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Unbalanced metabolic status in the weeks after calving predisposes dairy cows to metabolic and infectious diseases. Blood glucose,
IGF-I, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) are used as indicators of the metabolic status of cows. This work
aims to (1) evaluate the potential of milk mid-IR spectra to predict these blood components individually and (2) to evaluate the
possibility of predicting the metabolic status of cows based on the clustering of these blood components. Blood samples were collected
from 241 Holstein cows on six experimental farms, at days 14 and 35 after calving. Blood samples were analyzed by reference analysis
and metabolic status was defined by k-means clustering (k= 3) based on the four blood components. Milk mid-IR analyses were
undertaken on different instruments and the spectra were harmonized into a common standardized format. Quantitative models
predicting blood components were developed using partial least squares regression and discriminant models aiming to differentiate the
metabolic status were developed with partial least squares discriminant analysis. Cross-validations were performed for both quantitative
and discriminant models using four subsets randomly constituted. Blood glucose, IGF-I, NEFA and BHB were predicted with respective
R2 of calibration of 0.55, 0.69, 0.49 and 0.77, and R2 of cross-validation of 0.44, 0.61, 0.39 and 0.70. Although these models were not
able to provide precise quantitative values, they allow for screening of individual milk samples for high or low values. The clustering
methodology led to the sharing out of the data set into three groups of cows representing healthy, moderately impacted and
imbalanced metabolic status. The discriminant models allow to fairly classify the three groups, with a global percentage of correct
classification up to 74%. When discriminating the cows with imbalanced metabolic status from cows with healthy and moderately
impacted metabolic status, the models were able to distinguish imbalanced group with a global percentage of correct classification up
to 92%. The performances were satisfactory considering the variables are not present in milk, and consequently predicted indirectly.
This work showed the potential of milk mid-IR analysis to provide new metabolic status indicators based on individual blood
components or a combination of these variables into a global status. Models have been developed within a standardized spectral
format, and although robustness should preferably be improved with additional data integrating different geographic regions, diets and
breeds, they constitute rapid, cost-effective and large-scale tools for management and breeding of dairy cows.
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Implications

The metabolic status of dairy cows is hard and expensive to
measure. This research shows an interesting potential of
mid-IR analysis of milk to provide information on the meta-
bolic status of cows through prediction of blood components.
This fast, cost-effective and world spread technology could
allow the development of new management and breeding
strategies for dairy cows in order to improve health and
welfare of cows, as well as income of farmers.

Introduction

Between 30% and 50% of dairy cows suffer from metabolic
and infectious diseases around the time of calving (LeBlanc,
2010) and ~ 75% of diseases in dairy cows occur in the first
month after calving (Suthar et al., 2013). The negative
energy balance (NEB), experimented by most of the dairy
cows, can alter the normal metabolism in the periparturient
period and predisposes to metabolic and infectious diseases.
Altered energy metabolism induces inflammation (Wathes
et al., 2009), liver damage and dysfunctions (Turk et al.,
2004), and impairs hormone regulation (Esposito et al.,
2014) as well as immune response (Hammon et al., 2006;
Moyes et al., 2010). This consequently increases the risk of
ketosis, milk fever, displaced abomasum, locomotion issues,
retained placenta, metritis and mastitis (Collard et al., 2000;
LeBlanc, 2010; Esposito et al., 2014). In addition, imbalanced
metabolic status can impact uterine health (Hammon et al.,
2006), inhibit luteinizing hormone pulse frequency and
reduce IGF-I level in blood (Butler, 2000), withal of which can
reduce reproductive performance (Esposito et al., 2014).
On dairy farms, problems associated with an imbalanced

metabolic status can be a major source of economic losses.
For example, McArt et al. (2015) estimate that the averaged
total cost per case of hyperketonemia was $289. Considering
the high incidence and the cost of such problems, there is a
clear interest to have information on the metabolic status
of cows during the postpartum period. For example, this
information could allow the development of breeding or
management strategies to limit the costs associated with the
negative impacts of imbalanced metabolic status.
The blood contents of some metabolites and hormones in

plasma are used as key indicators of the metabolic status of
cows. Among them, glucose, non-esterified fatty acids
(NEFA) and β-hydroxybutyrate (BHB) have been identified as
the major metabolites related to the degree of physiological
imbalance (Ingvartsen et al., 2003; Ingvartsen, 2006).
Glucose is an important substrate for mammary metabolism
and lactose synthesis (Bell and Bauman, 1977). Providing
sufficient amounts of glucose to the mammary gland is
necessary to enable high milk production (Drackley et al.,
2001). It has been identified by Bjerre harpoth et al. (2012)
and Moyes et al. (2013) as an important metabolite in link
with metabolic imbalance. When the glucose demand
exceeds the gluconeogenesis capacity of the liver due to
NEB, the glucose concentrations in blood decreases and the

use of glucose as energy is reduced (Ingvartsen, 2006;
Esposito et al., 2014). Insufficient blood glucose level induces
the use of fat as an alternate fuel source, leading to body
reserve mobilization, which is reflected by an increase in
blood NEFA concentration (Leblanc, 2010; Esposito et al.,
2014). When the supply of NEFA overloads the liver, NEFA
degradation products are diverted to produce ketone bodies
(Esposito et al., 2014). Among the ketone bodies, BHB has
been identified as a successful biomarker for ketosis (Suthar
et al., 2013; McArt et al., 2015). Complementary to these
blood metabolites, IGF-I has been highlighted as a biomarker
of altered liver metabolic status (Fenwick et al., 2008). When
the liver is impacted because of NEB, expression of key genes
involved in synthesis and stability of IGF-I is altered which
leads to a decrease of IGF-I level in the blood (Wathes et al.,
2007). It is therefore useful to have information on glucose,
NEFA, BHB and IGF-I contents separately. However, as they
provide complementary information on metabolic status, the
ideal phenotype to predict would be a combination of these
components in order to globally evaluate the metabolic sta-
tus of cows.
To predict the metabolic status of cows at a farm scale,

biomarkers should be easily accessible and hence assessed in
milk. Among the potential milk biomarkers, the Fourier
transform mid-IR (FT-MIR) spectra of milk is a promising
candidate. These spectra are composed by absorbance
values resulting from interaction between chemical bonds
and mid-IR light at different wavenumbers (Gengler et al.,
2016). It can therefore be considered as a ‘mirror’ of fine
physico-chemical properties of milk. This fast and cost-
effective technology is currently available in many countries.
Previous studies focused on predicting the energy status of

cows via feed related variables such as energy balance, residual
feed intake or dry matter intake (McParland et al., 2011 and
2014; Shetty et al., 2017). However, the NEB is likely to impacts
differently the dairy cows following their resilience and their
ability to cope with this imbalance (Herdt, 2000), and is
therefore not giving exact information on the metabolic status.
Others studies provided information on the metabolic status
through milk metabolites, such as acetone, BHB or citrate (de
Ross et al., 2007; Grelet et al., 2016). However, there is a lack
of information available in the literature about the direct pre-
diction of key blood components related with metabolic status.
To our knowledge, only few studies attempted to predict blood
BHB concentrations from the milk FT-MIR spectra, and reached,
respectively, R2 of calibration of 0.54 (Broutin, 2015) and R2 of
validation of 0.43 (Belay et al., 2017). Gelé et al. (2015)
focused to estimate the ketosis risk by combining blood NEFA
and BHB and obtained a sensitivity of 81% and a specificity of
69%. The possibility to use milk FT-MIR spectra to predict the
key blood metabolites and hormones linked with an imbal-
anced metabolic status separately, as well as the potential
combination of these variables into a global metabolic status of
cows still need to be investigated. This work aims to (1) confirm
the possibility to predict blood BHB using FT-MIR spectra of
milk, (2) evaluate the potential of milk FT-MIR spectra to pre-
dict individually blood glucose, IGF-I and NEFA, and (3) to
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evaluate the possibility to predict the metabolic status of cows
based on the clustering of these blood components.

Material and methods

Sampling and registration protocol
The data in this study were collected as a part of Work
Package 3 from the Genotype plus Environment (GplusE)
FP7-Project (http://www.gpluse.eu). Common sampling and
registration protocols were followed in six experimental
herds: AFBI (Agri-Food and Biosciences Institute, UK), Aarhus
University (Denmark), CREA (Research Center for Animal
Production and Aquaculture, Italy), CRA-W (Walloon Agri-
cultural Research Centre, Belgium), FBN (Leibniz Institute for
Farm Animal Biology, Germany) and UCD (University College
Dublin, Ireland). A total of 241 cows, with parities ranging
from 1 to 7, were sampled. Cows were sampled from 1 to
50 days in milk (DIM). Information on the number of cows
sampled in each experimental herd, parity and the forage
type offered is shown in Table 1.

Blood analysis
For each of the 241 cows, two blood samples were collected
postpartum. One sample was taken at 14 DIM to reflect the
physiological status in the transition period without being
influenced by calving per se. The second sample was taken at
35 DIM when milk yield and nutrient needs should be close to
maximum. Samples were collected in tubes with heparin or
serum clot activator, and centrifuged at 2500g for 10min to
harvest plasma and serum. Samples were stored at −20°C,
with plasma subsequently analyzed at Aarhus University for
metabolites (glucose, NEFA and BHB) and serum at UCD for
IGF-I. Glucose was determined according to standard proce-
dures by Siemens Diagnostics® (Clinical Methods for ADVIA
1800), whereas NEFA were determined using the Wako,
NEFA C ACS-ACOD assay method. β-Hydroxybutyrate was

determined by measuring absorbance at 340 nm due to the
production of NADH at alkaline pH in the presence of BHB
dehydrogenase. Concentrations of IGF-1 were determined
using a radioimmunoassay following acid–ethanol extraction
using the method previously described by Beltman et al.
(2010).

Clustering
The approach consists of the creation of differentiated
‘metabolic status’ of cows by applying a clustering method
on the blood components of interest. This methodology has
been developed by Salavati and Genotype plus Environment
Consortium (2017). A new set of phenotypes was defined by
k-means clustering based on actual observations for each of
plasma glucose, plasma BHB, plasma NEFA and serum IGF-I.
Beforehand, a logarithmic 10 transformation was applied to
IGF-I, NEFA and BHB to normalize distributions and all the
variables were mean-centered across the two sampling per-
iod (DIM14 and DIM35). K-means clustering groups data
following Euclidian distances between samples and centre of
clusters. The balance between cohesion within clusters and a
reasonable number of groups was obtained with three or
four groups. Considering both physiological interpretations
and better results obtained when developing FT-MIR models,
only the three groups clustering is presented in this work. The
clustering was realized jointly for the primiparous and the
multiparous cows (ALL). Primiparous and multiparous cows
were also separated to realize specific clustering on the two
data sets (PP) and (MP).

Fourier transform mid-IR analysis of milk
Twice weekly, AM and PM representative milk samples of the
whole milking were collected for each cow with ICAR
approved milk recording devices (Afi-Lite Pro, Afimilk Israel).
The samples were preserved at 4°C with bronopol 0.02%.
Analyses were conducted locally on FT2 and FT6000 spec-
trometers (Foss, Hillerød, Denmark) or at CRA-W (Belgium)
by a Standard Lactoscope FT-MIR automatic (Delta Instru-
ments, Drachten, The Netherlands). Morning and evening
spectra were combined into a daily spectrum by a weighted
average taking into account the AM and PM milk yields. The
spectra of the different instruments were standardized to be
merged into a common data set following the procedure
described in Grelet et al. (2015).

Mid-IR models development
The distribution of NEFA and BHB were not normally
distributed, with a higher proportion of low values. The
distribution of these two components was edited in order to
artificially normalize the distribution by a random removing
of low value (Grelet et al., 2016). In addition, a logarithmic
(base 10) transformation was tested on reference values
of these two components in order to approach a normal
distribution. The reference values were merged to the closest
spectra in time, based on the sampling date, within a limit of
2 days. Practically, 84% of reference values were merged
with the spectra of the same day or ±1 day and only 16%

Table 1 Overview of cows sampled and forage type offered within
the study

n
Cows

n
PP

n
MP MY

Roughage source in the
diet

AFBI (UK) 62 18 44 31.6 Grass silage
AU (Denmark) 35 11 24 35.5 Corn and grass silage
CRA-W
(Belgium)

31 13 18 30.5 Corn silage and grass

CREA (Italy) 45 8 37 29.3 Triticale silage
FBN (Germany) 29 3 26 37.5 Corn and grass silage
UCD (Ireland) 39 3 36 30.5 Corn and grass silage
Total 241 56 185 32.1

n Cows= number of cows sampled; n PP= number of primiparous cows sam-
pled, n MP= number of multiparous cows sampled; MY=mean daily milk yield
during days 1 to 50 post calving; AFBI=Agri-Food and Biosciences Institute, UK;
AU=Aarhus University, Denmark; CREA= Research Center for Animal Produc-
tion and Aquaculture, Italy; CRA-W=Walloon Agricultural Research Centre,
Belgium; FBN= Leibniz Institute for Farm Animal Biology, Germany; UCD=
University College Dublin, Ireland.
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were merged with the spectra of ±2 day. As pretreatment of
FT-MIR spectra, a first derivative was used with a gap of five
wavenumbers. The spectral areas selected were constituted
by 212 wavenumbers from 968.1 to 1577.5 cm− 1, 1731.8
to 1762.6 cm− 1, 1781.9 to 1808.9 cm− 1 and 2831.0 to
2966.0 cm− 1. These areas were selected to exclude noisy
parts of the spectrum induced by water and areas not
repeatable among different instruments after analysis of
common samples (Grelet et al., 2016). Parity and corre-
sponding daily milk yield (l/cow) were included with spectra
as predictors in models. The predictors were mean-centred to
equally scale spectral and additional data. These pretreat-
ments were carried out with programs developed in Matlab
v9.3.0 (The Mathworks, Inc., Natick, MA, USA). Quantitative
models predicting blood components were developed using
modified partial least squares regression with Winisi soft-
ware (Foss, Hillerød, Denmark). Discriminant models aiming
to differentiate the global metabolic status were developed
with partial least squares discriminant analysis (PLS-DA) with
the PLS toolbox v. 8.5.1 (Eigenvector Research, Inc.,
Wenatchee, WA, USA). Models were developed to predict
the metabolic status of animals based on ALL cows data set,
but also to predict the specific clustering of the PP or the MP
cows. In the quantitative models, samples with residuals
higher than 2.5 times the SD of the global residuals were
considered as outliers (Rousseeuw et al., 2006). This is per-
formed as a security step to exclude potential biased data
due to issues with sampling, sample conservation and ana-
lysis. Data sets were too small to perform an external vali-
dation. Indeed, splitting data from a reduced initial data set
underestimate the performances of the model because both
calibration and validation data sets contain a low number of
samples covering few and different information (Bagby et al.,
1994); information being spectral variability due to different
cows, lactation stages and feeding systems in the current
work. Moreover, this work is a preliminary step aiming to
evaluate the potential of FT-MIR spectra of milk to predict
the variables of interest and not to develop a robust model to
be used in routine conditions. The models were tested using
cross-validation with four subsets randomly constituted,
both for quantitative and discriminants models. The statistics
of the quantitative models, in both calibration and cross-
validation steps, were expressed in terms of R 2 (determina-
tion coefficient), RMSE and ratio performance/deviation. The
statistics of the discriminant models were expressed in terms
of sensitivity (percentage of classification into the good
cluster), specificity (percentage of the others clusters to be
predicted as others clusters) and global accuracy (global
percentage of correct classification).

Results and discussion

Blood component models
After merging the blood reference values with the milk
spectral data, the milk yields and parity information, missing
data meant that the size of the final merged data sets were
380 for glucose, NEFA and BHB, and 387 for IGF-I.

Descriptive statistics of the initial data set are shown in
Table 2.
It can be considered that 41% of the cows mobilize body
reserves highly with plasma NEFA above the critical thresh-
old of 0.57mEq/l (Ospina et al., 2010). Only 8% of the cows
are in (sub)clinical ketosis with BHB above 1.2mmol/l (Duf-
field et al., 1997). Artificial modification of NEFA and BHB
distribution reduced the number of data to 234 and 205,
respectively. The exclusion of samples with residuals higher
than 2.5 times the SD of the global residuals leads to
removing of 10, 8, 4 and 7 outliers which represents 3%, 2%,
2% and 3% of the data for glucose, IGF-I, NEFA and BHB,
respectively. Logarithmic transformation of the reference
values improved only the performances of BHB model and
was not retained for final NEFA model. In the current study,
the best models for glucose, IGF-I and NEFA were obtained
with the addition of the milk yield and parity as predictors
with the FT-MIR spectra of milk, but the improvements were
limited. The addition of these variables did not improve the
BHB model. This seems to be an artefact due to a slight
difference in the outlier removing as the addition of variables
containing complementary information should theoretically
bring more precision to the model.
Statistical performances of the best milk FT-MIR models

are described in Table 3. Models predicting glucose and
NEFA show relatively low performances, with R 2cv of 0.44
and 0.39 and RMSEcv of 0.36mmol/l and 344.2 µekv/l,
respectively. These RMSEcv, being the averaged errors of
prediction, represent accuracies of the models. When
expressed as a percentage of the mean they show relative
accuracies of 10% and 51% for glucose and NEFA, respec-
tively. Hence, for an equivalent R 2cv, these two models are
extremely different in terms of accuracy. In contrast to the
NEFA model, the glucose model is fairly precise and the
relatively poor R 2cv is probably impacted by a low variability
regarding the reference values (Davies and Fearn, 2006).
Additional relevant data covering complementary variability
could potentially improve the performances of the model.
The poor accuracy of the NEFA model is surprising as there
are identified links between NEB and milk composition,
through the C18:1cis-9 fatty acid particularly (Bastin et al.,
2011). Hypothesis explaining this could be a physiological or
time-dependent discrepancy between the milk composition
and the NEFA level in blood or the low number of samples as
well as an insufficient precision of the reference method.

Table 2 Descriptive statistics of the initial blood composition data set

Unit n Min Max Mean Median SD

Glucose mmol/l 380 1.93 4.7 3.47 3.50 0.51
IGF-I mg/l 387 6.6 435.6 105.9 87.1 71.9
NEFA µekv/l 380 26.1 2757.0 597.8 503.3 411.2
BHB mmol/l 380 0.19 4.29 0.65 0.49 0.48

NEFA= non-esterified fatty acids; BHB= β-hydroxybutyrate.
Glucose, NEFA and BHB analyzed in plasma and IGF-I analyzed in serum of
dairy cows.
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The models predicting IGF-I and BHB show more inter-
esting statistical performances, with respective R 2cv of 0.61
and 0.70 and RMSEcv of 44.4mg/l and 0.27mmol/l. These
RMSEcv, when expressed as percentage of the means,
expressed relative accuracies of 42% and 35%, respectively.
These models are consequently not appropriate to provide
accurate quantitative values, but the high R2cv indicate that
they globally fit well with the reference values along the
distribution, meaning that they could potentially be used to
distinguish low and high values. Figure 1 shows the relation
between the reference values and the values predicted by
FT-MIR models. From these graphs, we observe that both
IGF-I and BHB models are more precise in the range of the
low values than in the range of high values. The imprecision
in the range of high values, which is probably due to the over

representation of the low contents in data sets distribution,
can be circumvented by classifying the predictions using a
threshold. When using the classical threshold of 1.2mmol/l
with the BHB model, 96% of the low values are predicted low
by the model and 63% of the high values are predicted high,
leading in a global accuracy of 91%. This lends weight to the
use of these models for discriminating low and high IGF-I and
BHB contents.
Previous studies already focused on the prediction of blood

BHB using the milk FT-MIR spectra. Broutin (2015) obtained a
R2 of calibration of 0.54 and a standard error of calibration of
0.39mmol/l. He concludes that this accuracy is sufficient for
the potential and systematic routine detection of ketosis during
milk testing. In another study, Belay et al. (2017) obtained an
R2cv of 0.38 and an R2 of validation of 0.43. They conclude the

Table 3 Statistical performances of the quantitative models predicting blood components from mid-IR milk spectra of dairy cows

Component Unit predictors n Min Max Mean SD LV Outliers RMSE R2 RMSEcv R2cv RPDcv

Glucose mmol/l MIR+MY+ PAR 380 1.93 4.51 3.47 0.47 8 10 0.32 0.55 0.36 0.44 1.33
IGF-I mg/l MIR+MY+ PAR 387 12.6 435.6 106.6 70.8 10 8 39.6 0.69 44.4 0.61 1.59
NEFA µekv/l MIR+MY+ PAR 234 26.1 1956.2 671.6 439.6 6 4 312.6 0.49 344.2 0.39 1.28
BHB mmol/l MIR 205 0.19 3.46 0.77 0.48 6 7 0.23 0.77 0.27 0.70 1.81

n= number of samples used; LV= number of latent variables in the model; RMSE= root mean square error of calibration; R 2= coefficient of determination of
calibration; RMSEcv= root mean square error of cross-validation; R 2cv= coefficient of determination of cross-validation; RPDcv= ratio SD of calibration/RMSEcv;
MIR=mid-IR spectra of milk; MY= daily milk yield; PAR= parity of the cow; NEFA= non-esterified fatty acids; BHB= β-hydroxybutyrate.
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Figure 1 Plot of blood (a) glucose, (b) IGF-I, (c) NEFA and (d) β-hydroxybutyrate (BHB) values predicted from mid-infrared spectra of cow milk, in cross-
validation, against measured values.
NEFA= non-esterified fatty acids; BHB= β-hydroxybutyrate.
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model may allow rough screening to distinguish cows with
high or low blood BHB content. The higher accuracy of the
model obtained in the current study could be attributed to the
merging of datasets from six farms, providing more variability
regarding BHB values and spectral data. This was possible due
to the step of spectral standardization.
Regarding that the prediction of blood components from the

milk composition is inevitably indirect, meaning that the blood
composition does not affect the interaction between milk and
light, the results obtained in this study can be considered
satisfactory. The performances of the developed models,
especially for IGF-I and BHB, could allow the screening of
individual milk samples for high or low values. Given that the
data set being relatively small, with samples coming from only
six farms, it could be possible to improve the results and the
robustness by adding additional variability both in terms of
reference values and in spectral variability.

Clusters discrimination
Figure 2 reports, respectively, the distribution of blood
metabolites and hormones following the clusters developed
with the three data sets: ALL cows, PP only and MP only. The
obtained clusters were physiologically consistent. For the
three data sets, cluster 1 is characterized by high glucose and
IGF-I and low NEFA and BHB contents in comparison with the
other groups. This cluster is therefore clearly grouping the
cows with ‘healthy’ metabolic status. In the same way, for
the three data sets, the cluster 3 is characterized by low
glucose and IGF-I and high NEFA and BHB blood contents.

Those characteristics reflect reduced energy circulating
in the blood, altered liver metabolism, mobilization of body
reserves and production of ketone bodies. This cluster is
grouping the cows with ‘imbalanced’ metabolic status. The
cluster 2 is grouping cows with intermediate or ‘moderately
impacted’metabolic status, having altered circulating energy
reserves and liver metabolism, mobilizing fat reserves but not
showing production of ketone bodies as in the cluster 3. The
clustering from the entire reference data set resulted in 45%
of cows with healthy metabolic status, 39% with moderately
impacted metabolic status and 16% of cows with imbal-
anced metabolic status. This classification is, respectively,
36%, 45% and 19% when clustering the primiparous cows
and 41%, 47% and 12% when clustering the multiparous
cows only.
Partial least squares discriminant analysis models were

developed to discriminate the metabolic status of cows
within the three data sets, with FT-MIR spectra of milk as
predictor only, or with addition of MY and parity. Table 4
shows the confusion matrix from the discrimination of the
three metabolic groups within the data set containing ALL
cows, in the cross-validation step, and using FT-MIR spectra
of milk, milk yield and parity as predictors. Sensitivity and
specificity are, respectively, around 77% and 88% for both
cows with healthy and imbalanced metabolic status, which
are the extreme clusters. Classification of cows with moder-
ately impacted metabolic status is less performant, with
sensitivity of 68% and specificity of 84%. This seems logical
as the impact of this intermediate status is less likely to be

Clusters with ALL parities (n=372) Clusters with PP cows only (n=95) 

Clusters with MP cows only (n=277)

Figure 2 (Colour online) Distribution of the blood components regarding the metabolic status clusters created with all parities (ALL), primiparous only
(PP) and multiparous only (MP). Cluster 1 (green), cluster 2 (blue) and cluster 3 (red) are grouping cows with healthy, moderately impacted and
imbalanced metabolic status cows, respectively. NEFA= non-esterified fatty acids; BHB= β-hydroxybutyrate; *, **, ***= number of outliers not included
in the quartiles representation.
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‘marked’ into the milk composition than the extreme status.
The global accuracy, meaning the percentage of correct
classification, is 74%. The misclassification between con-
comitant groups, for example, between healthy and moder-
ately impacted status or between moderately impacted and
imbalanced status, represents 22% of the data and only 4%
of cows are extremely misclassified, for example, between
healthy and imbalanced.
From a management point of view, an interesting meta-

bolic status to discriminate is the imbalanced one as it
directly increases risks of metabolic or reproductive dis-
orders. Table 5 shows the cross-validation results of the PLS-
DA model discriminating the imbalanced cows from the
healthy and the intermediate cows, based on the clusters
developed with ALL data set and using FT-MIR spectra of
milk, milk yield and parity as predictors. Imbalanced cows
are discriminated with a sensitivity of 76% and a specificity
of 89%, leading to a global accuracy of 87%.

Table 6 summarizes the global accuracies of the PLS-DA
models discriminating the three clusters or the imbalanced
cows only, for the three data sets (ALL, PP and MP), and
using only the milk FT-MIR spectra as predictor, or in com-
bination with milk yield and parity data. In all cases, the
addition of milk yield and parity information improved, even
slightly, the performances of the models, which implies these
factors may influence the metabolic status of cows. The
discrimination of the three clusters by PLS-DA models allows
to fairly classify the three groups, with a global accuracy up
to 74% obtained when using the clustering with ALL cows.
When trying to discriminate the cows with imbalanced status
from the cows with healthy or moderately impacted status,
the models succeed to distinguish this group with good
accuracies. The percentage of correct classification reaches
87%, 92% and 88%, respectively, with ALL, PP and MP cows
when milk yield is added as predictor. Model accuracy is
consequently better when developing specific models only

Table 4 Confusion matrix from the discrimination of the three metabolic status clusters developed with dataset containing all cows, in the cross-
validation step, and using mid-IR spectra of milk, milk yield and parity as predictors

Healthy status Intermediate status Imbalanced status Total Sensitivity (%) Specificity (%) Global accuracy (%)

Predicted healthy 131 23 2 156 78 88 74
Predicted intermediate 25 98 12 135 68 84
Predicted imbalanced 13 23 45 81 76 89
Total 169 144 59 372

Table 5 Confusion matrix from the discrimination of the cows with imbalanced status, from clusters developed with all parities, in the cross-validation
step, and using mid-infrared spectra, milk yield and parity as predictors

Imbalanced
status

Healthy and intermediate
status Total

Sensitivity
(%)

Specificity
(%)

Global accuracy
(%)

Predicted imbalanced 45 36 81 76 89 87
Predicted healthy and intermediate 14 277 291
Total 59 313 372

Table 6 Summary of the global accuracies of cows clusters discrimination in cross-validation step

Data set n Predictors LV
Accuracy in discrimination of the

3 clusters (%)
Accuracy in discrimination of the

imbalanced status (%)

ALL 372 MIR 6 69 85
MIR+MY+ PAR 8 74 87

PP only 95 MIR 8 66 91
MIR+MY 8 67 92

MP only 277 MIR 7 64 88
MIR+MY+ PAR 7 67 88

LV= number of latent variables in the model; ALL=models developed with all cows; PP only=models developed with primiparous cows only; MP
only=models developed with multiparous cows only; MIR=mid-IR spectra of milk; MY= daily milk yield; PAR= parity of the cow
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for the PP or for the MP cows instead of using ALL cows. The
impact of NEB on blood levels of IGF-I, NEFA and BHB is
known to be different in the weeks after calving between PP
and MP cows (Wathes et al., 2007). It is consequently logical
to obtain a better discrimination when developing specific
models for primiparous or multiparous cows, and removing
by this way the natural differences between PP and MP.
However, this can affect the robustness of the models by
reducing the data size and consequently the intrinsic varia-
bility of each data sets.
It is therefore possible to use clustering methods to group

blood data into a global metabolic status information
making physiologically sense and to discriminate these sta-
tuses by combining FT-MIR analysis of milk and multivariate
discriminant models. The level of good classification
obtained by these models could allow to routinely fairly
classify cows with healthy, moderately impacted or imbal-
anced metabolic status, and to discriminate cows with
imbalanced status with a good accuracy.

Perspectives and limitations
The results of this study show that FT-MIR spectra of milk has
potential to predict blood glucose, IGF-I and NEFA, and con-
firms its ability to predict blood BHB with reasonable accuracy.
Although the quantitative models developed were not able to
provide precise quantitative values, they can discriminate
between high and low values. The results also demonstrate
that these blood-related variables can be merged into a global
metabolic status information, which can be predicted through
the FT-MIR spectra of milk. The discriminant models developed
in this research allow the classification of cows with healthy,
moderately impacted or imbalanced metabolic status with
reasonable accuracy, and to discriminate cows with imbal-
anced status with a good accuracy.
The performances were satisfactory, thereby allowing the

use of these variables as novel biomarkers potentially useful
at large scale for management and breeding of dairy cows.
Indeed such indicators can be used to facilitate decision
making on farm as soon as management strategies and
solutions are highlighted to reduce economic losses (Ettema
et al., 2006). Genomic studies need large scale and easily
accessible phenotypes. The FT-MIR instruments dedicated to
milk are present in many countries so the developed models
can be used to generate these phenotypes currently not
available at large scale. The individual blood component
models are not highly accurate but Gengler et al. (2017)
demonstrate that even low accuracy milk MIR based bio-
markers can become useful in the context of animal
breeding.
The models have been developed with relatively small

data sets, especially for blood NEFA and BHB for which the
distributions have been edited. Moreover, even though the
data were derived from different countries and from cows
offered different diets, they represent only six farms, all with
Holstein cows, and only during the period from calving to
DIM 50. As the models do not contain a lot of variability
regarding breeds, diets and geographical origin they are not

expected to be really robust, meaning that the results could
be biased when applying the models with others breeds or
diets than those present in the study. For the same reasons
the current models should preferably be applied within the
period from calving to DIM 50, which is nonetheless the
period of interest regarding metabolic status. Consequently,
in order to apply the models in routine at a larger scale, they
should be improved with data derived from other regions or
containing different specificities. The data set was also too
small to perform an external validation, which is the gold
standard to evaluate robustness and performances of mod-
els. Test of model through cross-validation is known to
slightly overfit the results compared with real external vali-
dation. An external validation step is planned in a later phase
of the EU GplusE project and will allow the evaluation of the
models with data coming from commercial farms. In this
study, metabolites and hormones used for clustering were
selected based on literature and further work is needed to
determine the relationship between clusters and energy
balance as well as productive and reproductive performances
of dairy cows. In the current work, the blood variables and
clusters were associated with the closest spectra in time,
with a limit of 2 days. However, these parameters are sus-
ceptible to vary from day to day but also during the day,
which makes the time association between spectra and
variables sub-optimal due to a lack of data. Further work
would be necessary to optimize the time association
between blood composition and milk spectra. A com-
plementary study from the same project (De Koster et al.,
submitted) created a random sampler to select one sample
per animal from 1 to 50 DIM. This allows to constitute the
calibration data set by simulating an official milk recording,
associating the status of cows to a FT-MIR spectra sampled
at random stages in lactation on a given day.
The models were developed with FT-MIR spectra collected

on instruments participating to a global standardization
process. This harmonization of spectrometer spectral
responses within a network allows the transfer of FT-MIR
models, even with limited robustness, on all the standardized
instruments (Grelet et al., 2017). Consequently, it will be
possible to apply these models on all the standardized
instruments of the milk recording organizations being part-
ners of the project in order to provide information on meta-
bolic status at large scale.
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