 16.4%
D13S317 16% 11% 16% 19% 19% 16.2%
D16S539 15% 15% 22% 22% 15% 17.8%
D18S51 13% 14% 21% 24% 18%
D19S433 17% 17% 8% 7% 12.3%
D21S11 10% 17% 17% 14.7%
D22S1045 5% 8% 2% 5%
FGA 14% 9% 8% 10% 10.3%
SE33 36% 28% 26% 36% 31.5%
TH01 25% 24% 17% 13% 19.8%
TPOX 25% 26% 28% 24% 31% 26.8%
vWA 6% 7% 13% 12% 7% 9%

Average
per Geno

15.6% 11.4% 18.9% 17.4% 17.7%

Table A.5: Percentage of alleles that drop-out per heterozygote loci for each genotype
after applying a high-pass filter. EPGs who’s sum of log transformed signal is less than
71 have been removed from the study. Red indicates the highest drop-out observed for
each genotype.
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A.3. DROP-OUT RECORDINGS

Locus Geno 01 Geno 02 Geno 05 Geno 06 Geno 07
Average
per locus

CSF1P0 2% 2%
D1S1656 1% 4% 2.5%
D2S441 2% 2%
D3S1358 0% 1% 0.5%
D5S818 7% 7%
D8S1179 0% 0%
D10S1248 2% 2%
D18S51 1% 1%
D19S433 0% 0%
D21S11 2% 2% 2%
D22S1045 1% 2% 1.5%
FGA 4% 4%
SE33 5% 5%
TH01 3% 3%

Average
per Geno

1.3% 2% 2.8% 3% 1%

Table A.6: Percentage of total drop-out observed per homozygote loci for each genotype
after applying a high-pass filter. EPGs who’s sum of log transformed signal is less than
71 have been removed from the study. Red indicates the highest drop-out observed for
each genotype. For homozygote loci we only consider the case of total allele drop-out.
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A.4. ACCOMPANYING PCA PLOTS

A.4 Accompanying PCA Plots

Accompanying plots for section 4.3.1, comparing log10(raw-signal) and log10(normalised-

signal) visualisations of our data on a PCA plot for two, three, four and five person

admixtures in various mixture ratios. We determine the analyst should plot both and

choose the larger number of clusters as it is equally likely a plot of either data transfor-

mation will out perform the other.

A.4.1 PCA Plots for Two Person Admixtures
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Figure A.1: PCA plots for simulated admixtures of 2 contributors in various mixture
ratios. Circles are Genotype 02 and triangles are Genotype 07. Individuals have been
coloured by EPG intensity. The first row of PCA plots have been generated using log
transformed data. The second row of PCA plots, representing the same admixtures as
seen in the above, are resultant of data that has undergone two transformations, first
signal has been normalised, second the logarithm of normalised signal has be taken. Each
column of plots corresponds to a type of mixture ratio from equal contribution through to
highly imbalanced. Both data transformations perform equally sufficiently as two distinct
groups are present in each plot.
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A.4.2 PCA Plots for Three Person Admixtures
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Figure A.2: PCA plots for simulated admixtures of 3 contributors in various ratios.
Circles are Genotype 01, triangles are Genotype 06, and squares are Genotype 07. In-
dividuals have been coloured by EPG intensity. The first row of PCA plots have been
generated using log transformed data. The second row of PCA plots, representing the
same admixtures as seen in the row above, are resultant of data that has undergone two
transformations, first signal has been normalised, second the logarithm of normalised sig-
nal has be taken. Each column of plots corresponds to a type of mixture ratio from equal
contribution through to highly imbalanced. Both data transformations perform equally
sufficiently with three distinct groups present in each plot.
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A.4.3 PCA Plots for Four Person Admixtures
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Figure A.3: PCA plots for simulated admixtures of 4 contributors in various mixture
ratios. Circles are Genotype 02, triangles are Genotype 05, squares are Genotype 06, and
crosses are Genotype 07. Individuals have been coloured by EPG intensity. The first
row of PCA plots have been generated using log transformed data. The second row of
PCA plots, representing the same admixtures as seen in the row above, are resultant of
data that has undergone two transformations, first signal has been normalised, second
the logarithm of normalised signal has be taken. Each column of plots corresponds to
a type of mixture ratio from equal contribution through to highly imbalanced. Four
distinct groups can be determined for each mixture ratio when using the log transformed
normalised data. When plotting the PCA of the log transformed data for the highly
imbalanced mixture ratio one may incorrectly infer the number of contributors due to the
close proximity of Genotype 05 and Genotype 06.
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A.4.4 PCA Plots for Five Person Admixtures
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Figure A.4: PCA plots for simulated admixtures of 5 contributors in various ratios.
Circles are Genotype 01, triangles are Genotype 02, squares are Genotype 05, crosses are
Genotype 06 and boxes with an x are Genotype 07. Individuals have been coloured by
EPG intensity. The first row of PCA plots have been generated using log transformed
data. The second row of PCA plots, representing the same admixtures as above, are
resultant of data that has undergone two transformations, first signal has been normalised,
second the logarithm of normalised signal has be taken. Each column of plots corresponds
to a type of mixture ratio from equal contribution through to highly imbalanced.
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A.5 K-means Classification for Two, Three and Five Contribu-

tors

Accompanying plots for section 5.4.2, comparing K-means cluster assignment on raw-

signal and normalised-signal when the correct k has been chosen. (PCA plots are of

log10(raw-signal) or log10(normalised-signal) as we have previously observed log trans-

formed data is preferential for low dimensional visualisation)

A.5.1 K-means: Two Person Admixtures
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Figure A.5: PCA plots for simulated admixtures of 2 contributors in various ratios.
Circles are Genotype 02 and triangles are Genotype 07. We have assumed the analyst
determined k correctly, colour corresponds to the K-means cluster classification. The
first column of plots is an admixture in equal ratio, K-means successfully assigns EPGs
to their genotype. The second column is an admixture with one major and one minor
contributors, K-means was unable to distinguish the minor contributor from the major
and subsequently over clustered the major contributor.
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A.5.2 K-means: Three Person Admixtures
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Figure A.6: PCA plots for simulated admixtures of 3 contributors in various ratios.
Circles are Genotype 01, triangles are Genotype 06, and squares are Genotype 07. We
have assumed the analyst determined k correctly, colour corresponds to the K-means
cluster classification. K-means has successfully assigned EPGs to their genotype for all
three example admixtures.
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A.5.3 K-means: Five Person Admixtures
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Figure A.7: PCA plots for simulated admixtures of 5 contributors in various ratios.
Circles are Genotype 01, triangles are Genotype 02, squares are Genotype 05, crosses
are Genotype 06 and boxes with an x are Genotype 07. We have assumed the analyst
determined k correctly, colour corresponds to the K-means cluster classification. The
first column of plots is an admixture in equal ratio, K-means successfully assigns EPGs to
their genotype. K-means incorrectly clusters EPGs for imbalanced and highly imbalanced
admixtures of five contributors (columns two and three).
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A.6 Mclust Classification for Two, Three and Five Contributors

Accompanying plots for section 5.4.3, comparing mclust cluster assignment on log10(raw-

signal) and log10(normalised-signal).

A.6.1 Mclust: Two Person Admixtures

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

−4

0

4

−10 −5 0 5 10
PC−1

P
C

−2

mclust 
cluster
●

●
1
2

Equal Contribution

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−6

−4

−2

0

2

−15 −10 −5 0
PC−1

P
C

−2

mclust 
cluster
●

●
1
2

1 Major, 1 Minor Contributors 

lo
g 1

0 (
R

aw
−

S
ig

na
l)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−0.050

−0.025

0.000

0.025

−0.06 −0.03 0.00 0.03 0.06
PC−1

P
C

−2

mclust 
cluster
●

●
1
2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

−0.04

−0.02

0.00

0.02

0.04

−0.075 −0.050 −0.025 0.000
PC−1

P
C

−2

mclust 
cluster
●

●
1
2

lo
g 1

0 (
N

or
m

al
is

ed
−

S
ig

na
l)

Figure A.8: PCA plots for simulated admixtures of 2 contributors in various ratios.
Circles are Genotype 02 and triangles are Genotype 07. Mclust has correctly determined
the number of clusters and EPG classification for both balance and imbalanced two person
admixture examples, irrelevant of which data transformation was applied.

105



A.6. MCLUST CLASSIFICATION FOR TWO, THREE AND FIVE
CONTRIBUTORS

A.6.2 Mclust: Three Person Admixtures
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Figure A.9: PCA plots for simulated admixtures of 3 contributors in various ratios. Cir-
cles are Genotype 01, triangles are Genotype 06, and squares are Genotype 07. We see
consistent over-clustering when using log transformed signal. When using twice trans-
formed signal Mclust correctly determined the number of clusters and EPG classification
for admixtures in equal contribution and highly imbalanced (column one and three).
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A.6.3 Mclust: Five Person Admixtures
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Figure A.10: PCA plots for simulated admixtures of 5 contributors in various ratios.
Circles are Genotype 01, triangles are Genotype 02, squares are Genotype 05, crosses are
Genotype 06 and boxes with an x are Genotype 07. Mclust has correctly determined
the number of clusters and EPG classification for both balance and imbalanced five per-
son admixture examples, irrelevant of which data transformation was applied (columns
one and two). When handling the highly imbalanced five person example, Mclust has
incorrectly assigned two minor contributors to one cluster when using log transformed
data. When working with the twice transformed data Mclust incorrectly assigns three
distinct genotypes to one cluster, two minor contributors and one EPG from the major
contributor.
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