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ABSTRACT
The present paper investigates the energy savings associated with the implementa-

tion of retrofitting measures on Irish residential buildings. A detached residential

dwelling, representative of approximately 40% of the residential stock in Ireland,

was selected as experimental test bed. The building was progressively retrofitted

to an all electric dwelling. Retrofit measures included the installation of a pho-

tovoltaic array, a geothermal heat pump, an electric vehicle charging point, along

with building fabric upgrades. The building was equipped with a home area network

with more than 30 sensors with 15 minute monitoring resolution. The experimental

data collected during the experimental campaign aided the comprehensive calibra-

tion of an EnergyPlus model. This model was used to investigate the e↵ectiveness

of the implemented retrofit measures in terms of energy savings and CO2 reduc-

tions. Real-time data from the Irish power system operator was used to calculate

the building carbon footprint for di↵erent levels of renewable energy penetration to

the national grid. Results show that the all-electric retrofitted building can achieve

energy savings of up to 45%, with CO2 reductions of approximately 29%, compared

to the pre-retrofitted building. Implementing the retrofit measures at scale could

potentially lead to carbon emission reductions up to 14% for rural areas in Ireland.

KEYWORDS
building energy model; calibration; decarbonisation; renewable energy; electric

vehicles; geothermal heat pump; solar energy.

1. Introduction

Following the ratification of the Paris agreement, member countries of the European
Union have set ambitious targets of 40% carbon emissions reduction by 2030 and
60% by 2040 (Rogelj et al., 2016). In this context, the building sector plays a critical
role in meeting these targets, being responsible for more than 40% of the overall en-
ergy demand worldwide (Carragher, De Rosa, Kathirgamanathan, & Finn, 2019), with
expected increasing trends over the coming decades (Szalay & Csoknyai, 2014). For
instance, heating and cooling energy consumption accounts for about 36% of all car-
bon emissions in Europe (D’Ettorre, De Rosa, Conti, Testi, & Finn, 2019). Therefore,
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a substantial decarbonisation can be achieved by implementing appropriate energy
policies and regulations for the building sector. The Energy Performance of Build-
ing Directive (EPBD) (European Union, 2018) and the Energy E�ciency Directive
(EED) (European Union, 2012) represent the main legislative instruments established
by the European Union (EU) to establish minimum energy performance standards for
new buildings and to foster the implementation of retrofitting measures in old build-
ings. Furthermore, new legislation has been introduced by the EU to support the use
of smart technologies - such as building home automation, the deployment of smart
grid infrastructure, the di↵usion of smart appliances and Energy Management Sys-
tem (EMS) integration - which can contribute to the optimisation of building energy
consumption for the more rational use of energy (Vázquez-Canteli & Nagy, 2019).

Most of the e↵orts to date have been put into improving the energy e�ciency of new
buildings (Thomsen et al., 2016) in order to meet the net zero-energy buildings (nZEB)
criterion, as required by the EPBD (European Union, 2018). On the other hand, only
around 1% of the existing building stock is renovated in Europe on an annual ba-
sis (European Union, 2016), despite the significant reduction of energy consumption
that could be achieved by improving their energy performance. More recently, sev-
eral retrofitting strategies have been developed and investigated as a function of the
building characteristics, climate conditions, policy and financial environments (Leal,
Granadeiro, Azevedo, & Boemi, 2015). Structural interventions - such as, improved
insulation materials (Castaldo et al., 2015), more e�cient equipment and renewable-
based energy and associated storage systems (Leal et al., 2015) - have been proposed
and tested. However, barriers such as the large investment required, architectural con-
straints, uncertainties over human behaviour change and lack of knowledge among
stakeholders about technical improvements and investment opportunities continue to
limit the widespread adoption of retrofitting interventions (Ma, Cooper, Daly, & Ledo,
2012).

Generally, Rey (2004) defines the idea of a retrofitting strategy as ”a set of in-
terventions, dictated by a coherent architectural attitude and technically optimised, in
particular through a full coordination of the interventions on the sheathing surfaces
and the technical installations”, which can have many di↵erent goals, i.e, increasing
the building value, meeting new mandatory standards, etc. The process for retrofitting
existing buildings involves five major phases (Ma et al., 2012): (i) project set up and
pre-retrofit survey, (ii) energy auditing and performance assessment, (iii) identification
of retrofit options, (iv) site implementation and commissioning, and (v) validation and
verification. Many factors may influence the success of a building retrofitting process,
which includes policy and regulations, overall budget, technologies, information and
data availability, uncertainties over human factors, etc. A customised cost-optimal
solution, which harmonises the two conflicting targets of minimising the energy con-
sumption while maximising the economic benefit, needs to be found (Mauro, Hamdy,
Vanoli, Bianco, & Hensen, 2015).

In this context, the implementation and assessment of retrofitting measures require
to accurately estimate the impact of building retrofit measures and control equipment,
such as EMS systems. The availability of increasing computational power allows sim-
ulation software models to be more detailed and accurate (Atam, 2017). However,
developing an integrated model of building thermal behaviour is still a complex task
that cannot be fully automated yet. The representation of a building model is com-
posed of multiple physical models that, during the simulation, exchange data and
provide an estimate of the energy consumption for each time step (Oller, Rodŕıguez,
González, Fariña, & Álvarez, 2018). The level of detail required to describe a building
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is highly variable, since it depends on the specific application analysed. New gener-
ations of building simulation software can take into account weather data, building
thermal features, occupancy profiles, solar irradiation and the electric and thermody-
namic characteristics of all system components.

Building simulation software has been historically used both for long-term analysis,
such as seasonal schedules, as well as for analysis of short-term daily load operations
(Haves, Salsbury, Claridge, & Liu, 2001). However, it has become a useful tool to
identify critical issues in day-to-day building operations as well and it can support
both design and retrofit interventions(Pallonetto, Mangina, Finn, Wang, & Wang,
2014). Moreover, coupling building energy simulation models with specific building
archetypes (Pallonetto, Mangina, Milano, & Finn, 2019), determined by means of
clustering and/or classification techniques and representative of the national building
stock, has the potential to facilitate the assessment of energy savings and carbon
emissions reduction potential at a wider scale (Goy, Ashouri, Maréchal, & Finn, 2017).
The most utilised approach for building classification is based on predefined categories,
such as age and building typologies. Generally, the building stock can be divided into
residential and commercial buildings and census data or building surveys can be used to
collect relevant information to characterise the building stock at a country level (Mata,
Kalagasidis, & Johnsson, 2014). Once the representative archetypes are determined,
specific building simulation models can be developed and calibrated to create tools for
energy consumption assessment and forecasting.

The calibration of Building Energy Models (BEM) is essential to produce realis-
tic results and it can provide guidelines for the implementation of retrofit measures
(Allesina, Mussatti, Ferrari, & Muscio, 2018). Many relevant factors a↵ecting the en-
ergy consumption of residential buildings are not captured during traditional energy
audits or surveys (Glasgo, Hendrickson, & Azevedo, 2017). Therefore, the importance
of accurate sensor data over the life cycle of a building is widely recognised as essen-
tial for accurate model calibration and the assessment of retrofit measures (Fabrizio
& Monetti, 2015). Comprehensive investigations based on complete, ground-truth in-
put data and metered end-user consumption are still needed to better understand the
causes of calibration errors, to improve the modelling process and to assess the benefit
of accurate building models during the di↵erent phases of the building life, especially
when retrofit measures are implemented at scale (Li, Tian, Lu, & Fu, 2018).

Notwithstanding, the calibration of a building model can present several challenges
depending on the model complexity, since it requires an extensive experimental phase
to equip the building with sensors and to collect data at sub-hourly resolution (Fab-
rizio & Monetti, 2015). For instance, Clauß, Vogler-Finck, and Georges (2018) cali-
brated a building model based on a reference period of four months, reaching average
errors below 5%. However, the dynamics of the indoor thermal environment, which
are paramount for describing the short-term building behaviour (De Rosa, Bianco,
Scarpa, & Tagliafico, 2016), were measured for two months only, equivalent to half of
the reference period. Moreover, the analysis was performed on an unoccupied build-
ing and, consequently, no human interaction was considered. Similarly, Yin, Kiliccote,
and Piette (2016) highlighted that sub-metering systems providing detailed energy
consumption of each building component are generally not implemented, while the
use of standards is very common to simulate the building occupancy.

However, having detailed models of subsystems is critical to develop accurate BEMs,
especially if potential retrofitting measures are to be considered. Therefore, buildings
need to be equipped with appropriate monitoring sensors and data acquisition sys-
tems, to collect experimental data with a high temporal resolution, typically less than
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a 1 hour time resolution, over a long period of time. Notwithstanding, accurate mon-
itoring and data acquisition systems are not often deployed in residential buildings
and consequently detailed information and full experimental datasets are scarce in the
literature.

In this context, the present paper contributes to this challenge by reporting the
results of a comprehensive experimental campaign on a residential building located
in Ireland, which was progressively retrofitted with all-electric systems and equipped
with a comprehensive monitoring and data acquisition system. As described in sec-
tion 2, the selected residential detached house can be considered representative of the
bungalow building archetype, which represents about 40% of the overall residential
stock in Ireland. The building, located in a rural area, was built in 1973 and had been
progressively retrofitted with all electric equipment, including PhotoVoltaics (PV) and
a Ground Source Heat Pump (GSHP) systems (section 3). The retrofit measures in-
stalled in this building are representative of specific measures which will likely be
adopted by future new residential building developments.

The retrofitted all-electric house was equipped with a Home Area Network (HAN)
system with more than 30 sensors for an extensive monitoring programme, thereby
facilitating a comprehensive monitoring programme. The experimental data collected
from the HAN system allowed the monitoring of the impact of the retrofitting measures
in terms of energy consumption and carbon emissions. Moreover, the extracted dataset
was used to calibrate specific building and subsystem models (section 4), facilitating
the development of an accurate BEM which was then used to assess the energy saving
and carbon emissions reduction potential of the retrofitted all-electric house (section
5) under di↵erent scenarios of Renewable Energy Systems (RES) penetration at a
country level.

2. Irish residential sector

Generally, the building stock can be divided into residential and commercial buildings
and census data or building surveys can be used to collect relevant information to char-
acterise the building stock at country level (Mata et al., 2014). In recent years, build-
ing energy certificates and other geographical information systems have contributed to
enrich existent databases and increase the data accuracy. Moreover, some European
projects have compiled availableinformation for a country or group of countries. Open
data platforms (Buildings Performance Institute Europe, 2014) have started to provide
open data sources for country building stocks, including Ireland. These databases have
been used in the present work to provide an outlook on the Irish residential building
sector.

As shown in Figure 1a, Ireland had about two million of registered houses in 2016
Ireland Central Statistics O�ce (2012); Irish Central Statistics O�ce (2016), most of
which (about 62.8%) were built before 1996. The Irish residential building stock can
be divided in four main categories: detached houses, semi-detached houses, terraced
houses and appartments. The most common dwelling type is the detached house, this
category being representative of about 43% of the total occupied residential buildings
(Figure 1b), followed by semi-detached and terraced houses (27.8% and 16.7% respec-
tively). Notwithstanding, the distribution of each building category is not homogeneous
on a regional basis, as illustrated in Figure 2. Generally, high density population coun-
ties, such as Dublin, Cork has a greater share of apartments and semi-detached houses,
while detached houses are more common in rural counties (i.e., Donegal, Mayo, etc.).
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occupied residential buildings per typology in Ireland (2016). (Ireland Central Statis-
tics O�ce, 2012; Irish Central Statistics O�ce, 2016).

According to the Irish Central Statistics O�ce (2016), about 40% of the total oc-
cupied domestic buildings were assessed, in order to determine mine their building
energy ratings (BER) up until 2016. Table 1 indicates that newer buildings (2005-
2016) show a relative improvement of their energy performance resulting from higher
building energy standards which were progressively introduced arising from new Eu-
ropean regulations commencing from 2007. However, most of the residential buildings
fall into lower BER categories (i.e., C-G), especially the older ones, which represent the
greatest share of the overall building stock (Figure 1a). Therefore, a significant energy
saving potential can be achieved by introducing substantial retrofitting measures to
improve the energy performance of existing residential buildings.

Percentage of buildings per BER class in Ireland

Period of construction A B C D E F-G
pre 1977 0% 3% 18% 25% 20% 33%
1978-1999 0% 5% 39% 36% 13% 7%
2000-2004 0% 8% 58% 24% 7% 3%
2005-2009 1% 35% 50% 10% 3% 1%
2010-2016 61% 35% 4% 1% 0% 0%

Table 1.: Building energy ratings (BER) of residential buildings per year of construc-
tion in Ireland (Irish Central Statistics O�ce (2016)).
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Figure 2.: Distribution of Irish building stock for each building category and county
(Irish Central Statistics O�ce, 2016).

3. Case study

The selected building in the current work is a detached house, representative of the
associated building archetype and typical of the majority of the Irish building stock
and the most common single building category, as outlined in section 2. It was con-
structed in 1973 with a high thermal performance specification for its opaque fabric
elements (equivalent to the current building standards), compared to the contempo-
rary standards at the time of construction. In 2013, a PV system was installed and, a
few months later, the combination of a GSHP for space heating and a heat recovery
ventilation system replaced the existing conventional boiler. In 2014, the windows were
replaced with triple glazed systems and solar thermal collectors were installed for the
supply of Domestic Hot Water (DHW). Finally, an electric car replaced a conventional
gasoline automobile for the household transportation needs since the summer of 2012.
This electric car is charged from the dwelling electrical system.

The retrofitted building thermal performance and characteristics are similar to the
average residential dwelling outlined in the 2020 scenario research published in the Res-
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idential Energy Roadmap for Ireland (SEAI, 2011a). Various scenarios are described in
the study, in which the reduction levels of CO2 emissions for di↵erent retrofit measures
were estimated to be between 4000 and 5000 kg of CO2 per annum per household. The
report indicates that the maximum reduction is achievable with a higher penetration
of solar thermal and photovoltaic, storage heating and heat pump systems (SEAI,
2011b). As illustrated in Table 2, the majority of technologies for carbon emissions
and RES integration reported in the research are present in the test bed building case
study of this study.

Table 2.: Smartgrid Roadmap: Enabling technologies to facilitate RES integration and
the reduction of carbon emissions (SEAI, 2011a)

Technologies Facilitate integration Reduce emissions Test Bed

Smart meter system Yes No Present
DHW Electrification Yes No (only HP) Present
Heating Electrification Yes Yes Present
Electric vehicle Yes Yes Present
Renewable energy No Yes Present
Home area network Yes No Present

Some of the new systems installed in the building have also been identified by the
Irish Commission for Energy Regulation as appropriate to provide energy flexibility to
the grid. These technologies, if adopted in the residential sector, would enable demand
response programs in the Irish power system (Single Electricity Market Committee,
2011). Their presence in the test bed building is also reported, except for the frequency
response capabilities, which would typically be enabled by home automation systems.
However, the rural position of the house and the associated network distribution sys-
tem layout, results in the dwelling being located on the terminal side of a distribution
branch. In this location, the electricity supply is more prone to voltage fluctuations
that mitigate against the implementation of frequency response measures.

In the following sub-sections, a description of the main building sub-systems is pre-
sented, considering pre-retrofitted and retrofitted all-electric configurations. A picture
of the building and the modelled geometry are shown in Figure 3. The house is divided
in 12 zones (rooms) and an unused attic space at roof level. Two temperature sensors
were installed, one in the main living area and one in the corridor, both wired to the
HAN.

3.1. Thermal envelope and building physics

The test-bed house, located in eastern Ireland, is a single storey building, constructed
using a two leaf concrete wall with cavity insulation. Hence, the inner walls exhibit sig-
nificant passive thermal energy storage capacity. The total surface area of the exterior
walls is 187 m

2, not including windows and external doors (there are two doors with
5.4 m

2 and 33 m
2 window area). The roof is covered with slate and it has a surface

area of 279 m
2. The roof does not have insulation, while the ceiling is covered with

tiles to ensure both acoustic and thermal insulation. On top of the tiles, a 200 mm

layer of fibreglass ensures high thermal resistance due to its low thermal conductivity
(0.04 W/mK). The floor area is 208 m

2, and the overall window to wall ratio is 15%,
with a 22% and 10% ratio on the south and north facades, respectively.

Although its architectural characteristics are those of a typical rural Irish bungalow
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Figure 3.: a) Aerial view and EnergyPlus simulation model of the test building (Pal-
lonetto, De Rosa, et al., 2019). b) Internal sketch of the building with orientation and
installed temperature sensors.

dwelling of the 1970s, its fabric specifications are very close to the current Irish building
regulation values as outlined in Table 3. The di↵erence between the pre-retrofitted and
all-electric configurations in the building architecture and thermal envelope was the
replacement of the aluminium double glazed windows with triple glazed windows with
an air cavity of 13 mm and PVC frame. Moreover, an additional insulation layer was
added to the ceiling to give a U-value of 0.21 W/m

2
K.

3.2. HVAC systems

The heat emitters are conventional radiators located in all rooms except the bedrooms,
which are heated by electric fan convectors. Additionally, a 5 kW wood fired stove is
located in the kitchen, which the occupants use daily from 6 pm to 10 pm during the
whole heating period. The stove a↵ects the energy performance of the house and it
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Table 3.: U Value data of di↵erent building elements for the pre-retrofitted and all-
electric building models compared to the Irish building regulation standards (Irish
Government, 2011)

U-Values (W/m
2
K)

Building element Pre-retrofitting All-electric IBRS
Walls 0.21 0.21 0.21
Roof 0.25 0.21 0.16
Windows 2.6 1.7 1.6
Floor 0.21 0.21 0.21

has an impact on the thermal conditions of the kitchen and the adjacent living room,
o↵setting the heat demand of the two zones. Considering the space heating patterns of
the occupants, the heating period was set from the 1st October to the 30th April. The
thermostat was installed on the North-facing wall in the corridor (Z3 in Figure 3b).
The building internal set point temperatures, which are measured in the hallway of
the dwelling, are shown in Table 4. These were defined in accordance with the schedule
and preference of the occupants.

The pre-retrofitted house model was heated with a 17 kW kerosene boiler based
on a supply/return water temperature di↵erence of 10�C. The design water outlet
temperature, according to the manufacturer technical specifications, was set to 80�C.
A stoichiometric report estimated the e�ciency of the boiler to be 85%. The analysis
of the utility bills was used to estimate the heating energy consumption of the building
before the retrofit. The estimated yearly average quantity of kerosene necessary to heat
the house was 943 l, that provides 9,424 kWht. Using an average price of e0.84 per
litre (retrieved from historical bill data), heating the house with a conventional boiler
amounted to e792 per year.

Table 4.: Thermostatic setpoints - User Preferences

Time of day Weekdays Weekends

00:00 to 06:30 19 �C

20�C
06:30 to 09:00 18 �C
09:00 to 16:00 16 �C
16:00 to 19:00 18 �C
19:00 to 00:00 18 �C

In the all-electric house, the space heating system is a 12 kW (thermal output)
GSHP. The heat pump extracts energy from the ground using a ground loop system.
Measurements indicated that the water source temperature varied over the heating
season between 6-8�C over the winter period (Oct-May). For the provision of thermal
energy storage, the heat pump was equipped with a hot water storage tank of 0.8 m

3.
The system, illustrated in Figure 4a, was installed in April 2013. The initial preference
of the householder was to operate the heat pump only during the night time (between
2300 hrs to 0800 hrs), taking advantage of the low electricity tari↵, and with a hot
water supply temperature not higher than 50�C to achieve a higher Coe�cient Of
Performance (COP). Thus, between the times specified, the heat pump charges the
hot water tank, while during the daytime the space heating load is covered by the hot
water tank.
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Figure 4.: Schema and sensor metering details of: a) GSHP. b) Solar DHW system.

The DHW is provided by two solar thermal collectors, each consisting of 30 vacuum
pipes and feeding a 250 litre water tank. The overall surface area of the solar collectors
is 6.15 m

2. The solar collectors are placed on the roof, on a south west slope with an
inclination of 35 degrees. As illustrated in Figure 4b, two stainless steel pipes connect
the solar panels to a heat exchanger installed in the storage tank located in the utility
room 10 meters away. An electric pump ensures the circulation of the glycol from
the heat exchanger to the vacuum pipes when the temperature di↵erence between the
glycol at the solar panel (SCTI) and the storage tank temperature (DHWTT) is above
5 �

C. A 2 kW immersion resistance heater in the water tank provides auxiliary heating
during winter or cloudy days. The immersion heater uses a thermostatic temperature
controller or can manually be operated.

The pre-retrofitted building was naturally ventilated, facilitated by two air intake
grilles which contribute to the building ventilation rate. Air ventilation and infiltra-
tion rates were taken into account by assuming an air permeability upper limit of 7
m

3
/(hm2) in accordance with the Irish building regulations. In the all-electric build-

ing, a Heat Recovery Ventilation (HRV) system was installed with an average sensible
heat transfer e↵ectiveness of 80%, which operates only during the heating period with
a specific fan power of 60 W and volume rate of 0.7 W/l/s. The air permeability
upper limit is assumed to have been reduced by 28% to 5 m

3
/(hm2), because of the

10



Pr
ep
rin
t

additional sealing works on walls, ceilings, window frames and floor skirtings. The air
permeability coe�cient utilised refers to new building construction as reported in the
Energy Trust practical guide (EnergyTrust, 2005) and in Sinnott and Dyer (2012).
These values have been used because it was not possible to perform a building blower
door test.

3.3. PV system and electric car

The array of the installed photovoltaic panels has a nominal power of 6 kWp and it is
located 30 meters from the dwelling, facing South with an inclination of 30 degrees.
Thirty PV panels, each with a nominal power of 200 Wp, were positioned in three
rows of 10 panels each. The inverter installed was a single-phase and its e�ciency
is 95% as per the manufacturer technical specifications. Each PV panel is composed
of 126 poly-crystalline silicon solar cells. The output tolerance of each panel was to
within 0/+5 W. The total inclined surface of the PV system was 51.9 m

2 while the
occupied surface area was 70 m

2. Figure 5 illustrates the electricity meter (PVE) used
to measure the PV production. The meter is located between the inverter and the
bi-directional general meter between the house and the power grid.

Figure 5.: Photovoltaic system, electric vehicle and associated sensors.

A Nissan Leaf (2011 model) with a 24 kWh battery pack is used for the daily
commute of the building owner of approximately 50 km, which is equivalent to half of
its autonomy range. According to the manufacturer data (Masoum, Deilami, Moses,
& Abu-Siada, 2010), the maximum charging power rate is 3.3 kW. The car is charged
each night, and, during winter the heating element in the car is activated during
commuting. The connection to the electricity system, as illustrated in Figure 5, and
it has a stand alone meter.
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3.4. HAN system

Forty-three sensors were installed in the house during the experimental phase. The
sensors were linked to the HAN through two gateway devices connected via an IEEE
802.03 infrastructure (Keiser, 1989). The installed HAN router enabled a home wire-
less network based on standard IEEE 802.11 and provided wired connection for four
Ethernet ports. The device was mounted in the attic zone and provided network cov-
erage and internet access for the majority of the building. In the attic zone, a wired
gateway managed 31 sensors. These were linked to the gateway through five MODBUS
lines (Modbus, 2004).

Five MODBUS lines were utilised and these are described in Table 5. For each sub-
system, the MODBUS line is indicated and the sensors are organised into four di↵erent
categories: temperature, flow, energy and other. In the latter category, beside the two
humidity sensors connected to the HRV for the air extraction and supply, the ground
loop inlet circulation pump speed was recorded using a pulse open contact signal. A
wireless ZigBee network was installed in the building with an additional twelve elec-
tricity and temperature sensors. After the installation of the ZigBee network, frequent
disconnections of the sensors occurred, and a degradation of the WiFi network trans-
mission rate and reliability was noted. As confirmed by Yi, Iwayemi, and Zhou (2010),
IEEE 802.11 and ZigBee coexistence can cause interference which can compromise the
data acquisition.

4. Numerical model

4.1. Thermal envelope and HVAC

An EnergyPlus model was developed with 15 di↵erent thermal zones, one for each
room and three for the attic space. The complex shape of the roof required the attic
space to be divided into three di↵erent zones. The U-value estimation of the build-
ing envelope utilised up to 13 di↵erent composite construction materials for certain
elements. The components were modelled after several inspections of the house and a
survey conducted with the owner. All the construction elements use generic building
materials, except for the walls and floor, which were retrofitted in 2011 with a new
insulation layer before the current research began.

The air exchange with the external environment was modelled for the pre-retrofitted
and all-electric building Building Energy Simulation (BES) model separating the ven-
tilation and the infiltration. On the pre-retrofitted model, following the trends of build-
ings with similar construction features, the ventilation rate was adjusted to an annual
average value of close to 1 Air Changes per Hour (ACH) with the exception of the
kitchen and bathroom, where the respective values were 1.5 ACH (Dimitroulopoulou,
2012). In the all-electric model, ventilation was achieved exclusively by the operation
of the HRV, whereas in summer by natural ventilation (window opening). During the
heating period, for ventilation purposes, the building is divided into two sections with
the following ACH settings: a kitchen/living/bathroom zone (ACH 1.5) considering the
cross air mix between the zones and a sleeping/utility zone (ACH 1.0). Proportional
infiltration flow rates are dynamically calculated at each simulation time step based
on the indoor and outdoor conditions, i.e., temperature, wind speed and direction
(EnergyPlus Engineering Reference, 2015).
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Table 5.: Test-bed house, installed sensors and reference index
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4.2. HVAC and DHW systems

The heating system (GSHP) was modeled in EnergyPlus using a parameter estimation
or an equation-fit model (EnergyPlus Engineering Reference, 2015). The parameter
estimation model technique solves the objective function using an unconstrained opti-
misation algorithm. The methodology converges to an estimate of the model parame-
ters. It is mostly used for the extrapolation of the model from measured data when the
unit specifications are partial or in cetain cases, absent. According to Ellis, Torcellini,
and Crawley (2008), the parameter estimation model can be more accurate than the
equation fit, however it is computationally more intensive and the technique does not
guarantee the convergence of the calculation at each time step. The equation fit model
uses four equations to predict the behaviour of the heat pump execution cycle. It is
mostly used when the equipment specification is available. In the present work, the
equation fit was preferred as a better and more consistent technique to model the sys-
tem, since heat pump data was available. The input variables for using the equation
fit technique and a reference to the installed sensors as summarised in Table 5, are as
follows:

• Load side inlet water temperature (HTI);
• Load side outlet water temperature (HTO);
• Source side inlet temperature (WT-IN);
• Source side water flow rate (WF);

Regarding the DHW system, it was assumed that the glycol fluid has a concentra-
tion of 30%, which is based on best practise (Kalogirou, 2004). Because of the presence
of only one sensor in the middle of the water tank (DHWTT), as shown in Figure 4b,
the tank was modelled as fully mixed. Consequently, any thermal stratification in the
water tank was not taken into account. The solar system installed is an evacuated
tubes panel. According to EnergyPlus Engineering Reference (2015), EnergyPlus uses
a generic model equation labelled as FlatPlate which adheres to the ASHRAE stan-
dards (ASHRAE, 2002) and can also be used to model evacuated tube systems. The
thermal and optical performance parameters of the system were obtained from the
technical specification sheets of the manufacturer.

4.3. PV system and electric car models

Each PV panel was modelled using a single diode equivalent circuit (EnergyPlus En-
gineering Reference, 2015). In this model, the delivered current is directly dependent
on the solar radiation at the surface and on its temperature. The EnergyPlus input
module has an angle modifier to infer how the reflectivity of the module varies with the
angle of incidence. The output of the module simulation includes an open-circuit volt-
age, short-circuit current and maximum power point voltage and current. The inverter
e�ciency was set at 0.95 according to the technical spreadsheet of the manufacturer.
The 30 meters distance between the inverter and the DC cables was considered relevant
in terms of cable losses and this was modelled accordingly in EnergyPlus.

According to Smith (2010), the energy consumption by electric vehicles depends on
the season due to the air conditioning requirements of the cabin, which can significantly
a↵ect the energy performance of the car. The electricity consumption of the modelled
electric vehicle (EV) was assumed of 150 Wh/km in summer and 250 Wh/km in
winter. The assumptions were based on the work of Marra et al. (2012) and confirmed
by the estimate calculated by Next Green Car (NextGreenCar, 2016). Moreover, it
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is noted that 2011 Nissan Leaf versions have a ceramic Positive Thermal Coe�cient
of resistance (PTC) heating element with peak energy consumption of 5 kW (Shin,
Sim, & Kim, 2016). However, in the EnergyPlus model, the operation of the heating
element was embedded in the winter average consumption per kilometre, assuming the
energy to heat the car was supplied by the EV battery.

4.4. Internal gains and occupancy profiles

Two adults occupy the house and the associated heat gains were determined and
spatially mapped within the building model. Domestic hot water usage patterns, the
use of electric equipment and lighting, and the respective distribution of internal heat
gains were calculated based on the national time of use survey resident activity data
and, then, adjusted to match the electricity profile (Commission for Energy Regulation,
2011). For privacy reasons, the activity patterns of the occupants were not tracked
using the installed sensors. However, a bottom-up approach, based on time of use
activity data was used for generating, at an individual room level, occupancy profiles
and disaggregated electrical appliance loads and lighting load profiles at a 15 minute
time resolution (Neu, Oxizidis, Flynn, Pallonetto, & Finn, 2013).

The 2005 survey data utilised included 567 households and reported the user activity
at a fifteen-minute time resolution for weekdays and weekend days (McGinnity, Russel,
Williams, & Blackwell, 2005). Each participant recorded the activity undertaken, at
home or away from home, for each time-step by choosing the most appropriate activity
code from a list of 26 keys. The data was used to build a Markov Chain Monte Carlo
model for each activity reported in the survey. In the current work, the developed
activity model was embedded and adapted for the EnergyPlus test bed building model.
Therefore, daily power consumption patterns, for the household size and the di↵erent
day types, were quantitatively and qualitatively adjusted against metered electricity
data and occupant survey data. The synthesised profiles were calibrated with the
appropriate occupant feedback to replicate better the real-life activity patterns.

4.5. Calibration procedure

A building simulation model produces an energy demand or generation profile for each
system modelled. When the simulation output and the metered data do not match,
the modeller can modify the input parameters to reduce the error. This iterative
process is called calibration and it is aimed at improving the accuracy of numerical
models. There are five main categories of calibration methodologies: manual, iterative,
graphical, statistical and automated (Raftery, 2011). The utilisation of one or more
methodologies depends mainly on the purpose of the model, building system com-
plexity, data availability and resolution (Coakley, Raftery, & Keane, 2014). Moreover,
various data sources supply di↵erent levels of insight of the construction and can con-
tribute to the calibration process (Royapoor & Roskilly, 2015). Typical data providers
for a calibration process are: (A) direct interview with building stakeholders, (B) data
sensor logging, (C) technical documentation, (D) project plans, (E) benchmark case
studies, (F) spot or short-time measurements, and (G) policy and regulation.

In the current research, the calibration process was divided into two main stages.
The pre-retrofitted building was calibrated using direct interviews with manufacturer
companies (A), surveys with the building owner (A) and spot measurements (F). Dur-
ing the first phase, there were no high-resolution sensors in place. Consequently, the
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calibration of the pre-retrofitted model was partial and relied on the utility electricity
meter and kerosene bills. The thermal performance of the model was also integrated
and compared with current regulations (G). In the all-electric model, the building
geometry description was extracted from the pre-retrofitted model. The 3D geome-
try was expanded with new systems using technical documentation (C), which were
utilised to complete the equation parameters of each system. Moreover, the model was
further tuned with the available sensor data (B).

The calibrated model was used to decompose the thermal and electricity consump-
tion pattern for each sub-system, to support recommendations and retrofit measures,
to schedule changes or control settings and overall to test the control algorithms de-
veloped in the EMS. The process was divided into four main steps as described in
Mustafaraj, Marini, Costa, and Keane (2014):

• Collect, classify and clean available data;
• Modify the BES model subsystem equation parameters based on the documen-
tation and sensor data;

• Compute the established statistical indexes to assess the calibration accuracy by
comparing the predicted output with the measured data;

• Reiterate from step 2, if the calibration acceptance criteria are not met.

ASHRAE acceptance criteria were used to calibrate the all-electric model with 2014
measured data from the site which consists of a dataset with a 15 minute time reso-
lution (Mustafaraj et al., 2014). Given that the overall objective was to calibrate the
building demand flexibility as secondary reserve and not for frequency response, a 15
minute resolution was considered to be su�cient. This can be justified in the context
of the technical specifications associated with the provision of ancillary services in the
Irish electricity market (Commission for Energy Regulation, 2013). Two statistical
indexes were selected to assess the accuracy of the calibrated model, the Mean Bias
Error (MBE) and Cumulative Variation Root Mean Squared Error (CVRMSE) calcu-
lated as shown in Eq. 1 and Eq. 2 respectively, where the term mi and si represent the
measured and simulated output, while N is the number of data points in the interval
and m̄ is the average of the measured data points.

MBE(%) =

PN
i=1(mi � si)PN

i=1mi

(1)

CV RMSE(%) =

q
(
PN

i=1
(mi�si)2

n

m̄
(2)

Although MBE su↵ers from a cancellation e↵ect, the use of two di↵erent indexes can
provide a balanced assessment. Furthermore, these two indexes are the most common
in the building modelling literature (Raftery, 2011; Reddy, Maor, & Panjapornpon,
2007; Westphal & Lamberts, 2005) and are recommended by ASHRAE as standard
indexes for building calibration. In particular, ASHRAE (2002) establishes a 5% limit
for MBE and a CVRMSE 15% threshold for calibration using monthly data. Using
hourly data points, the suggested limits are 10% and 30% for MBE and CVRMSE,
respectively. There are no standard calibration thresholds for higher resolution than
an hourly basis (Coakley et al., 2014).
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5. Results

5.1. Model calibration

The building did not have a monitoring and data acquisition prior to retrofitting.
Therefore, the EnergyPlus model of the pre-retrofitted building was calibrated using
historical electricity and heat demand data. The only available data to estimate the
heat demand was historical heating fuel consumption records and the thermostatic
setpoints, as confirmed by the building owner. An experimental on-site stoichiometry
test revealed a boiler e�ciency of 85%. The total yearly average amount of kerosene
required to heat the building was 1,886 litres that provides approximately 19,200
kWh (conversion factor of 10.18 kWh/l). Finally, historical electricity bills were used
to determine an average annual electricity consumption, which were equal to 2800
kWh/year. The Energy Plus model of the pre-retrofitted building was then calibrated
on this basis achieving results within the ASHRAE monthly calibration standards.

The retrofitted building EnergyPlus model shown in section 4 was calibrated by
using the data collected over the year 2014. A total of 8760 hours and approximately
35000 data points for each of the sensors were collected during the experimental cam-
paign. The following sections describe the procedure and results obtained by the cali-
bration of each subsystem considered.

5.1.1. Thermal envelope and HVAC system

As described in section 4.4, the building was occupied by two adults for the whole
duration of the research. Since the activity patterns were not tracked for privacy
reasons, it was not possible to calibrate the model over the whole season according
to the ASHRAE criteria. Moreover, given the limited floor area of the building, the
manual operation of appliances and windows a↵ected the hourly based calibration,
despite the accuracy of the building elements and systems modelled. These issues are
common in the calibration process for small buildings, when the end user activities are
not tracked and they a↵ect the internal heat gains and, consequently, the accuracy of
the calibration (Hopfe & Hensen, 2011). For these reasons, the calibration was carried
out using metering equipment for a short time period (Short-Term Energy Monitor
test (STEM)) when the building was not occupied (Coakley, 2014).

The calibration of the thermal envelope was performed on five selected days when
the occupants were not in the building. The calibration results for the five days are
illustrated in Table 6. During these five days, the measured temperature decay of
the building versus the model was used to calibrate the thermal envelope. It can be
noted that both the MBE and the CVRMSE are below the hourly ASHRAE standards
(ASHRAE, 2002). Similarly, Figure 6 illustrates the temperature decay of the simu-
lation versus the sensor data for the 1st of May. The MBE index on the secondary
axis of the figure is based on a 15 minute resolution. The internal temperature of
the simulation minus the measured data at 01:00 hrs shows a 0.5�C di↵erence while
at 23:30 hrs the di↵erence is observed to be �0.3�C. Since the weather file shows a
negative bias for solar radiation, it resulted in a constant internal temperature drop
in the simulation, while the measured internal building temperature increases due to
the solar heat gains during the day. However, from the calibration perspective, the
di↵erence was estimated within +/- 0.5% MBE and is therefore considered negligible.

Figure 7a shows the results obtained from the calibration of the GSHP carried out
with the experimental data collected during the whole of 2014. It is noted that the

17



Pr
ep
rin
t

Figure 6.: Thermal envelope calibration for a selected day (1st May 2014).

Table 6.: Thermal envelope calibration for selected days (15-min resolution)

Selected day MBE min% MBE avg% MBE max% CVRMSE avg%

17 March 2014 -1.1 4.13 9.5 4.46
30 April 2014 1.4 3.62 4.8 3.51
01 May 2014 -0.9 1.01 3.4 1.19
13 October 2014 0.6 4.06 11.2 3.25
16 October 2014 5.1 9.21 16.9 3.96

associated calibration was within ASHRAE thresholds (ASHRAE, 2002). Specifically,
the monthly calibration resulted in a CVRMSE of 3.78% and a MBE of -0.61%. Two
CVRMSE peaks (November and February), caused by a di↵erence between the op-
eration scheduled for the wood-burning stove in the model and the retrieved data,
can be also observed. Furthermore, Figure 7b shows the cumulative annual electricity
consumption of the GSHP with a 15 minute timestep resolution during the GSHP
operations. As illustrated in the figure, the occupants decided to sporadically switch
ON/OFF the heat pump, thereby bypassing the tank storage to adjust the inside
temperature during the period between the 15/04 to the 31/05. The unconventional
operation of the GSHP is evident in the graph, and it has skewed the 15-minute cali-
bration of the whole heating season which results in an MBE of 2% and a CVRMSE
of 14.7%.

The HRV system was calibrated only on a test day where both the heat pump and
the wood-burning stove were not is use. The calibration involved the tuning of two
variables: the extracted air temperature (HTINS) and the supply air temperature
(HTS). The external temperature was isolated from the selected weather station,
while the rest of the data were retrieved from sensors installed on the heat exchanger.
The schedule of the HRV in EnergyPlus was set to operate between 1000 hrs to 2100
hrs. As illustrated in the figure, besides the operational hours (1000 hrs to 2100 hrs),
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electricity consumption.

EnergyPlus outputs a default temperature value for the supply air (HTS), reducing
the air flow to 0 l/s. The hourly calibration resulted in a 9.7% MBE and 33.5%
CVRMSE. The manual operation of the HRV and the required insulation works on
the duct pipes allowed a partial calibration of the system.

Finally, the calibration process was performed on the water tank temperature utilis-
ing the data acquired by the sensor with a time resolution of 15 minutes. The heating
element was switched on by the owner as domestic hot water was required. The man-
ual operation of the 2 kW heating element represented a challenge for the calibration
process. Consequently, the month of July 2014 was selected because the heating ele-
ment was not used due to a significant solar irradiation. The temperature di↵erence
between the model and the simulation reached a peak MBE of 45% on the 27th of
July. The hourly calibration, for the month of July, resulted in an average MBE of
17.3 % and CVRMSE of 32.5%, consequently the calibration was not possible with
reference to ASHRAE criteria (ASHRAE, 2002).

5.1.2. PV system and electric vehicle

The PV model was calibrated by using 15-minute resolution data for the 12 months of
2014. Unscheduled maintenance caused the main output di↵erence in May and during
the months with less electricity generation (Nov-Dec), as well as grid disconnection
caused by frequency instability, giving rise to a 5% maximum divergence. The calibra-
tion was performed for 2014 and met the hourly ASHRAE criteria. As illustrated in
Figure 8a, a good match between experimental and numerical results were obtained,
with average annual MBE and CVRMSE of 3.6% and 12.5%, respectively.

Regarding the electric car, it was charged overnight when electricity prices were
lower. The estimated daily energy requirement of the car was 12.5 kWh in the winter
and 7.5 kWh in the summer (Marra et al., 2012). During the night time charging
period, the electricity drawn was assumed to follow the pattern assessed by the manu-
facturer (INES, 2013) and confirmed by the measured data as shown in Figure 8b. The
weekday EV energy consumption was calibrated on the basis of 15-minute resolution.
The calibrated model was aligned to the monitored data with an annual MBE of +/-
3.5% and CVRMSE of 10.4%.
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the electric vehicle.

5.1.3. Overall calibration

The main challenge faced during the calibration of the building simulation model
which a↵ected the overall model accuracy, were: (i) the calibration of the manually
operated systems, such as the HRV and DHW; (ii) estimation of the impact of the
wood-burning stove on the internal temperature; (iii) unscheduled road trips with the
EV, and other untracked activities. However, the thermal envelope, the GSHP and the
PV were calibrated using data with a 15 minute resolution, resulting in compliance
with the hourly ASHRAE standards. The present section, reports the results obtained
in terms of overall electricity consumption of the analysed building.

Figure 9a shows the hourly based cumulative metered electricity consumption ver-
sus the simulated profile for the year 2014. Additionally, on the right vertical axis
the average MBE index of the calibration for each hour is given. The graph shows
divergence at 02:00 and 08:00 during the EV charging time, mainly caused by the un-
recorded occupant behaviour. Moreover, the use of the wood-burning stove during the
winter weekends is not captured by the occupant activity model, resulting in a heating
consumption bias between 1000 hrs and 1800 hrs. The last notable di↵erence is that
some unscheduled activity at 23:00 that caused an average hourly MBE of 25%. How-
ever, the overall annual electricity consumption calibration model results having an
MBE of -1.6% and a CVRMSE of 10.5%. A higher resolution for the overall electricity
demand calibration was not possible since the occupant activities and, consequently,
the use of appliances and domestic machinery were not tracked.

Figure 9b shows the electricity profile MBE calculated values between metered data
and BES model prediction for the whole year (35,040 data points) as a frequency his-
togram. About 47% of the recorded absolute MBE values are below 30%, while highest
frequency was recorded for absolute MBE values between 0 and 10%. Additionally, the
occupant activities not captured by the model, which corresponds to an error between
91-100% in figure 9b, resulted to be equal to about 12% of the total time steps anal-
ysed.
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5.2. Analysis on energy consumption and carbon emissions

On the basis of the model calibration described in section 5.1, the resulting model
was used to investigate e↵ect of the energy e�ciency measures and associated carbon
emissions. The analysis also takes into account an annual commuting distance of 12,000
km by the dwelling occupants. This is in accordance with the average values in Ireland
(SEAI, 2017).

The results show an improvement in the overall building energy performance of
the retrofitted building (i.e., all-electric scenario) compared to the pre-retrofitted one.
Figure 10a shows that an annual reduction of end-use energy consumption of up to
45% can be achieved by the all-electric building. More specifically, observing the energy
savings breakdown associated with the di↵erent energy systems, a saving of 63% was
calculated for the case of the EV and the gasoline car, while a saving of 40% derived
from the heating system accounting for the energy consumed by the boiler for space
heating.

Moreover, data from the Irish electricity system operator (Eirgrid) was used to
calculate the carbon footprint of the building. This data contains the Irish power
grid fuel mix and the wind generation at 15-minute resolution. The average emission
intensity per MWhe from the Irish electricity system was extracted on an hourly basis
for the year 2014. The Transmission System Operators (TSO) data was processed by
interpolating the CO2 emissions on an hourly basis to each associated 15-minute time
step (Eirgrid, 2015). CO2 emissions due to the kerosene boiler were calculated by using
a value of 257 gCO

2
/kWhe (SEAI, 2012). The calibrated model was then used to assess

carbon emissions patterns and environmental impact of the all-electric versus the pre-
retrofitted model. Figure 10b shows the resulting annual CO2 emissions for the pre-
retrofit and post-retrofit building. The results show that the building carbon footprint
of the pre-retrofit house was approximately 9030 kg of CO2 (43.3 kg/m2

/CO2) in 2014.

Figure 9.: a) Cumulative annual dwelling electricity consumption depicted on an hourly
basis. b) Frequency histogram of the absolute MBE values for dwelling total electricity
consumption.
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Figure 10.: Annual performance of pre-retrofitted and all-electric dwelling: (a) end-use
energy consumption and (b) associated total carbon emissions.

On the contrary, the all-electric house emitted 6400 kg of CO2 (30.8 kg/m
2
/CO2),

thus demonstrating an emissions reduction of approximately 28.9%. Generally, the
all-electric building has a carbon emissions value 48% below building national average
for 2011 (SEAI, 2013).

In order to investigate the influence of di↵erent renewable energy penetration levels,
two representative days with di↵erent wind generation shares - calculated by dividing
the Irish electricity demand by the the daily wind generation - were selected. These
days have a similar average ambient temperature (2.5 �C), but di↵er in term of gen-
eration wind share, i.e., 20% and 4% for the high and low wind penetration scenarios,
respectively. The results are shown in Figure 11 in terms of total daily carbon emissions
for each scenario considered. It can be seen that the retrofitted all-electric building
displays a reduction of the carbon emissions compared to the pre-retrofitted building,
ranging from 4% reduction for the low wind penetration day, to 18% for the high wind
penetration day.

Therefore, switching to a retrofitted all-electric building configuration may allow
significant carbon emissions savings, generally depending on the penetration of RES
achievable at the generation level. If a high share of RES occurs, while the emissions
associated with domestic appliances remain almost the same, about 12% and 44%
savings can be achieved in terms of space heating and car fuel consumption (gasoline
versus electricity). However, when a low RES share occurs, carbon emission savings
decrease to 4% only, mainly due to the greater emissions associated with the heating
system (about 5%).

From an Irish perspective, reductions in carbon emissions could be achieved by
retrofitting of selected residential building stock with all-electric technologies, when
considered in conjunction with RES penetration in Ireland. As discussed in section 2,
almost 60% of Irish building stock exhibit poor energy standards, falling into the lower
BER categories (i.e, C-G). However, as the distribution of the building archetypes is
not homogeneous, understanding the potential impact of retrofitting the residential
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Figure 11.: Daily carbon emission from the pre-retrofitted and retrofitted (all-electric)
dwelling for two representative days with high-wind and low-wind penetration.

building stock at a local regional or county level is potentially of interest. Figure 12
illustrates the potential of carbon emissions reduction for di↵erent retrofit percentages
(i.e., penetration of retrofitting measures in a sub-section of building stock consisting
of detached dwellings only). The baseline case is represented by a pre-retrofitted de-
tached dwelling equipped with a boiler. The sensitivity analysis, based on two RES
penetration scenarios (i.e, high wind and low wind), highlights potential carbon emis-
sions reduction for this section of the residential sector of up to 14%. This reduction is
can be associated with the building distribution and the overall population density at
a county level. Therefore, in rural counties such as Donegal or Leitrim, the potential
impact of a deep retrofit of detached houses is greater, whereas in urban areas such
as Dublin and Cork, with less detached houses, the relative impact is lower. This is
a potentially useful perspective for the evaluation of targeted policies fostering more
widespread retrofitting intervention for residential detached buildings, which together
with concerted deployment of smart grid infrastructure and RES to smooth grid insta-
bility and congestion, could potentially increase the overall e�ciency of the building
stock.

6. Conclusions

The electrification of thermal loads and transport, together with higher penetration
of renewable energies at a building level, has been recognised as one possible contrib-
utor to reducing the carbon emission. Using a calibrated building model, the present
paper investigated the potential energy savings associated with the implementation of
retrofitting measures on an Irish residential dwelling.

A residential detached house, representative of a building archetype, which is typical
of about 40% of the overall residential stock in Ireland, was selected as an experimen-
tal test bed. The building, located in a rural area, was progressively retrofitted with
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Figure 12.: Carbon emissions reduction for di↵erent percentages of retrofitted de-
tached houses (20-40-60-80) and di↵erent RES penetration scenarios. Note: Dublin
county is subdivided into two groups: Fingal and Dublin (South Dublin, Dun
Laoghaire/Rathdown and Dublin City).

all electric equipment, including a PV and a GSHP systems. Moreover, an electric
vehicle, charged via the household electricity supply, replaced a conventional gasoline
automobile. The retrofit measures installed in the building were representative of spe-
cific measures that are likely to be adopted by many future new residential building
developments.

Following the retrofit phase, the building was equipped with a HAN consisting of
approximately 30 sensors with a 15 minute monitoring resolution. The experimental
data collected during the experimental campaign was used to calibrate an EnergyPlus
model of the dwelling. Specific metrics (i.e., MBE and CVRMSE) were introduced to
assess the accuracy of each subsystem model to predict the energy consumption. The
objective of developing an accurate calibrated building model using measured data
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was to test and analyse the impact of retrofit measures on the building consumption
and on associated carbon emissions.

The results of the calibration procedure showed that the EnergyPlus model was
capable of reproducing the building electricity consumption with an overall accuracy
of MBE = �1.6% and CV RMSE = 10%. Specifically, the calibration of the GSHP
model was within the ASHRAE thresholds, with values of MBE and CVRSME equal to
3.78% and -0.61%, respectively. Moreover, a satisfactory match between experimental
and numerical results were obtained for the PV system, (MBE and CVRMSE of 3.6%
and 12.5%, respectively) and the electric vehicle (MBE and CVRMSE of 3.5% and
10.4%, respectively). Since the activity patterns of the occupants were not tracked for
privacy reasons, the calibration of the thermal envelope was performed on five selected
days when the occupants were not in the building, showing MBE and CVRMSE values
below the hourly ASHRAE standard.

Post calibration, the resulting EnergyPlus model was used to investigate the ef-
fectiveness of the implemented retrofitting measures in terms of energy savings and
carbon emissions reduction. The results showed a 45% increment the overall building
energy performance of the retrofitted building (i.e., all-electric scenario) compared to
the pre-retrofitted building (no retrofitting). Moreover, data from the Irish system op-
erator was used to calculate the carbon footprint of the building. A carbon emissions
reduction of approximately 28.9% was obtained by the retrofitted all-electric building
compared to the pre-retrofitted one.

Finally, the impact of the retrofitting measures in terms of carbon dioxide emis-
sions for two di↵erent scenarios of wind penetration (high and low wind power gener-
ation) was carried out. Generally, the retrofitted all-electric building always displayed
a reduction in the carbon emissions compared to the pre-retrofitted building, which
ranged from 4% to 18%, for the low wind and high wind penetration scenarios, re-
spectively. Furthermore, the analysis was extended to a country level by considering
di↵erent penetration scenarios of the retrofitting (all-electric) measures for one subset
(detached dwellings) of the Irish building stock. Since the distribution of the building
archetypes in Ireland is not uniform on a geographical spatial basis, the investigation
was performed at county level to highlight potential non-homogeneity. Results showed
that implementing the retrofitting measures at scale could lead to a carbon emissions
reduction under high renewable energy penetration scenarios up to 14% for rural ar-
eas, while higher density areas exhibit lower benefits. Therefore, targeted policies at
a county level, together with a concerted deployment of smart grid infrastructure and
RES to smooth grid instability and congestion, could increase the overall e↵ectiveness
of retrofit measures.
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