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Abstract

This paper assesses the performance of control algorithms for the imple-
mentation of demand response strategies in the residential sector. A typi-
cal house, representing the most common building category in Ireland, was
fully instrumented and utilised as a test-bed. A calibrated building simu-
lation model was developed and used to assess the effectiveness of demand
response strategies under different time-of-use electricity tariffs in conjunc-
tion with zone thermal control. Two demand response algorithms, one based
on a rule-based approach, the other based on a predictive-based (machine
learning) approach, were deployed for control of an integrated heat pump
and thermal storage system. The two algorithms were evaluated using a
common demand response price scheme. Compared to a baseline reference
scenario, the following reductions were observed: electricity end-use expen-
diture (20.5% rule-based and 41.8% predictive algorithm), utility genera-
tion cost (18.8% rule-based and 39% predictive algorithm), carbon emissions
(20.8% rule-based and 37.9% predictive algorithm).
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1. Introduction

Buildings account for 39% of the total primary energy consumption [1].
As a result, various EU legislation initiatives on energy efficiency have been
passed in the recent years to reduce their carbon emissions [2]. New energy
efficiency measures, such as increasing thermal envelope insulation, more ef-
ficient heating and cooling systems and the penetration of Renewable Energy
Systems (RES), are contributing to the reduction of the overall energy con-
sumption [3] and are key to a low-carbon European economy [4]. However,
renewable energy penetration at a building and system level are increasing the
supply/balance variability in the power system due to the intermittent nature
of their generation and widely dispersed geographical locations. These chal-
lenges could cause congestion and atypical power flows which would strain
the underlying electricity transmission and distribution network [5].

Proposals for new buildings envision a system, equipped with connected
sensors and smart Energy Management System (EMS), which can control
heating systems and appliances, responsive to smart grid signals [6]. The
controllers can be embedded in a Home Area Network (HAN) and become an
integrated part of the dwelling. Such features would enable buildings to adapt
their electricity demand, thereby assisting in reducing the grid frequency
instability [7], generally caused by the increase of variable generation [8].

In this scenario, a network of connected buildings would be able to actuate
balancing strategies triggered by demand response signals. However, the
realisation of these advanced smart grid features requires rapid prototyping
and validation of EMS control algorithms. Fuller et al. [9] notes that until
equipment and algorithms can be analysed, it is difficult for utilities and
regulators to install, operate and exploit these new resources.

Building simulation software can be utilised to assess the value and the
risks associated with the adoption of new technologies capable of providing
electricity demand flexibility. Building simulation models can save consider-
able resources compared to experimental analysis and, if properly calibrated,
are accurate to within 10% and 30% compared to the metered data [10].
Furthermore, building simulation software offers the opportunity to perform
energy assessment across different time intervals from annual to sub-hourly
assessment, without the need for hardware and communication network pro-
totypes.

In the current literature, there are numerous examples of controllers de-
veloped to reduce energy consumption while implementing Demand Response
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(DR) measures. DR is one of the Demand Side Management (DSM) measures
that has been promoted since the 1970’s in the UK and other countries, so as
to reduce high winter peaks as well as avoiding associated grid upgrade costs
[11]. More recently, there has been renewed interest in DR as a mechanism
to increase the percentage of renewable energies in the system [12].

DR has been defined as ”changes in electricity use by demand-side re-
sources from their normal consumption patterns in response to changes in the
price of electricity or to incentive payments designed to induce lower electric-
ity use at times of high wholesale market prices or when system reliability is
jeopardised” [13]. A recent overview on the development of demand response
programs in Europe can be found in De Rosa et al. [14]. DR measures require
building automation systems which have not yet widely adopted in residen-
tial buildings [15]. Furthermore, quantifying the savings of DR measures and
the flexibility provided by a single building is challenging. Several studies
aiming to find effective means of shifting loads and developing EMSs with
embedded optimisation algorithms are currently ongoing. A recent review
on algorithms and modelling techniques was carried out by Vzquez-Canteli
and Nagy [16].

For instance, Mohsenian-Rad and Leon-Garcia [17] describes a residen-
tial control algorithm capable of reducing peak energy load up to 37% and
shifting loads to periods of lower electricity pricing. More recently, Parizy
et al. [18] developed an appliance scheduling technique to implement de-
mand response reducing the overall peak average ratio. The optimisation
algorithm shows a reduction in energy consumption and a more efficient use
of the appliances, however, the benchmark was exclusively numeric, without
considering occupancy profiles or specific weather conditions. Additionally,
Bahrami et al. [19] developed a distributed controller for optimal appliance
scheduling. The controller was able to reduce the average peak consumption
up to 17%. Despite a significant average peak ratio reduction in the building
consumption, the authors do not evaluate the impact of the controller on the
internal building temperature and on the thermal comfort for the occupants.

Other researchers focused on EMS hardware design which incorporates
demand response capabilities. Hu and Li [20] propose a controller that can
provide DR capabilities without providing a metric for the assessment of the
flexibility exploited. The proposed controller, does not have an interface and
it cannot be integrated to a smart grid system. On the other hand, Ren et al.
[21] focused on a smart grid control infrastructure without a comprehensively
assessing the impact of the energy profile on the building.

3



Kolokotsa et al. [22] developed an integrated indoor management system
for buildings using a fuzzy controller. The authors considered the comfort
constraints of the occupants by tuning and optimising the system using two
demonstration buildings in Greece. The objective function of the controller
aimed to reduce the total energy consumption, however, assessing the con-
troller from a grid integration perspective was out of the scope of the study.
The research demonstrated how the fuzzy controller satisfies the indoor com-
fort requirements, while reducing the energy use by 23%.

A relevant work in the area is the one carried out by Alimohammadis-
agvand et al. [23]. The research compares four rule based algorithms in
a residential building modelled with a Building Energy Simulation (BES)
software equipped with a ground source heat pump using different control
techniques. The results show a decrease in energy cost and an overall increase
in the heating system efficiency of up to 15%. Additionally, Arabzadeh et al.
[24] describes the integration of a data-driven predictive demand response
controller for residential buildings with heat pump and on-site energy gener-
ation reducing the heating costs of up to 12%. The authors investigate the
effect of the prediction error on energy cost saving for a predictive DR control
using a synthetic data set. Liu and Heiselberg [25] evaluates the performance
and potential of the energy flexibility for a commercial building with weather
prediction control of a convective building energy system with different met-
rics. The application of the predictive control strategy integrated with the
two-pipe heating and cooling system provides better performance of energy
flexibility compared to simple rule-based control.

The majority of advanced DR control algorithms examined in the litera-
ture to date have been developed and trained on simulated data [26]. This is
because the evaluation of the effectiveness of DR control algorithms in real
buildings often requires considerable periods of analysis before a consistent
validation can be arrived at, and test conditions are not easy to reproduce
because of the unpredictable nature of human behaviour or weather condi-
tions. Moreover, when the evaluation involves critical infrastructure such
as a power grid or advanced heating and cooling equipment, trial-and-error-
approaches can compromise the integrity of the test bed and the related
systems. Therefore, the ability to develop control algorithms using measured
data, and assess their performance within a co-simulation environment which
exploits a calibrated BES model is a novelty element and provides a step for-
ward to narrow the gap between research, development and implementation.
In comparison, in order to perform a full cycle test on a physical building,
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this hybrid methodology can reduce the test cycle time, reduce the hard-
ware infrastructure and also allows for the replication of the experimental
conditions [27].

This paper outlines the design, the development and the testing of an
EMS which provides DR capabilities for residential buildings using a cali-
brated energy building model. The novelty of the algorithm resides, not only
in the combination of the optimisation technique and the machine learning
model used for finding an optimal strategy, but also in the use of metered
data to train and test the algorithms. Furthermore, the algorithm bench-
mark has been carried using an open source co-simulation framework which
allows decoupling of the building simulation model and the controllers.

The assessment is divided into two stages: (i) the first EMS prototype is
based on a rule-based algorithm, while (ii) the second more advanced algo-
rithm, identified as a smart algorithm, aims to reduce the electricity expen-
diture by optimising Thermal Energy Storage (TES) charging/discharging
cycles. In the following sections, the methodology, the algorithm descrip-
tions and the simulation results are described in more detail.

2. Methodology

The current work describes the development of a rule based and a smart
algorithm, where both algorithms were subjected to a dual purpose objective
function. The algorithms were developed to find the optimal strategy in a
DR scenario where a price tariff signals the DR event. The algorithms were
tested using the building co-simulation framework [28]. The open source
co-simulation platform was coupled with the calibrated building model and
the exposed Application Program Interface (API). The infrastructure repre-
sented the test harness for the two developed EMS approaches; the rule-based
and the smart algorithm. The assessment includes the perspectives of the
main stakeholders involved in the development of the EMS with DR capa-
bilities.

2.1. Rule based

The rule-based control algorithm was developed and tested on the build-
ing with the objective to reduce the energy expenditure and be responsive
to a DR signal exploiting the thermal storage connected to the heat pump.
A heuristic response to a price signal was then embedded in the overall EMS
architecture. The initial test of the rule-based algorithm has been outlined
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in Pallonetto et al. [29] and is summarised in the current paper in Section 5.

Figure 1: Overview of the software infrastructure linked with references to the development
phases

2.2. Smart algorithm

The smart algorithm was developed in different stages which are refer-
enced in Figure 1. The development process was divided into four main
phases as follows:

1. EMS development (Labelled 1 in Figure 1). This phase involved the
development of an object oriented code skeleton and the data structure
for the search tree. The outcome of this phase is a high-level flow
diagram of the algorithm.

2. Data modelling (Labelled 2 in Figure 1). Machine learning techniques
were used to identify a suitable statistical model that can provide the
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Table 1: Time of Use electricity tariffs (e/kWh)

Weekdays Weekends

A B C D Flat SMP (avg) A B C D Flat SMP (avg)

00:00-08:00 0.12 0.11 0.1 0.09 0.135 0.046 0.12 0.11 0.1 0.09 0.135 0.044

08:00-17:00 0.14 0.135 0.13 0.125 0.135 0.065 0.14 0.135 0.13 0.125 0.135 0.062

17:00-19:00 0.2 0.26 0.32 0.38 0.135 0.097 0.14 0.135 0.13 0.125 0.135 0.088

19:00-23:00 0.14 0.135 0.13 0.125 0.135 0.071 0.14 0.135 0.13 0.125 0.135 0.067

23:00-00:00 0.12 0.11 0.1 0.09 0.135 0.053 0.12 0.11 0.1 0.09 0.135 0.053

foundation for the predictor module. The output of this phase was a
prediction model used by the optimisation algorithm.

3. Optimisation algorithm (Labelled 3 in Figure 1). This phase involved
the development of the optimisation algorithm within the EMS infras-
tructure, the data structures to support the search tree evaluation and
the tree pruning techniques.

4. Model integration (Labelled 4 in Figure 1). This involved the assembly
of the optimisation algorithm, the data model and the EMS skeleton
and the integration with the API. This phase required several itera-
tions of bug fixing and feature implementation. It also entailed the
synchronisation of the API and the controller workflows.

Each of the development phases required one or more test cycles and the
alignment of the interface in order to facilitate the communication of the
modules. At the end of the development phases, the smart algorithm was
tested against the baseline and the rule-based algorithm using January 2014
data during the peak heat demand for the year. The assessment was based
on several standard metrics as described in Section 7.

2.3. Electricity price

Time of use electricity tariffs are increasingly being utilised in different
parts of the world and to a lesser extent in European markets [30]. In 2010,
the Irish Commission for Energy Regulation initiated a residential smart
meter trial, with associated tariffs (A, B, C, D, Flatrate) as shown in Table
1 [31]. The price scheme is structured on the basis of; peak, off-peak and
night tariffs, to reflect the average Irish System Marginal Price (SMP) and
consequently of the overall electricity demand.
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3. Test bed dwelling

The selected building is a detached bungalow-type house, which repre-
sents 40% of the Irish building stock and is the most common single build-
ing category [32]. It was constructed in 1973 with increased thickness of
insulation materials in its opaque elements compared to the contemporary
standards.

Figure 2: Test bed house and EnergyPlus model

The dwelling, a single storey building, was constructed using a two leaf
concrete wall with core insulation. Therefore, the inner wall displays sig-
nificant passive thermal energy storage capacity. The floor area is 205m2

and the overall window to wall ratio is 15%, with a 22% and 10% ratio on
the south and north facades, respectively. The house has 12 rooms and an
unused attic space at roof level. Although its architectural characteristics
are those of a typical rural Irish bungalow dwelling of the 1970s, its fabric
specifications are very close to the current Irish building regulation values
[33] as outlined in Table 2. The building thermal performance is also aligned
with the average residential dwelling outlined in the 2020 scenario research
published in the Residential Energy Roadmap for Ireland [3].

As part of a retrofit measure, a photovoltaic panel array consisting of 30
panels, of a total nominal power of 6 kWp was installed and solar thermal
collectors were installed for the supply of Domestic Hot Water (DHW).

The space heating system is a 12 kW (thermal output) Ground Source
Heat Pump (GSHP). The heat pump uses water as a heat source. Mea-
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Table 2: U-Value of different building elements

Building Element

U-Value Test

building

(W/m2K)

U-Value Irish

Building

Regulations[33]

(W/m2K)

Walls 0.25 0.21

Roof 0.25 0.21

Windows 1.7 1.6

Floor 0.21 0.21

Figure 3: Test bed building, heat system design and sensor metering
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surements indicated that the water temperature of the source varied over
the heating season between 8/6/8◦C for Oct/Feb/May, respectively. For the
provision of thermal energy storage, the heat pump was equipped with a hot
water storage tank of 0.8 m3.

The system illustrated in Figure 3, was metered and the EnergyPlus
model was calibrated using ASHRAE standards using sensor data from the
year 2014. Although there is a lack of standards for sub-hourly calibrations,
the thermal envelope, the Heat Pump (HP) and the PhotoVoltaics (PV) were
calibrated to a 15-minute resolution, by adopting hourly ASHRAE standards
to make the model suitable for the assessment of DR strategies.

4. EMS Design and Implementation

In the following section, the design and implementation of the EMS is
described from the point of view of the software architecture, simulation
settings and control flow. The core design and implementation described
applies to both the rule-based and the smart algorithm.

4.1. Software Architecture

The developed EMS was connected to the building simulation model us-
ing the open source software infrastructure described in [28]. The system
remotely controls a building simulation through a cloud infrastructure, called
SimApi. SimApi is developed using a Model View Control (MVC) framework
(Laravel 4.2 [34]) on top of the PHP [35] programming language stack. At
each simulation timestep, the routing controller stores all the API requests
from the EMS in a relational database [36], while it retrieves sensor readings
from the model. The communication between the database and the building
simulation model is realised through theBuilding Controls Virtual Test Bed
(BCVTB) [37]. BCVTB and the API are connected to the database via Java
Database Connectivity (JDBC) technology [38].

The developed EMS exchanges a JavaScript Object Notation (JSON)
data structure, which contains building thermostatic settings and actions for
controlling the heating system, with the API [39]. For each simulation of N
time-steps, the EMS sends N−1 actions that represent the control flow of the
system, and receives N + 1 JSON data structures with the sensor readings.
A software package developed in Java acts as the simulation manager and in
this work, is referred to as a Mediator.
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Table 3: Thermostatic set points (°C)

Weekdays Weekend
00:00 - 06:30 17 °C 20 °C
06:30 - 09:00 19 °C 20 °C
09:00 - 16:00 16 °C 20 °C
16:00 - 00:00 18 °C 20 °C

When the EMS invokes the API endpoint, the simulation begins and the
Mediator transfers the appropriate EnergyPlus files, the weather data, and
the settings to the simulation server. A BCVTB instance is then triggered,
which initialises the EnergyPlus environment. In the current work, the EMSs
developed, both rule-based and predictive, are tested on a calibrated building
simulation model of the residential test-bed house.

The thermal comfort settings used by the building owner are given in
Table 3 and they represent hard constraints in the algorithm. The settings
were mutually agreed upon with the building owner. The occupants are
not in the house during weekdays between 0900-1600 hrs. Consequently, the
thermal comfort score during the day is expected to align with the lower PMV
boundary. However, the temperature sensor is located in the corridor which
is one of the colder zones within the building while the thermal comfort score
is calculated within the living area, which is affected by internal heat gains
of the kitchen and the wood stove. The weather data used in the current
work is retrieved from a weather station located at Dublin Airport.

4.2. Algorithms objective function

This research focuses on the implementation and testing of two EMSs,
developed using a real-time smart meter data and weather data. The purpose
of the objective function is to minimise the electricity expenditure and is
described as:

min
(Ttk,Cset,PVe)

(CTP (Ttk, Cset, PVe)) (1)

Tset(t)− Tbd ≤ Tint(t) ≤ Tset(t) + Tbd t = 1..N (2)

Tmin ≤ Ttk ≤ Tmax t = 1..N (3)

where N is the number of time-steps, C is an array with the price of electric-
ity at each time-step (e/kWh) and P represents the electricity consumption.
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P (Ttk, Cset, PVe) is the energy consumption in kWh determined by the build-
ing simulation model at each time-step t. The cost optimisation depends on
the following three variables: (i) the temperature of the tank (Ttk) which is
maintained within the range Tmin and Tmax, (ii) the thermal energy supplied
to the zones by means of the circulation pump which can be either enabled
or disabled (Cset) and, (iii) the energy produced by the RES, labelled PVe.

At each time-step, the zone temperature (Tint) is constrained at the ap-
propriate set point and an associated 2°C bandwidth (i.e., +/- 1°C around
the set point), as shown in Equation 2; while Equation 3 constrains the stor-
age tank temperature between its MIN and MAX temperature settings. The
function and the constraints reported in Equations 1 to 3 have the objective
of minimising the electricity cost and energy consumption of the building,
by controlling the temperature set point of the storage tank and maintaining
the internal thermal comfort. The detailed description of the strategy of the
smart algorithm is reported in Section 6.4.2, while the rule-based algorithm
achieves a sub-optimal result by charging the thermal storage before a price
signal and reducing the electricity consumption during the peak hours as
described is Section 5.

4.3. Simulation settings

The assessment of the two EMS systems was performed during the month
of January 2014, a period during which peaks of Heating Ventilation and Air
Conditioning system (HVAC) system usage occur. The total simulation time
is 30 days with a time-step resolution of 15 minutes. Three controllers, the
baseline, the rule-based and the smart algorithm were compared.

The baseline simulation does not use any controller to charge and dis-
charge the storage tank. Instead the heating system is controlled by the
thermostatic set points detailed in Table 3. For the baseline case to meet the
dwelling comfort constraints, the heat pump is switched on whenever needed,
even during peak times.

4.4. Description of the control flow

The simulation period is one month, equivalent to 2881 time-steps at
15 minute resolution. At each time-step, the EMS retrieves the data from
the co-simulation infrastructure via the API. The software infrastructure is
synchronised to the BES model simulation through the database. If the
sensor information is updated, then, based on the control algorithm, the
system controls the heating system by the TES thermostatic setting. The
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command sent to the SimApi server embeds the setting point of the thermal
storage and the status of the circulation pump.

After each iteration, the EMS changes the status of the existing instance.
When the update triggers the API controller, the instance status is updated
in the persistent layer and the mediator waits the completion of the building
simulation step via BCVTB, which coordinates the EnergyPlus instance.
During the simulation, all the sensor results are sent and stored in the SimApi
database by BCVTB. Thus, the EMS can retrieve the previous readings
during the simulation and it controls the simulation by the API calls.

In the overall control flow mechanism, a scheduler component collects
periodic reports from a monitor and a price predictor component and it
analyses the data and decides an optimal choice for energy consumption
scheduling. The controller manages all household appliances submitting the
specified power levels over either wired or wireless HAN.

5. EMS Rule-based

In the rule-based EMS, the heating system is controlled according to
the flow chart shown in Figure 4 which has been adapted for a Hypertext
Transfer Protocol (HTTP) communication scenario. The objective function
of the system, as per Equations 1 to 3, is to minimise energy consumption,
maintaining the inside temperature within a comfort set point temperature
illustrated in Table 3. The four rules (as per Figure 4) are designed to
adapt to the specific tariff peak hours and occupant lifestyle, e.g., when they
are at home or at work. The strategy to achieve this goal is to shift the
energy consumption of the heating system two hours before the peak time,
by charging the thermal storage.

Irrespective of the status of the circulation pump, the storage tank min-
imum and maximum temperatures are set at 40◦C and 55◦C, respectively.
The maximum temperature outlet of the heat pump is 60◦C, therefore taking
into account the thermal losses from the storage tank, the effective maximum
temperature set point achievable is slightly less than 55◦C. The minimum
temperature set point is the result of a parametric analysis performed on the
building model and validated on the physical building as described in [40].
These settings allow the system to also meet the energy demand during the
winter period.
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Figure 4: Control flow rule-based algorithm
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5.1. Algorithm description

The rule-based algorithm creates and uses a single instance of a HTTP
client class during its execution for all communication to the API. In the
code repository, a utility class that outputs all the initial settings and the
static variables such as temperature, server name and others was developed.

The program has two conditions based on the sensor reading at each
timestep. The first condition checks whether the data point for the timestep
is produced or not. The timestep counter is incremented only if a new data
point is generated, whereas the second condition checks if the control needs
to disable the heating system. This is implemented by controlling the status
of the circulation pump and lowering the storage tank set point temperature
at its minimum temperature.

The second condition is verified only between 0900 hrs and 1500 hrs,
which represents the period when there is no one at home. Between 1500
hrs and 1700 hrs, the controller enables the heating system, keeping the
circulation pump switched off to charge the thermal storage. The control
instructions and sensor readings are stored in the SimApi database during
the whole simulation.

From the perspective of control flow, the algorithm embedded in the
EMS is equivalent to the the rule-based which was tested in Pallonetto et al.
[29]. However, instead that controlling the BES directly, the EMS sends the
commands to the API.

6. EMS - Smart algorithm

This section describes the design and implementation of the smart al-
gorithm for the described residential building. The algorithm is defined by
four main modules developed as classes. Each class exposes a set of methods
which are invoked by a special class called the main class. The four modules
are described in the following sections. The predictors have been developed
as machine learning algorithms using a black box modelling approach. As
described by Alpaydin [41], the advantages of a machine learning algorithm is
the possibility to capture the behaviour of the building by exclusively using a
data driven approach. A measurement dataset consisting of internal temper-
atures, weather data and equipment state such as PV output or storage tank
temperature, can be analysed to develop an approximate model of the inside
temperature of the building or of the total electricity consumption. The main
advantage of such a black box model is the possibility to automatically apply
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Figure 5: Smart algorithm components layout

the model on different buildings and so replicate the methodology and the
algorithms. The interactions of these four modules are illustrated in Figure
5 and each component is described in detail the next sections.

6.1. Weather forecaster

This module forecasts the weather conditions for subsequent hours. The
module was designed to retrieve forecast data from an API which provides
a forecast of the outside temperature and the solar radiation [42]. In the
assessment of the algorithm described in Section 7, however, stored weather
data forecast for the month of January 2014 was used in order to reduce
network overload.

6.2. Electricity price predictor

This module forecasts the electricity price of a future point in time. In
the current research, the electricity price is dependent only on the time of
the day and day of the week. Consequently, in the implementation tested,
given these two parameters, the predictor outputs the correspondent Time
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of Use (TOU) tariff for that time and day. The current implementation does
not limit the time horizon window, however, the algorithm uses the module
with a maximum time horizon of two hours. The resolution of the prediction
is 15 minutes.

6.3. Building temperature predictor

The inside temperature dataset for a 12 month period (2014) was used
to develop the building temperature predictor. The dataset has 35040 data
points, equivalent to a measurement every 15 minutes. The average inside
temperature in the building is 19 ◦C with a standard deviation of 1.6 ◦C. The
maximum recorded temperature was 27.5 ◦C (July). A minimum tempera-
ture of 14.8 ◦C was recorded in November, when the building was unoccupied
for prolonged period and all systems where non-operational.

The objective of the building temperature predictor module is to provide a
15 minute short term forecast of the inside temperature of the building. Given
a set of selected features, the output is the internal temperature variation for
the next timestep. The predictor developed was tuned to forecast with a 15
minute time resolution to match the EnergyPlus simulation.

The predictor was developed in three phases: data collection and analy-
sis, feature selection, model description and training. The three phases are
described in the next three sub-sections.

6.3.1. Data Collection and Analysis

The data repository used to develop the building temperature predictor
was collected from the sensors in the HAN of the test bed building and a
weather station located at Dublin Airport. The time span for the collected
data was the whole heating season of 2013/2014, from 1st of October to the
30th of April.

The objective of the algorithm was to control the heating system and
the associated TES, maintaining the thermostatic setpoints and reducing
the energy expenditure and consumption. The designed building tempera-
ture predictor has a number of proxy variables as input and an inside delta
temperature as output. Consequently, the first step was the selection of the
proxy variables which, after a second statistical selection process, would be-
come the features of the model. Using the domain knowledge of the system
and the available weather and sensor data, a dataset with the most relevant
variables was combined as follows:
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1. Outside temperature ( ◦C ) (outT). The indoor temperature is con-
sidered correlated to the outdoor temperature variations. Source: air
temperature sensor installed outside the house.

2. Wind speed (m/s)(ws). In the presence of high levels of infiltration
the wind speed can affect the inside temperature. Source: weather
conversion software using Dublin Airport weather station data.

3. Inside temperature ( ◦C ). (inT) This variable has been selected be-
cause it is directly correlated to the target of the model. Source: air
temperature sensor installed in the corridor, zone Z3:Corridor.

4. PV production (kWh) (PV). This variable can be a proxy for internal
heat gains. Source: electricity meter beside the inverter in the utility
room.

5. Storage tank temperature ( ◦C ) (tesT). The temperature of the TES
modulates the effectiveness of the heat transfer to the fluid circulating
in the heat emitters. Source: water temperature sensors inside the
TES.

6. Heat pump electricity consumption (kWh) (hpC). The heat pump elec-
tricity consumption can be a proxy to the TES temperature. Source:
electricity meter.

7. Circulation pump electricity consumption (kWh) (cpC). This can be
correlated to the inside temperature. Source: electricity meter.

The data was normalised (feature scaling [43]) and prepared for the feature
selection according to best practice [44]. The normalisation process used the
min-max algorithm which, according to Al Shalabi et al. [45], displays the
highest accuracy for machine learning and decision tree algorithms.

After a data cleaning process and deletion of outliers and inconsistent
sensor readings, the working data set size was composed of 19,643 data points
at 15 minute time resolution. The data cleaning process affected less than
the 5% of data and it is not relevant for the accuracy of the model.

The dataset was divided into two subsets based on the circulation pump
operation schedule. Splitting the dataset facilitated the development of two
different models, one for each dataset. The dataset HeatOFFDB was used to
develop a model for capturing the temperature decay of the building when the
heating system was off. The second model was based on HeatONDB subset,
and approximated the inside temperature variations while the heating system
was on.
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6.3.2. Feature selection

The feature selection process was based on the calculated linear correla-
tion between input variables and target variable for the two different datasets
(HeatOFFDB and HeatONDB). The target variable calculated was the in-
side temperature difference at 15-minute resolution called DT and expressed
in degrees Celsius (◦C).

The candidate features were the aforementioned seven variables of the
dataset. The selection was performed using a threshold and a correlation
function between the single candidate feature and the target variable. The
correlation result between feature and target variable was called cR.

The correlation function used was the absolute value of the Pearson cor-
relation linear coefficient, which results span from -1 to +1 where -1 indicates
a negative correlation, +1 a positive correlation and 0 is equal to no correla-
tion [46]. In the current research, the following guide was used to score the
correlation among the target variable DT and the single feature by using the
absolute correlation value cR:

• 0.00 - 0.19 very weak

• 0.20 - 0.39 weak

• 0.40 - 0.59 moderate

• 0.60 - 0.79 strong

• 0.80 - 1.00 very strong

The selected threshold value to consider a variable relevant for the predictive
model is 0.5, as suggested by Kapetanakis et al. [47].

Figure 6 illustrates the results of the feature selection phase for each
of the dataset. For the subset HeatONDB, the selected features were the
outside temperature, the inside temperature, storage tank temperature and
the consumption of the circulation pump that is correlated with the flow rate
of the water in the heating system. For the subset HeatOFFDB, the features
selected for the model fitting phase were the outside temperature, the inside
temperature, and PV production.

It is noted that the wind speed correlation with the inside temperature of
the building was not considered sufficient and therefore ignored in both mod-
els. Moreover, the PV system is installed outside of the house and electricity
output is directly correlated to the irradiation at ground level. Consequently,
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Figure 6: Results of the feature selection phase

the solar gains of the site were estimated using the PV electricity production
as a proxy variable. As illustrated in Figure 6, the correlation with the sub-
set HeatOFFDB was found higher than with the subset HeatONDB because
of the way the heating system was configured. In fact, more than 70% of
the data points in that subset do not have a PV production output because,
in the test bed model, the GSHP operates mostly in the evening and night
hours. Therefore the PV feature was ignored for the model fitting for the
HeatONDB, while was it was included in the HeatOFFDB.

As expected, the GSHP consumption is not strongly correlated to the
target variable. The reason for the non-correlation is because the TES func-
tions as a thermal buffer and decouples the heating demand represented from
the energy supply, represented by the GSHP.

6.3.3. Model description and training

During the feature selection phase, a linear regression model was used to
assess a linear correlation among features. In this phase, a linear regression
model and a more sophisticated model were compared. Three indexes were
used to evaluate the model accuracy and appear as follows:

• The Pearson correlation coefficient is a statistical measure that illus-
trates the degree of linear dependence of actual and predicted outputs
and it was described in the previous section.

20



• Mean Absolute Error (MAE) is a quantity used to measure how close
forecasts or predictions are to the eventual outcomes. The mean ab-
solute error is the sum over all the instances absolute error divided by
the number of instances in the test set and can defined as follows:

MAE =
1

n

n∑
i=1

|y − ŷi| (4)

where n is the size of the dataset, y is the measured data and ŷ is the
predicted value output of the model.

• Root Mean Square Error (RMSE) is a quadratic scoring index that
measures the average magnitude of the error. It represents the sam-
ple standard deviation of the differences between predicted values and
observed values, and is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(y − ŷi)2 (5)

where n is the size of the dataset, y is the measured data and ŷ is the
predicted value output of the model.

Two linear regression models were calculated from the datasets. The
objective of the model was to predict the temperature differential for the
next timestep (15 minute forecast) using the selected features according to
Table 6. The linear regression model relative to HeatONDB was calculated
as follows:

DT = 0.0092∗outT +0.0443∗ tesT +22.34∗cpC−0.0292∗ inT −2.3705 (6)

while the linear model for the HeatOFFDB was calculated as follows:

DT = 0.0081 ∗ outT + 0.030 ∗ inT + 0.4032 ∗ PV − 2.59 (7)

where DT is the internal temperature difference, outT is the outside tem-
perature, intT is the inside temperature, tesT is the TES temperature and
cpC is the electricity consumption of the circulation pump.

The results of the linear regression fitting based on these indexes are
reported in Table 4. The Pearson correlation score for the linear regression
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Table 4: Linear regression fitting results

HeatONDB HeatOFFDB
Pearson Correlation 0.339 0.6831
MAE 0.1196 0.1781
RMSE 0.2923 0.2484

was found to be weak for HeatONDB. It was therefore necessary to find a
more accurate model for the predictor.

It is noted that for both datasets, the correlation between DT and the
selected features is not linear. Therefore, in order to increase the accuracy of
the model, it was necessary to select an algorithm capable of capturing the
non-linear correlation. For this particular problem, a tree-based technique
such as M5P algorithm resulted more accurate in comparison to the linear
model [48]. This technique, where the P stands for ”prime”, is a rational
reconstruction of Quinlan M5 with some algorithm optimisation. M5P is a
reconstruction of the Quinlan M5 algorithm for inducing trees of regression
models and it combines a conventional decision tree with the possibility of
linear regression functions at the nodes. The MP5 model creates a decision
tree and uses a linear model at each node to make a prediction, rather than
using an average value. In this case, the leaves of the model tree produced
by M5P algorithm have linear functions [49].

In the first step of the model creation, a decision-tree induction algorithm
is used in order to construct a tree, but instead of maximising the information
gain at each inner node, a splitting criterion was used that minimises the
intra-subset variation in the class values down in each branch. The splitting
procedure in M5P stops if the class values of all instances that reach a node
have a minimum variance, or if only a few instances remain.

In the second step, the tree was pruned back from each leaf. When
pruning an inner node, a regression plane substitutes the leaf element. The
objective of the third step was to avoid sharp discontinuities between sub-
trees. For this purpose, a smoothing procedure was applied that combined
the leaf model prediction with each node along the path back to the root,
smoothing it at each of these nodes by combining it with the value predicted
by the linear model for that node [50].

Thus, M5P was able to generate predictive models which are both com-
pact and computationally stable. With regards to the M5P algorithm, a
pre-compiled package that contains this tree-based algorithm has been used
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Table 5: MP5 tree fitting results

HeatONDB HeatOFFDB
Pearson Correlation 0.9235 0.7067

MAE 0.0382 0.0724
RMSE 0.122 0.144

in the implementation. Based on the feature selection, the M5P algorithm
generates a modular tree which is composed of 109 linear models. As il-
lustrated in Table 5, this technique has significantly improved the accuracy
of the model when compared to the linear regression model, minimising the
errors for the two datasets.

The outcome was two independent models: a model for the first dataset
MP5OFF based on HeatOFFDB, and MP5ON based on HeatONDB. The
prediction of each model is a temperature variation inside the building for
the following timestep given the current status.

From an implementation perspective, the building temperature predictor
was modelled using the R language and was interfaced to the Java implemen-
tation through JRI [51]. During the initialization, the R engine loads two
data files that contain the two models, MP5ON and MP5OFF. The JRI in-
terface runs on the server when the EMS is launched and it creates a two-way
communication channel between the Java environment and the R instance.

The described models were used in the predictor class which implements
an interface with a single method. The method decides which model to
call based on the input parameters. It is noted that the predictor class was
implemented to be instantiated as a singleton to avoid heap space issues.

6.4. Controller

The controller embeds the control logic of the predictive algorithms (MP5ON
and MP5OFF ). It uses three helper classes: the weather forecaster, the elec-
tricity price predictor and the building temperature predictor. In the next
section, the predictive algorithm and its data structures are described. The
control flow of the smart algorithm is described in Figure 7. After acquiring
the reading from the sensors, it creates an instance of the class state with
the current status of the system.
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Figure 7: Control flow of the smart algorithm
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6.4.1. Algorithm flow description

The controller checks if the temperature is within the thermostatic set
point temperature range. If not, it will skip the prediction and enable the
heating system. In the other case, the controller builds the search tree and
performs a status evaluation. If a generated state cannot guarantee the
minimum comfort temperature, then it will be pruned from the searching
tree and will not be used during the tree traversal. In that case, a tree
will not be built because the only valid child will be a child state with the
GSHP and circulation pump active. During the evaluation of all the possible
states, the algorithm reaches the end child states that correspond to the time
horizon window.

For each node, the controller sums up the energy consumption of each
state and the associated energy cost so the parent state will retrieve the
least energy child state consumption and update the instance data structure.
Furthermore, in order to reduce the size of the search tree, an heuristic
function for the selection of the storage tank temperature set point (charging
or discharging) has been constructed based on the electricity price for the
forecast horizon. If a price peak signal is detected within the forecast horizon
of two hours, then the storage tank temperature is set to the charging mode,
so it will be ready to be exploited at a later stage of the simulation. In an
instance where an off-peak price is detected within the forecast horizon, then
the storage tank temperature is set to discharging mode so the system can
start exploiting the stored thermal energy.

At the end, the algorithm returns the results of the cascade tree of states
with updated energy consumption details. Thus, a root child state can pro-
vide an the optimal strategy to minimise the energy expenditure and con-
sumption for the next timestep.

6.4.2. Optimal strategy search

A tree is instantiated to build the search space data structure in memory
where each node of the tree invokes the helper classes and store the electricity
expenditure (Cost) and consumption (Elect). The helper class invokes also
the MP5ON and MP5OFF to predict the internal temperature for the time
horizon. In order limit the number of nodes in the search tree, if a node
violates the thermal comfort constraint, it is directly pruned and not added
to the data structure. As illustrated in Figure 8, the maximum depth of the
tree is equal to the time horizon of the controller prediction, which is set to
eight timesteps, equivalent to two hours. For each node, the helpers provide
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Figure 8: Optimal strategy search on solution tree

forecasts with 15 minute time horizons (1 timestep) to each child of the node,
which corresponds to a control configuration.

The control configuration is based on three control variables: circulation
pump (active or inactive), TES (charging or discharging) and GSHP (ac-
tive or inactive). These three variables can output eight possible scenarios.
However, the two scenarios wherein the TES is charging but the GSHP is
inactive, are pruned.

After the construction of the tree, the child state class calls a method of
the model class that in constant time finds the leaf with minimum energy
expenditure and, if more than one leaf has the same energy expenditure, the
algorithm chooses the leaf which minimises energy consumption. As shown
in Figure 8, the selected leaf is called LEAFOPT .

At this stage, the control configuration for the next timestep to reach the
LEAFOPT status is stored in the NODEroot child node that is the parent of
LEAFOPT . The configuration is retrieved by the controller and sent to the
BES via the API. The instantiation and tree search are repeated for each
timestep of the simulation to produce an optimal control strategy.
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6.4.3. Selection of the forecast time horizon

The two hour prediction horizon is calculated based on computational
time required to explore all the possibilities within the prediction horizon,
which is time limited to 15 minutes, equivalent to the length of the time
step. If a single time step computation longer than 15 minutes was utilised,
the methodology would not have been implementable in the actual building,
as the size of the possible scenarios would grow exponentially. Each com-
putation has eight possible solutions, therefore, considering a time step of
15 minutes, for a two hour horizon, it needs to calculate 88 possibilities (re-
duced to 68 with a pruning technique), resulting in 1.678 · 107 combinations.
Therefore, using the developed optimal algorithm, multiple runs on a testing
machine, showed that the maximum horizon reachable within the 15 minutes
time constraint was two hours, which was equivalent to eight time steps.

7. Simulation Results

Although, the overall objective of the developed optimisation system is
to minimise the energy expenditure and as a secondary goal, the energy
consumption, other metrics were considered so as to include the additional
stakeholder perspectives. This resulted in the following metric list:

• Consumer electricity profile (kWh)

• Consumer electricity consumption (kWh)

• Consumer electricity cost (e)

• Utility electricity cost (e)

• Environmental impact (kg of CO2)

The consumer electricity profile was evaluated based on five selected repre-
sentative days of the heating season from the month of January 2014. This
period was selected because the weather data showed the presence five repre-
sentative days for the assessment of the electricity profile using a percentile
rank approach.

Figure 9 shows the hourly based cumulative simulated electricity con-
sumption for 2014 versus the metered data. Additionally, on the right vertical
axis is reported the average Mean Bias Error (MBE) index for the calibra-
tion for each hour. For the remaining metrics, the simulation was performed
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Figure 9: Cumulative annual electricity consumption on an hourly basis: simulated, me-
tered and MBE (2014)

for the whole month of January 2014, noting that January was the second
coldest month of the heating season 2013/2014 after December 2013. Each of
these metrics are considered in the following sections and are assessed against
the rule based algorithm and baseline scenario.

7.1. Consumer electricity profile

Figure 10 shows the aggregated energy consumption for the baseline and
for the two controllers for the month of January 2014. A 15 minute time
resolution is used, where each data point is determined by summing each
time associated electricity consumption value (kWh) for the entire month.
The PV contribution is determined in a similar way, but is subtracted from
the consumed electricity to allow a net value to be determined. However,
the limited power generation resulting from January solar irradiation levels
reduces the PV contribution.

7.1.1. Baseline

As shown, the baseline consumption follows the thermostatic set points
established by the building owner, not exploiting the thermal mass of the
building and the TES. The outcome of the thermostatic controller is an
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Figure 10: Electricity consumption profiles for the month of January 2014
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increased consumption and electricity cost compared to the rule-based and
the smart algorithm.

7.1.2. Rule-based

The rule-based algorithm is characterised by steep consumption spikes
(0700 hrs and 1500 hrs) and extended valleys (0900 to 1400 hrs and 1700 to
1800 hrs) caused by the binary operation control. The operation of the heat-
ing system depends exclusively on hourly rules defined to reduce consumption
in the TOU tariff scenario and evaluated with design day data. Hence, the
hourly based rules requires the holding of a thermal energy reserve for the
coldest days. Consequently, in the case of a different heat demand com-
pared to the designed days, the energy stored in the TES always needs to be
balanced to maintain the thermal comfort which causes consumption spikes
close to peak periods. However, the rule-based algorithm reduces the en-
ergy consumption of the building by 32% and improves the efficiency of the
heating system when compared with the baseline. During the day, the rule-
based algorithm consumes less electricity because it switches off the heating
system. Until 1500 hrs, the system control flow logic disables the heating
system, allowing the inside temperature and the storage tank temperature
to decrease to the lower boundary.

The strategy implemented in the rule-based algorithm is to reduce the
peak time consumption between 1700 hrs to 1900 hrs, by charging the storage
tank before the peak. During the peak hours, as can be seen in Figure 10, the
system extracts heat from the storage tank, which it needs to be restored to
the set point condition after one hour. Therefore, after 1900 hrs, the heating
system is switched ON, which causes a rebound effect because the storage
tank temperature breached the lower set point.

7.1.3. Smart algorithm

The smart algorithm cumulated profile shows a more balanced energy
consumption pattern. It is noted that during the DR peak price period be-
tween 1700 hrs and 1900 hrs, the profile shows a consumption valley because
of the shifting event triggered by the smart algorithm. The valley is preceded
by a charging period at 1600 hrs. A rebound effect is also present after the
peak time at 1900 hrs, followed by a consumption spike during the first hour
of night tariff.

The consistency of the optimal strategy on the TOU tariff is supported
by the increased efficiency operation and the reduction in electricity costs as
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Table 6: Selected days based on 2014-2016 HDD data
Percentile Quantile HDD Actual HDD Deviation Heat demand kWh

2nd 1.71 1.73 1.1% Low 12.4
25th 6.00 6.17 2.8% Medium-Low 15.8

50th (median) 8.30 8.89 6.7% Median 17.7
75th 10.60 10.61 0.0% Medium-High 18.4
98th 14.68 14.61 -0.4% High 25.3

discussed in the following sections.

7.2. Consumer electricity profile

The effectiveness of the smart algorithm in reducing the consumer elec-
tricity consumption and expenditure was assessed utilising a whole month
simulation period. Within the whole month several representative days have
been extracted on the basis of a statistical analysis. The analysis to ex-
tract the most representative day of the heating season, was performed on
the daily data for a three-year heating period from 2014-2016, using the as-
sociated daily Heating Degree Days (HDD) available from a weather data
provider [52]. A percentile rank approach on the meteorological daily data
ordered by HDD has been used to extract five days which represents the five
corresponding quantiles (2nd, 25th, 50th, 75th and 98th).

From the simulation data from January 2014, the closest days to the three-
year quantiles have been extracted and utilised in the assessment. These days
are called Actual HDD and are close to the Quantile HDD extracted from
the three years historical data.

In Table 6, the sample days in the three years assessment are called
quantile HDD, while the actual days used for the assessment are called actual
HDD. The table also shows the deviation in percentage between the quantiles
and the selected actual days used for the assessment. The deviation is below
3% for all days except the median day, that shows a 6.7% heat demand
increase.

The selected days aim to represent different heat demand conditions:
low, medium-low, average, medium-high, high. After a first analysis of the
distribution, the 100th and 1st quantiles have been substituted for the 98th
and the 2nd to provide more representative extreme weather days. The
selected extreme percentiles (98th and 2nd) identify a wider range of days for
low and high heat demand profiles compared to the 100th and 1st percentiles.
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Figure 11: Energy consumption for three heat demand scenarios. (a) Low, Low-medium,
Median; (b) Median, Medium-high, High
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7.2.1. Electricity profile: Low, Medium-Low, Median

Figure 11a illustrates the electricity consumption pattern in the case of
low, medium-low and median heat demand. Each data point represents the
electricity consumption in kWh for an hour, i.e., the first data point is the
electricity consumption of the building between 0000 hrs and 0059 hrs. The
curves are identified with the related percentile described in the Table 6.
Moreover all the curves are compared with the median profile that is the
50th percentile and represented by a grey histogram in the background. The
median histogram shows a peak consumption at 1600 hrs, before two hours
shifting load at peak time followed by a rebound effect at 1900 hrs. A second
peak consumption is noted the first hour of the night tariff, 2300 hrs.

The low heat demand curve (2-Perc) exhibits a power reduction during
peak hours, and two spikes during the off-peak hours at 1200 hrs and 1500
hrs to charge the TES before the peak, and after the peak at 1900 hrs as a
rebound effect from DR peak price event.

Steeper peaks characterise the medium-low heat demand profile (Perc-
25) before and after peak hours. The profile shows a consumption peak
at 0900 hrs to restore the TES temperature within the boundaries after
the morning heat demand peak. The same peak in the median profile is
deferred between 1000 and 1100 hrs. The profile also exhibits two hours
shifting load at peak time followed by a rebound effect at 1900 hrs. It also
highlights an electricity demand peak during the first hour of night tariff,
2300 hrs. A peak in consumption is also evident during the hours with
maximum solar irradiation at 1200 hrs because the algorithm maximises the
utilisation of electricity produced by on-site RES by activation of the GSHP.
It is also noted that the medium-low profile is similar to the median, revealing
a consistent optimal strategy of the controller.

7.2.2. Electricity profile: High, Medium-High, Median

Figure 11b illustrates the medium-high and high heat demand profiles and
the comparison with the median profile. The medium-high (Perc-75) shows
a similar curve as the average case with a valley consumption during peak
hours and a rebound effect after. In this case, the first two night tariff hours
are characterised by greater electricity consumption due to the medium-high
heat demand. The curve exhibits a peak during late night hours between 0200
and 0400 hrs because of the temperature drop, and although the algorithm
reduces the consumption during the peak hours, to keep the temperature at
the established comfort level, the valley during peak tariff time (1700 - 1800
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hrs) is not as deep as in the previous instances. In this case, the system is
switched on during the day, regardless of the price oscillations in order to
meet thermal comfort.

The smart algorithm shows a consistent operational schedule during the
day. It produces an increase in electricity consumption before and after peak
in order to charge the TES. The algorithm prediction horizon limits the TES
charging/discharging time to two hours before the price change which does
not reduce the efficiency of the heating system because the GSHP is able to
fully the charge the TES within the time window horizon.

As a general indication for a predictive algorithm, the capacity of the
storage in kWh divided by the primary heating source power output should
be less than, or equal to the window time horizon. In case of larger storage,
the algorithm does not exploit the full capacity of the system, limiting the
shifting and forcing capabilities. In this research the ratio between the storage
capacity and the GSHP is equal to 1.56 hours.

7.3. Consumer electricity consumption

Although the objective function of the smart algorithm is to minimise
expenditure, the secondary goal is the minimisation of overall consumption.
Figure 12 illustrates the total electricity consumption of the heating system
during the test period (January 2014).

In comparison to the baseline, the rule-based algorithm shows an electric-
ity reduction of 20.9%, while the smart algorithm exhibits a 39% reduction.
When compared with the rule-based algorithm, the smart algorithm shows
an electricity reduction of 22.9%. Additionally, an estimate of the 2014 to-
tal heating season consumption using the three algorithms was calculated in
proportion to the monthly HDD. The consumption, net of the PV produc-
tion for the heating season, was 2236 kWh. Additionally, the annual heating
energy consumption of the building was normalised for its floor area (208
m2). The data was then compared and the results are reported in Table 7.
It should be noted that the rule-based algorithm compared to the baseline
contributes to reduce the consumption of the building and consequently it
raises the building energy efficiency. Additionally, the smart algorithm re-
duces the heating energy consumption, thereby increasing the efficiency of
the system. This result further evidences the potential contribution of an
EMS equipped with a smart algorithm to a dwelling energy rating.
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Table 7: Building energy rating for the three algorithms

Algorithm
Annual heating

energy demand (kWh)
Annual heating per

floor area (kWh/m2/yr)
Baseline 13228 63.6

Rule-based 8841 42.5
Smart algorithm 5036 24.2

Figure 12: Total heating electricity consumption for (January 2014)
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Figure 13: Energy expenditure for the three algorithms for different tariff structures (Jan-
uary 2014)

7.4. Consumer electricity cost

In the current work, TOU tariffs used for the Irish smart meter trial [31]
were used to assess the consumer electricity expenditure and to compare the
savings with the rule-based algorithm and the baseline. Figure 13 shows the
electricity cost for the baseline, the rule-based and the smart algorithm using
the TOU tariffs outlined in Table 1 for the month of January 2014. While
the baseline exhibits the highest cost, the rule-based is the second highest
cost, which can be attributed to the use of a fixed set of operational rules
to control the heating system, resulting in additional charging cycles of the
TES. With reference to the rule based, in comparison to the baseline, savings
of between 27% for tariff A and 40% for tariff D (which most closely follows
the SMP price) are evident.

Considering the smart algorithm, relative to the baseline, savings of be-
tween 42% for tariff A and 49% for tariff D (which most closely follows the
SMP price) are evident. As illustrated in Figure 14, the smart algorithm
reduces the electricity cost during peak hours, exploiting the storage and the
building thermal mass, charging the TES before peak. The rule-based algo-
rithm is characterised by steep cost spikes between peak hours (1500-1600
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Figure 14: Cumulative electricity expenditure in the three cases for the whole month of
January 2014 (Tariff D)

hrs and 1900-2200 hrs) caused by the operational rules. The rule-based algo-
rithm also displays a cost reduction during off-peak hours because the system
is completely switched off (1700-1800 hrs). The baseline system is controlled
only by the thermostatic set point, so it exhibits a greater overall electricity
cost during the hours of the day when the set points are increased. Addition-
ally, as illustrated in Figure 14, the baseline operation of the GSHP during
price peaks (1700 to 1800 hrs) produces high expenditure peaks due to the
structure of the price tariff, which penalises peak consumption. These peaks
are not present for the other controllers demonstrating the effectiveness of
the algorithms in reducing the peak expenditure.

7.5. Utility electricity cost

Figure 15a shows the generation cost using Irish electricity SMP prices
[53] for the month of January 2014. Electricity consumption is multiplied by
the relevant SMP price for each timestep in order to evaluate the test pe-
riod electricity production cost from a utility perspective. With reference to
the rule-based algorithm, where the control strategy aims to shift electricity
consumption from peak (1700-1900 hrs) to off peak (1500-1700 hrs) times, a
generation cost reduction from €43.08 to €34.02 is evident (21% reduction).
With reference to the smart algorithm, a 43% (€ 16.87) reduction is evident.

The difference between the SMP peak price and the off-peak can reach
a ratio of 1 to 6. The peaks in SMP price are aligned with the TOU peak
periods. Consequently, the algorithms showed a significant reduction of gen-
eration cost. As evidence, Figure 15a shows the 2014 SMP hourly price
divided into three tertiles and, for each algorithm, the associated percentage
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Figure 15: (a) Electricity generation cost and (b) Cumulative carbon emissions for January
2014
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of electricity in the tertiles is calculated. The tertiles are based on the SMP
price variation during January 2014. The SMP reached its maximum peak
at 97.5 e/MWh and a minimum value of 11.85 e/MWh. The first tertile
price spans from the maximum to 63.32 e/MWh, while the second tertile
spans from 63.32 e/MWh to 48.24 e/MWh.

Although the rule-based algorithm uses a higher percentage of electricity
in the third tertile when compared with the smart algorithm, the efficiency
of the smart algorithm strategy in reducing the total amount of energy con-
sumed by the system leads to relevant utility cost savings. Additionally, as
expected, the baseline thermostatic controller resulted in higher consumption
on the first and second tertiles which led to a higher generation cost overall.

7.6. Environmental impact

Eirgrid, the Irish transmission system operator, provides 30 minutes av-
eraged carbon emissions (gCO2/kWh), based on technical data from all gen-
eration units, including renewable energy, for the overall production of elec-
tricity [54]. For January 2014, the footprint varied from 251 gCO2/kWh
to 643 gCO2/kWh. The maximum carbon emission is verified during the
peak time hours (1700 - 1900 hrs). Therefore, a significant reduction in CO2

emission is expected as a result of the control algorithm.
Figure 15b illustrates the time period CO2 footprint as determined for

the baseline, the smart and the rule-based algorithms. The smart-algorithm
exhibits the greatest reduction, which is 39% relative to the baseline case,
thereby reducing the overall electricity drawn from the grid and consequently
the associated carbon emissions.

The assessment divided the hourly emissions in three tertiles to evaluate
the impact of the TOU tariffs on the building carbon emissions. The first
tertile spans between the maximum, 643 gCO2/kWh, and 502 gCO2/kWh.
The second tertile spans from 502 gCO2/kWh to 429 gCO2/kWh while the
third tertile from 429 gCO2/kWh to the minimum, 243 gCO2/kWh.

The graph shows how the rule-based, despite having a higher percentage
of consumption during lower emissions time, has an overall 20% increased
carbon emissions due to the higher energy consumption. The baseline has
the majority of consumption during the second tertile, however, the higher
carbon footprint is also defined by the increased electricity consumption. It is
evident that in order to exploit the penetration of RES at power system level
to lower the carbon emissions from buildings, the carbon intensity must be
included either within the objective function or in the price scheme utilised by
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the optimisation algorithms. Adopting the fixed TOU price scheme results in
a reduction of carbon footprint which is exclusively related to DR measures
that shift the electricity produced by peak generators. The variability of the
carbon intensity at system level is not embedded in the TOU tariffs. A more
dynamic price such as Real Time Price (RTP) would be more suitable for
the buildings integration of the RES at system level.

In closing, the objective of the paper was to develop a novel optimisation
algorithm that provides energy load control and DR capabilities embedded
in a EMS and connected to sensors in an HAN. The research has also demon-
strated a means of designing, implementing and testing a predictive smart
controller which is identified as the most efficient in responding to DR events
while maintaining the termostatic set points. It is noted that the smart algo-
rithm provides a contribution to the research field of optimisation algorithms
to enable DR.

The smart controller uses a statistical model to predict the building in-
ternal temperature, utilising weather forecasts and a TES model. The com-
putational bottleneck of the algorithm is the construction of the decision tree
that affects the memory heap exponentially in relation to the time horizon.
Although several pruning techniques were implemented to reduce the com-
plexity of data structure visits, a better optimisation is required to extend
the forecast horizon to four hours or a day ahead.

The algorithm relies extensively on weather and price forecasts. It would
also be essential to extend the research towards an accurate short-term pre-
diction of electricity price and weather. Short-term forecasts are of vital
importance for allocation and control of the loading flexibility provided by
buildings, in the context of demand response.

8. Conclusions

The present paper described the design, development and testing of an
EMS to provide DR capabilities for residential buildings. A calibrated build-
ing energy model based on a real residential building was used to test the
capabilities of different methodologies in assessing DR actions. A fully open-
source co-simulation tool, based on the combination of optimisation tech-
niques with machine learning models was used to find optimal strategies,
while metered data was used to train and test the algorithms. The results
obtained can be summarised as follows:
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• Energy consumption: a significant impact of the smart algorithm on
the electricity consumption per floor area has been demonstrated in
Section 7.3. The optimal strategy of the algorithm was able to in-
crease the efficiency of the heating system from 63 kWh/m2/yr to 24
kWh/m2/yr.

• Costs : a reduction of the electricity cost compared to the baseline
for January 2014 spans from 42% to 49%, which when compared to the
rule-based algorithm, the reduction ranges from 27% to 40%. Although
these savings relative to the baseline may appear significant, they are
of the order of a few hundred euro per year. Consequently, they need
to be evaluated from the perspective of the capital cost and the Return
Of Investment (ROI) for the installed technical solution, which is still
in the range of 5-10 years.

• Environmental : in terms of carbon emissions, the smart algorithm
emissions reduction is caused primarily by a combination of peak shift-
ing, overall energy reduction and exploitation of the PV system. It
should be noted that the algorithm objective function does not explic-
itly capture power system carbon emissions intensity and consequently
does not maximise carbon footprint reduction, especially during pe-
riods with no price tariff variations. Nevertheless, an overall carbon
emissions reduction of 38% was achievable by minimising the overall
electricity expenditure and the overall consumption. To increase the en-
vironmental performance while utilising the smart algorithm, it would
be necessary to embed the carbon intensity of the power system into
the price tariff, triggering a DR price signal event in periods of carbon
emissions peak intensity.

• Utility : from the point of view of the utility, it is evident that if the DR
price signal is aligned to the market price utility, the smart algorithm
can reduce the generation costs for the residential sector. However, high
penetration of EMS units equipped with the smart algorithm could lead
to shift peak periods to other times of the day, reducing the effect of the
DR event to the SMP price. A randomisation of the control mechanism
could redistribute the peak electricity consumption throughout the day.

• Computational : although the computational time associated with each
time step can appear reasonable, a simulation of a building cluster con-
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trolled by the smart algorithm requires further optimisation of the sta-
tistical model performance. A decoupled infrastructure could facilitate
the optimisation process, by separating the controller from the model
and from the building simulation. As discussed in Section 7.2, the
developed advanced controller reduces the energy consumption of the
heating system by 39% and improves the efficiency of the operations,
optimising the electricity consumption. Moreover, the smart algorithm
optimises the energy consumption throughout the day, reducing the
peaks and keeping the temperature of the storage tank between the
selected range. This strategy leads to an overall reduction of 22.9%
when compared with the rule based approach.

• Prediction model : The results demonstrated that the prediction hori-
zon of two hours reduced the energy consumption while maintaining
thermal comfort. It is also noted that the MP5 model is sufficiently
accurate for forecasting the thermal behaviour of the building and it
can be effectively embedded in a predictive controller. Moving beyond
the two hour time horizon, requires a longer evaluation time for each
time step, because the computational bottle neck of the algorithm is
represented by the in-memory search tree. Every time step expansion
of the time horizon is equal to an exponential increase of the nodes,
leading to oversize errors of the memory heap. Advanced optimisation
techniques could have been applied to the tree construction but they
were out of the scope of the current research.

In conclusion, advanced demand response control techniques in all-electric
residential buildings together with the increase adoption of time of use tariffs
in many European countries, can positively contribute to the development
of flexible power system frameworks aimed at reducing the carbon footprint
of building stocks and supporting the shift towards more sustainable power
generation mix.
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Nomenclature

Ce Electricity price (e\kWh)

Cset Circulation pump status

COPhp Heat pump average COP

cpC Circulation pump electricity consumption (kWh)

Cpw Specific heat capacity J\(kg * K)

DT Temperature difference (°C)

inT Inside temperature (°C)

M TES water mass

outT Outside temperature (°C)

Pe Building electricity consumption (kWh)

Php Heat pump energy consumption (kWh)

PV PV electricity production (kWh)

S Shifting flexibility (kWh)

Tbd TES setpoint bandwidth (°C)

Tin Internal zone temperature (°C)

Tmax TES maximum set point temperature (°C)

Tmin TES minimum set point temperature (°C)

Tout Outside temperature (°C)

Tset Internal set zone temperature (°C)
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Tset Temperature set point (°C)

Ttk TES temperature (°C)

tesT TES temperature (°C)

Glossary

API Application Program Interface. 5, 7, 10–13, 15, 16, 26

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning
Engineers. 10

BCVTB Building Controls Virtual Test Bed. 10, 11, 13

BES Building Energy Simulation. 4, 12, 15, 26

DHW Domestic Hot Water. 8

DR Demand Response. 2–5, 10, 30, 33, 40, 41

DSM Demand Side Management. 3

EMS Energy Management System. 2, 3, 5–7, 10–13, 15, 23, 34, 40, 41

GSHP Ground Source Heat Pump. 8, 20, 25, 26, 33, 34, 37

HAN Home Area Network. 2, 13, 17, 40

HDD Heating Degree Days. 31, 34

HP Heat Pump. 10

HTTP Hypertext Transfer Protocol. 13, 15

HVAC Heating Ventilation and Air Conditioning system. 12

JDBC Java Database Connectivity. 10

JSON JavaScript Object Notation. 10
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MAE Mean Absolute Error. 21

MBE Mean Bias Error. 27

MVC Model View Control. 10

PV PhotoVoltaics. 10, 15, 19, 20, 28, 34, 41

RES Renewable Energy Systems. 2, 12, 33, 39, 40

RMSE Root Mean Square Error. 21

ROI Return Of Investment. 41

RTP Real Time Price. 40

SMP System Marginal Price. 7, 37, 39, 41

TES Thermal Energy Storage. 5, 12, 17, 18, 20, 21, 26, 28, 30, 33, 34, 36,
40, 44

TOU Time of Use. 16, 30, 36, 37, 39, 40
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