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a b s t r a c t 

We propose several cost functions for registration of shapes encoded with Euclidean and/or non- 

Euclidean information (unit vectors). Our framework is assessed for estimation of both rigid and non-rigid 

transformations between the target and model shapes corresponding to 2D contours and 3D surfaces. The 

experimental results obtained confirm that using the combination of a point’s position and unit normal 

vector in a cost function can enhance the registration results compared to state of the art methods. 
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1. Introduction 

Directions, axes or rotations are described as unit vectors in R 

d 

and are known collectively as directional data. In computer vision

this type of data is often processed and includes surface normals

and tangent vectors, orientations of image gradients, the direction

of sound sources and GPS coordinate information [1,2] . Directional

data can be viewed as points on the surface of a hypersphere S d ,

with angular directions observed in the real world frequently visu-

alized on the circle or sphere. A lot of research has been concerned

with successfully modelling and analysing this type of data, with

distributions proposed by von Mises, Fisher and Watson [3] used

in a range of applications including data clustering, segmentation

and texture mapping [4] . 

In this paper we propose to use von Mises-Fisher kernels to

model the normal vectors of the shape (i.e. 2D contours, and 3D

surface). Registration is then performed by minimizing a distance

between two Kernel Density Estimates encoding the target and

model shapes. Section 2 reviews the related work and in Section 3 ,

we propose several new cost functions for registration using nor-

mal information. Section 4 outlines some of the implementation

details of our method and experimental results ( Section 5 ) com-

pare our approach to leading techniques for registration [5–7] . 
∗ Corresponding author. 

E-mail addresses: mgrogan@tcd.ie (M. Grogan), Rozenn.Dahyot@tcd.ie (R. 
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. Related works 

.1. Euclidean distance between GMMs 

Considering p 1 ( x ) and p 2 ( x ), two probability density functions

pdf) for the random vector x ∈ R 

d , the Euclidean L 2 distance be-

ween p 1 and p 2 is defined as: 

 2 (p 1 , p 2 ) = 

∫ 
[ p 1 (x ) − p 2 (x )] 2 dx = ‖ p 1 − p 2 ‖ 

2 (1)

any divergences have been defined for p.d.f. [8] but L 2 has the

dvantage of being explicit in the case of Gaussian Mixtures Mod-

ls (GMM) and also robust to outliers when these GMMs are ker-

el density estimates (KDE) with Gaussian Kernels [5,9] . L 2 can be

ewritten as: 

 2 (p 1 , p 2 ) = ‖ p 1 − p 2 ‖ 

2 = ‖ p 1 ‖ 

2 + ‖ p 2 ‖ 

2 − 2 〈 p 1 | p 2 〉 (2)

nd simplified to 

 2 E(p 1 , p 2 ) = ‖ p 1 ‖ 

2 − 2 〈 p 1 | p 2 〉 (3)

hen p 2 is chosen as the empirical p.d.f. (i.e. KDE with Dirac Ker-

els) fitted on a target point set [5,9] . Jian and Vemuri applied L 2 

or shape registration in R 

2 and R 

3 , where a parameterized GMM

 1 ( x | θ ) is fitted to a target shape model represented by GMM p 2 
5] : θ controls an affine or non rigid transformation (e.g. Thin Plate

pline) and the solution 

ˆ θ is computed such that it minimizes the

 2 distance. While Jian and Vemuri encode shapes as GMMs fit-

ed to point clouds of contours ( R 

2 ) or surfaces ( R 

3 ), Arellano and

ahyot extended this shape registration approach into a multiple

nstance shape (ellipses) detection scheme, and also use directional

nformation about the contour [10] . Similarly, in this paper we pro-

ose to consider directional information and we consider specific

https://doi.org/10.1016/j.patcog.2018.02.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.02.021&domain=pdf
mailto:mgrogan@tcd.ie
mailto:Rozenn.Dahyot@tcd.ie
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ernels suited for directional data as opposed to the Gaussian Ker-

el used by Arellano and Dahyot. Alternatively, Fan et al. propose

o use GMMs to model the convex hull of 3D shapes, and min-

mise the L 2 distance between these distributions to register 3D

hapes [11] . Another application for L 2 registration in the image

omain is to compute the colour transfer function to change the

olour feel of images and videos [12, 13, 14, 31] . In this context, L 2 

egistration is shown to outperform other popular schemes includ-

ng these designed on the optimal transport framework [14] . 

Other registration techniques include maximum likelihood tech-

iques, in which one point set is represented by a GMM and the

ther by a mixture of delta functions, which is equivalent to min-

mising the KL divergence between the two mixtures. In [6] , My-

onenko and Song also impose that the GMM centroids move co-

erently, preserving the structure of the point clouds. The Itera-

ive Closest Point algorithm is another popular registration tech-

ique which alternates between estimating closest-point corre-

pondences and a rigid transformation. However, it can become

rapped in local minima and requires a good initialisation, and

any methods have been proposed as improvements [8,15] . Ying

t al. propose to extend the ICP algorithm so that it can account for

cale differences between 3D shapes using an SVD decomposition

pproach [16] and later estimate affine and non-linear transforma-

ions by applying a Lie group parametrization method to globally

lign the shapes and avoid non-degenerate solutions [17,18] . Yang

t al. [7] propose to combine ICP with a branch-and-bound scheme

hich efficiently searches the rigid 3D motion space. They also

erive novel upper and lower bounds for the ICP error function

nd provide a globally optimal solution to the 3D rigid registra-

ion problem. Du et al. propose to make the ICP algorithm more

obust by using a Gaussian model when computing the distance

etween the point sets, reducing the effect of noise on the results

19] . Rather than using fuzzy correspondences [5,6] other tech-

iques estimate explicit correspondences between the point sets

sing shape descriptors such as shape context [20] and the lo-

al shape and neighbourhood structure of the shapes [21,22] . Yang

t al. [23] propose to combine global and local structural differ-

nces in a global and local mixture distance (GLMD) based method

or non-rigid registration. Their iterative two step process alter-

ately estimates the correspondences and computes the transfor-

ation. 

.2. Directional data 

We consider the d -dimensional unit random vector u such that

 u ‖ = 1 ( u ∈ S 
d−1 with S 

d−1 the hypersphere in R 

d ). Several dis-

ributions exist for random unit vectors and some are presented

n this section. Applications of such distributions include RGB-D

mage segmentation [4] and structure from motion in 360 video

24] amongst others [1,2] . 

.2.1. Von Mises-Fisher kernel 

The von Mises-Fisher distribution is one of the most commonly

sed distributions for directional data and has properties similar

o those of a multivariate Gaussian in R 

d . The von Mises-Fisher

robability density function for a random unit vector u ∈ S 
d−1 is

efined as: 

 MF (u ;μ, κ) = C d (κ) exp 

(
κ μT u 

)
(4)

ith parameters κ ≥ 0 and ‖ μ‖ = 1 and the normalising constant

 d is defined as: 

 d (κ) = 

1 ∫ 
S d−1 exp 

(
κ μT u 

)
du 

= 

κ
d 
2 −1 

(2 π) 
d 
2 I d 

2 −1 (κ) 
(5) 

ith I d 
2 

−1 
the modified Bessel function of order d 

2 − 1 . The von

ises-Fisher distribution is parametrised by the mean vector μ
nd the concentration parameter κ , so called because it determines

ow strongly the distribution is concentrated about the mean vec-

or. The von Mises-Fisher distribution is rotationally symmetric

bout μ, with high values of κ creating a distribution highly con-

entrated about μ, and low values of κ creating an almost uni-

orm distribution on S 
d−1 . The von Mises-Fisher distribution with

arameters κ and μ is noted vMF ( μ, κ) for simplification. For di-

ension d = 3 , u is a unit vector in R 

3 and belongs to the sphere

 

2 , and the normalising constant in the von Mises-Fisher distribu-

ion is [4] : 

 3 (κ) = 

κ

4 π sinh (κ) 
(6) 

For d � = 3, the value C d ( κ) is not directly available but can be

omputed using numerical integration. 

.2.2. Watson distribution 

The Watson distribution is also used to model axially symmet-

ic directional data and is defined as follows: 

 d (u ;μ, κ) = M d (κ) exp 

(
κ (μT u ) 2 

)
(7)

ith the normalising constant: 

 d (κ) = 

1 ∫ 
S d−1 exp 

(
κ (μT u ) 2 

)
du 

(8) 

his can be computed as M d (κ) = M( 1 2 , 
d 
2 , κ) , the confluent hyper-

eometric function also known as the Kummer function, which

s not directly available but can be approximated. Like the von

ises-Fisher distribution, the Watson distribution is also rotation-

lly symmetric about μ and the value of κ determines the shape

f the distribution. For a geometric description of the Watson dis-

ribution see [4, 31] . 

. L 2 with directional data 

Given two sets of observations S 1 = { (x (i ) 
1 

, u (i ) 
1 

) } i =1 , ··· ,n 1 and S 2 =
 (x 

( j) 
2 

, u 
( j) 
2 

) } j=1 , ··· ,n 2 for the random vectors (x, u ) ∈ R 

d x × S 
d u , we

ncode the model and target shapes using KDEs and register them

y minimising the L 2 distance between them. Here we assume

hat the shapes differ by some transformation φ, controlled by the

arameter θ , which registers S 1 to S 2 and creates a new shape with

bservations ˜ S 1 = { ( ̃  x (i ) 
1 

, ̃  u (i ) 
1 

) } i =1 , ··· ,n 1 that maps to S 2 . 

Probability density functions are modelled using sets ˜ S 1 and S 2 
roviding two possible distributions denoted p 1 and p 2 for the ran-

om vector x ∈ R 

d x , u ∈ S 
d u , and (x, u ) ∈ R 

d x × S 
d u . The L 2 distance

etween p 1 and p 2 can then be computed as L 2 (p 1 , p 2 ) = ‖ p 1 −
p 2 ‖ 2 = ‖ p 1 ‖ 2 + ‖ p 2 ‖ 2 − 2 〈 p 1 | p 2 〉 which is equivalent to maximiz-

ng the scalar product 〈 p 1 | p 2 〉 when φ is a rigid mapping [5] . 

.1. Pdf modelling for x ∈ R 

d x 

Jian and Vemuri used a KDE with a Gaussian kernel N (x ; ˜ x (i ) 
1 

, h )

tted to each point ˜ x (i ) 
1 

in 

˜ S 1 [5] : 

p 1 (x ) = 

1 

n 1 

n 1 ∑ 

i =1 

N (x ; ˜ x (i ) 
1 

, h 1 ) (9)

ikewise the second set of points { x ( j) 
2 

} is modelled using the

aussian kernels: 

p 2 (x ) = 

1 

n 2 

n 2 ∑ 

j=1 

N (x ; x (i ) 
2 

, h 2 ) (10)

ll Gaussians are chosen spherical in shape and have uniform scale

nd using the scalar product between two Gaussian kernels (cf.

able A.4 ), the following cost function is proposed to estimate θ : 
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C x = 

1 

n 1 n 1 

n 1 ∑ 

j=1 

n 1 ∑ 

i =1 

1 √ 

4 h 

2 
1 
π

exp 

(−‖ ̃

 x ( j) 
1 

− ˜ x (i ) 
1 

‖ 

2 

4 h 

2 
1 

)

− 2 

n 1 n 2 

n 2 ∑ 

j=1 

n 1 ∑ 

i =1 

1 √ 

2(h 

2 
1 

+ h 

2 
2 
) π

exp 

(−‖ x ( j) 
2 

− ˜ x (i ) 
1 

‖ 

2 

2(h 

2 
1 

+ h 

2 
2 
) 

)
(11)

This cost function computes ‖ p 1 ‖ 2 − 2 〈 p 1 | p 2 〉 , and minimising C x
is equivalent to minimising the L 2 distance between the GMMs p 1 
and p 2 , and was previously proposed for shape registration by Jian

and Vemuri [5] . Note that if we had instead fitted a Dirac kernel to

each of the points in { x ( j) 
2 

} we would have obtained the following

cost function: 

C x δ = 

1 

n 1 n 1 

n 1 ∑ 

j=1 

n 1 ∑ 

i =1 

1 √ 

4 h 

2 
1 
π

exp 

(−‖ ̃

 x ( j) 
1 

− ˜ x (i ) 
1 

‖ 

2 

4 h 

2 
1 

)

− 2 

n 1 n 2 

n 2 ∑ 

j=1 

n 1 ∑ 

i =1 

1 √ 

2 h 

2 
1 
π

exp 

(−‖ x ( j) 
2 

− ˜ x (i ) 
1 

‖ 

2 

2 h 

2 
1 

)
(12)

which is equivalent to C x when h 2 = 0 . 

3.2. Pdf modelling for u ∈ S 
d u 

To model the first set of normals { u (i ) 
1 

} we propose a KDE with

a von Mises-Fisher kernel v MF (u ; ˜ u (i ) 
1 

, κ) fitted to each normal ˜ u (i ) 
1 

in 

˜ S 1 : 

p 1 (u ) = 

1 

n 1 

n 1 ∑ 

i =1 

v MF (u ; ˜ u 

(i ) 
1 

, κ1 ) (13)

We propose to model the second set of normal vectors { u ( j) 
2 

} using

either the empirical distribution: 

p 2 (u ) = 

1 

n 2 

n 2 ∑ 

j=1 

δ(u − u 

( j) 
2 

) (14)

or using the von Mises-Fisher distribution: 

p 2 (u ) = 

1 

n 2 

n 2 ∑ 

j=1 

v MF (u ; u 

( j) 
2 

, κ2 ) . (15)

Using the definitions for 〈 p 1 | p 2 〉 as given in Table A.4 , two cost

functions used to estimate θ by minimising ‖ p 1 ‖ 2 − 2 〈 p 1 | p 2 〉 can

then be defined as follows: 

C u δ = 

(
C d u (κ1 ) 

n 1 

)2 n 1 ∑ 

i =1 

n 1 ∑ 

j=1 

C −1 
d u 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ1 ̃  u 

( j) 
1 

‖ 

)

−2 C d u (κ1 ) 

n 1 n 2 

n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

exp (κ1 ̃  u 

(i ) T 
1 

u 

( j) 
2 

) , (16)

based on the modelling for p 2 defined in Eq. (14) , and 

C u = 

(
C d u (κ1 ) 

n 1 

)2 n 1 ∑ 

i =1 

n 1 ∑ 

j=1 

C −1 
d u 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ1 ̃  u 

( j) 
1 

‖ 

)

−2 C d u (κ1 ) C d u (κ2 ) 

n 1 n 2 

n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

C −1 
d u 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ2 u 

( j) 
2 

‖ 

)
(17)

based on the modelling for p 2 defined in Eq. (15) . 

Since both terms in C u depend on the normalising constant

 d u (κ) , the computation of C u requires numerical integration when

d u � = 3. On the other hand, when φθ is a rigid transformation C u 
δ

can be simplified as 

̂ θ = arg max 
θ

{ 

C u δ = 

n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

exp (κ1 ̃  u 

(i ) T 
1 

u 

( j) 
2 

) 
} 

(18)
nd therefore can be easily computed ∀ d u . This is one of the main

dvantages of using the Dirac distribution to model one set of nor-

al vectors. 

.3. Pdf modelling for (x, u ) ∈ R 

d x × S 
d u 

We investigate in this section a cost function which accounts

or both the normal vectors and point positions of the shapes in

he modelling. For the transformed observations a KDE with Gaus-

ian kernels fitted to each point ˜ x (i ) 
1 

and a vMF kernel fitted to each

ormal vector ˜ u (i ) 
1 

is modelled as follows: 

p 1 (x, u ) = 

1 

n 1 

n 1 ∑ 

i =1 

v MF (u ; ˜ u 

(i ) 
1 

, κ1 ) N (x ; ˜ x (i ) 
1 

, h 1 ) (19)

or the second set of observations we again propose two methods

or modelling the point and normal vectors. First, we propose to

t a dirac Delta kernel to each normal vector u 
( j) 
2 

and a Gaussian

ernel to each point x 
( j) 
2 

to create a KDE of the form: 

p 2 (x, u ) = 

1 

n 2 

n 2 ∑ 

j=1 

δ(u − u 

( j) 
2 

) N (x ; x ( j) 
2 

, h 2 ) . (20)

e also propose an alternate KDE with vMF kernels fitted to the

ormal vectors { u ( j) 
2 

} as in Eq. (19) : 

p 2 (x, u ) = 

1 

n 2 

n 2 ∑ 

j=1 

v MF (u ; u 

( j) 
2 

, κ2 ) N (x ; x ( j) 
2 

, h 2 ) . (21)

hen the parameter θ is estimated by minimizing one of the fol-

owing cost functions: 

 

x,u 
δ

= 

1 

n 1 n 1 

n 1 ∑ 

j=1 

n 1 ∑ 

i =1 

〈 v M F ( ̃  u 

(i ) 
1 

, κ1 ) | v M F ( ̃  u 

( j) 
1 

, κ1 ) 〉 

×〈N ( ̃  x (i ) 
1 

, h 1 ) |N ( ̃  x ( j) 
1 

, h 1 ) 〉 
− 2 

n 1 n 2 

n 2 ∑ 

j=1 

n 1 ∑ 

i =1 

〈 v MF ( ̃  u 

(i ) 
1 

, κ1 ) | δ(u 

( j) 
2 

) 〉 

×〈N ( ̃  x (i ) 
1 

, h 1 ) |N (x ( j) 
2 

, h 2 ) 〉 . (22)

ased on the modelling proposed in Eq. (20) , or 

 

x,u = 

1 

n 1 n 1 

n 1 ∑ 

j=1 

n 1 ∑ 

i =1 

〈 v M F ( ̃  u 

(i ) 
1 

, κ1 ) | v M F ( ̃  u 

( j) 
1 

, κ1 ) 〉 

×〈N ( ̃  x (i ) 
1 

, h 1 ) |N ( ̃  x ( j) 
1 

, h 1 ) 〉 
− 2 

n 1 n 2 

n 2 ∑ 

j=1 

n 1 ∑ 

i =1 

〈 v M F ( ̃  u 

(i ) 
1 

, κ1 ) | v M F (u 

( j) 
2 

, κ2 ) 〉 

×〈N ( ̃  x (i ) 
1 

, h 1 ) |N (x ( j) 
2 

, h 2 ) 〉 . (23)

ased on the modelling proposed in Eq. (21) . Using the appropri-

te scalar product definitions given in Table A.4 , the proposed cost

unctions can be written explicitly as: 

 

x,u 
δ

= 

C d (κ1 ) C d (κ1 ) 

n 1 n 1 

√ 

4 h 

2 
1 
π

×
n 1 ∑ 

i =1 

n 1 ∑ 

j=1 

C −1 
d 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ1 ̃  u 

( j) 
1 

‖ 

)

× exp 

(−‖ ̃

 x ( j) 
1 

− ˜ x (i ) 
1 

‖ 

2 

4 h 

2 
1 

)

− 2 C d (κ1 ) 

n 1 n 2 

√ 

2(h 

2 
1 

+ h 

2 
2 
) π

×
n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

exp (κ1 u 

( j) 
2 

T 
˜ u 

(i ) 
1 

) 

× exp 

(−‖ x ( j) 
2 

− ˜ x (i ) 
1 

‖ 

2 

2(h 

2 
1 

+ h 

2 
2 
) 

)
. (24)
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Fig. 1. In (a) the parametric curve (blue) sampled at 50 locations (red) with normal vectors (shown in blue) is S 1 , and was rotated by an angle of θGT = 90 ◦ to generate S 2 . 

In (b), (c) and (d) we show the effect that our simulated annealing strategy has on the cost functions computed using S 1 and S 2 as θ ranges from 1 ° to 360 °. To avoid local 

minima, h is gradually decreased and κ is gradually increased until h = h f inal and κ = κ f inal . Green: C x ; Red: C u ; Blue: C x,u ; Pink: θGT . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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x,u = 

C d u (κ1 ) C d u (κ1 ) 

n 1 n 1 

√ 

4 h 

2 
1 
π

×
n 1 ∑ 

i =1 

n 1 ∑ 

j=1 

C −1 
d u 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ1 ̃  u 

( j) 
1 

‖ 

)

× exp 

(−‖ ̃

 x ( j) 
1 

− ˜ x (i ) 
1 

‖ 

2 

2 h 

2 
1 

)

−2 

C d u (κ1 ) C d u (κ2 ) 

n 1 n 2 

√ 

2(h 

2 
1 

+ h 

2 
2 
) π

×
n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

C −1 
d u 

(‖ κ1 ̃  u 

(i ) 
1 

+ κ2 u 

( j) 
2 

‖ 

)

× exp 

(−‖ x ( j) 
2 

− ˜ x (i ) 
1 

‖ 

2 

2(h 

2 
1 

+ h 

2 
2 
) 

)
. (25) 

lthough both terms in C x,u depend on the normalizing constant

 d u (κ) , in C x,u 
δ

the term 〈 p 1 | p 2 〉 is independent of this constant

nd can be computed for any dimension d u . Therefore when φ is a

igid transformation, θ can be estimated for any dimension d u by

aximizing the cost function: 

 

x,u 
δ

= 

n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

exp (κ1 u 

( j) 
2 

T 
˜ u 

(i ) 
1 

) exp 

(−‖ x ( j) 
2 

− ˜ x (i ) 
1 

‖ 

2 

2(h 

2 
1 

+ h 

2 
2 
) 

)
(26) 

. Algorithm and analysis 

In this section we outline some of the implementation details

f our algorithm when it was applied to registering two shapes S 1 
nd S 2 with point sets { x (i ) 

1 
} and { x ( j) 

2 
} and unit normal vectors

 u (i ) 
1 

} and { u ( j) 
2 

} respectively. 

.1. Transformation function φ

To test the proposed cost functions, we considered shapes dif-

ering by both a rigid and non-rigid transformation φ. As a transla-

ion only affects the observations { x ( i ) } and not the normal vectors

 u ( i ) }, the cost functions C u and C u 
δ

are invariant to translation. To

nsure all cost functions are evaluated equally, when estimating a

igid transformation we omit a translation and only consider data

iffering by a rotation ( Fig. 1 ). 

For shapes differing by a non-rigid deformation, we estimate a

hin Plate Spline transformation and do not include a regularisa-

ion term to control the non-linearlity of the transformation. How-

ver this can be added by the user if necessary. The N control

oints c j used to control the TPS transformations are chosen uni-

ormly on a grid spanning the bounding box of the model shape. 
.2. Algorithm 

Given two point sets { x (i ) 
1 

} i =1 , ... n 1 
and { x ( j) 

2 
} j=1 , ... n 2 

representing

he model and target shapes, our strategy for estimating the trans-

ormation φ( x, θ ) is summarised in Algorithm 1 . 

lgorithm 1 Our strategy for estimating the transformation φ( x,

). 

equire: ˆ θ initialised so that φ(x, ˆ θ ) = x (identity function) 

equire: κinit , κ f inal and h init , h f inal for C x,u . 

equire: h step , κstep 

equire: Computation of unit normal vectors { u (i ) 
1 

} i =1 , ... n 1 
and

{ u ( j) 
2 

} j=1 , ... n 2 
from { x (i ) 

1 
} i =1 , ... n 1 

and { x ( j) 
2 

} j=1 , ... n 2 
. 

Choose m points { x (i ) 
1 

} i =1 , ... m 

and { x ( j) 
2 

} j=1 , ... m 

and their associ-

ated unit normal vectors { u (i ) 
1 

} i =1 , ... m 

and { u ( j) 
2 

} j=1 , ... m 

for pro-

cessing. 

Start h = h init and κ = κinit 

repeat 
ˆ θ ← arg min θ C(θ ) 

h ← h step × h 

κ ← κstep × κ

until Convergence h < h f inal and κ > κ f inal return 

ˆ θ

In all of our experiments we let h 1 = h 2 = h and κ1 = κ2 = κ . To

void local minima, we implement a simulated annealing strategy

y gradually decreasing h and increasing κ . The values chosen for

ll parameters can be found in the supplementary material. To re-

uce computation time we do not process all points in the shapes

 1 and S 2 , but instead sample m points and their associated unit

ormal vectors from both. 

.3. Normal vector computation 

We use several methods to compute the normal vectors { u ( i ) }

t the points { x ( i ) }. When testing our cost functions on 2D data,

e use parametric curves and compute the normal vectors ana-

ytically. For 3D shapes in the form of meshes, we compute the

ormal vectors at a given vertex x ( i ) as the average of the normal

ectors of each face connected to x ( i ) . We also compute the normal

ectors without exploiting the connectivity of a vertex, instead fit-

ing a plane to it’s nearest neighbours to compute the normal vec-

or [25,26] . 
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4.4. Computation complexity 

The computational complexity of all cost functions depends

on the number of points n 1 and n 2 in the shapes, and is of or-

der O(n 1 × n 2 ) . Choosing n point correspondences reduces this to

O(n ) . The computation time needed by the gradient ascent tech-

nique depends on the dimension of the latent space, which is de-

termined by the transformation being estimated and the dimen-

sion d x of the space in which the shapes are defined. We do not

provide analytical gradients to the gradient ascent algorithm when

testing any of the proposed cost functions, and instead use numer-

ical methods. While analytical gradients can be computed for C x 
[5] , and for all cost function when estimating a rotation, comput-

ing gradients for C x,u or C x,u 
δ

when estimating a TPS transformation

is not trivial, and we found that using numerical approximation

was preferable. 

4.5. Correspondences 

In some cases, when estimating a non-rigid transformation, cor-

respondences are used to reduce computational complexity and

improve the registration result. When n correspondences are cho-

sen, the double sum 

∑ n 1 
i 

∑ n 2 
j 

in all cost functions is reduced to∑ n 
i . To compute correspondences we used the method proposed

by Yang et al. [23] . First, a global distance between the point sets

is computed followed by a local distance measuring the differ-

ence in neighbourhood structure. The local and global distances are

combined to estimate a set of point correspondences. Yang et al.

also incorporate an annealing scheme which is designed to slowly

change the cost minimisation from local to global, which we incor-

porate into our simulated annealing strategy. 

4.6. Comparisons 

To evaluate our algorithm we compared our results to several

techniques [5–7,23] . The parameters used for each are given in the

supplementary material. To ensure that a fair comparison between

Jian and Vemuri’s cost function C x and our proposed cost functions

was presented, we altered some of the optimisation steps in the

code provided by Jian and Vemuri 1 so that they coincided with

those implemented with our proposed cost functions eg. the same

simulated annealing framework was used for C x , C u , C u 
δ
, C x,u 

δ
and

C x,u and the changes made enhanced the results achievable by C x . 

4.7. Evaluation 

In all experiments we chose the model and target point sets to

be of equal size with n 1 = n 2 = n . The ground truth point corre-

spondences between the model and target shapes { x (i ) 
1 

, x (i ) 
2 

} i =1 , ... n 

are also known and we evaluate the results of all algorithms by

computing the mean square error (MSE) between corresponding

points in the transformed model ( { ̃  x (i ) 
1 

} ) and target ( { x (i ) 
2 

} ) point

sets. Note that all n points in the target shape and transformed

model are used to compute the MSE, not just the subsample of

size m used to estimate φ(x, ˆ θ ) . 

4.8. Experimental set up 

Our cost functions are evaluated experimentally (c.f.

Sections 5 and 6 ) with the following settings: 

• For rigid transformation, the scalar product 〈 p 1 | p 2 〉 is the cost

function that is maximized as ‖ p 1 ‖ does not change in this case

(In Sections 5.1 and 6.1 ). 
1 https://github.com/bing-jian/gmmreg . 

m  

e  

t

• For non-rigid transformation, ‖ p 1 ‖ 2 − 2 〈 p 1 | p 2 〉 is minimized to

estimate θ (c.f. Sections 5.2 and 6.2 ). 

In Section 6.3 we give details about the computational cost of

ur algorithm. 

. Experimental results 2D 

When considering the von Mises kernel as part of our cost

unctions, because its normalizing constant C 3 ( κ) is explicitly avail-

ble for u ∈ S 
2 while C 2 ( κ) is not for 2D data ( u ∈ S ), we propose

o artificially define u on S 
2 instead of S in this case by adding a

hird dimensional coordinate to the normal vector (which is set to

ero) to ease and speed up computation. 

.1. 2D rotation registration 

Curves S 1 and S 2 differ by a rotation φ which is defined as

(x, θ ) = R x (and φ(u, θ ) = R u for the normal vector u ∈ S , ignor-

ng the zero value added to artificially extend u ∈ S 
2 ), where R is a

D rotation matrix controlled by the angle θ . We assess the esti-

ation of the rotation angle θ using the cost functions C x [5] , C u ,
 

u 
δ
, C x,u and C x,u 

δ
. 

When testing our results we found that C u and C u 
δ

as well as

 

x,u and C x,u 
δ

are practically equivalent, so for ease of comparison

e only present results for C u and C x,u . Results for C u 
δ

and C x,u 
δ

can

e found in the appendix. 

1. Fig. 2 (a) presents the average MSE errors computed for C x [5] ,

C u and C x,u when considering rotation transformation between

the two shapes to be registered. It shows that C x,u performs

the best, followed by C u and then C x . Several values of θ were

tested (reported in abscissa Fig. 2 (a)), and for each value we

created and registered 10 pairs of curves S 1 and S 2 . 

2. Fig. 2 (b) presents the average MSE errors computed for C x [5] ,

C u and C x,u when estimating a rotation but with missing data

between the two shapes to be registered. Again C x,u performs

the best, followed by C u and then C x . In this experiment a para-

metric curve S 1 is represented by 150 vertices { x (i ) 
1 

} i =1 , ... 150 with

their corresponding normal vectors { u (i ) 
1 

} i =1 , ... 150 to create S 1 =
{ (x (i ) 

1 
, u (i ) 

1 
) } i =1 , ... 150 . S 2 is created by rotating S 1 (with θ = 60 ◦

) and a percentage of points (reported in abscissa Fig. 2 (b))

are removed from S 2 before registration. For each percentage

of points removed (7%, 20%, 33%, 47%, 60%) we generating 10

pairs of curves S 1 and S 2 on which we tested the estimation of

θ . As the number of removed points increases to 60% or more,

C x,u had a higher tendency to fall into local minima and the er-

ror increases as a result. Similar results were found for other

values of θ tested. 

.2. 2D non-rigid registration 

Shapes S 1 and S 2 differ now by a non-rigid deformation (de-

ned as a TPS transformation with varying degrees of deforma-

ion). The estimated TPS transformation is controlled by N = 12

ontrol points and our latent space of parameters to estimate is

f dimension (12 × 2) + 6 = 30 . Cost functions C x [5] and C x,u are

ssessed, and C u and C u 
δ

are omitted as normal information alone

s not sufficient when estimating a non-rigid transformation. C x,u 
δ

enerates similar results to C x,u and is not reported here, but can

e found in the appendix. As well as comparing C x [5] and C x,u , we

lso compare to other state of the art non-rigid registration tech-

iques namely CPD [6] and GLMD [23] . For comparison we imple-

ent a similar experimental framework as that presented by Yang

t al. [23] and for this reason we also normalize all curves so that

hey lie within [0, 1] × [0, 1]. 

https://github.com/bing-jian/gmmreg
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Fig. 2. MSE results comparing our cost functions on 2D data with rigid transformation (rotation). In (a) the MSE value given at each rotation is the average over 10 curve 

registration results, as is the MSE value given at each percentage of removed points in (b). 

Fig. 3. MSE results for non-rigid registration with 2D data. (a) Deformation estimation results with degree of deformation varying from 1 to 8; (b) Deformation and rotation 

estimation, with degree of deformation 4 and rotation varying from 15 ° to 75 °; (c) Deformation estimation with missing data. 
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1. For each level of non rigid deformation we register 120 pairs

of shapes S 1 and S 2 and present the average MSE results in

Fig. 3 (a). We found that in general C x,u performs well, but fails

on occasion skewing the average MSE (i.e. at deformations of

degree 5 and 7). Similar spikes appear in the results for C x [5] .

Both CPD [6] and GLMD [23] generate consistent results over all

deformations. 

2. Setting the degree of deformation to 4, rotations of ± 15 °,
± 30 °, ± 45 °, ± 60 ° and ± 75 ° are added so that both rotation

and non rigid parameters now need to be estimated to regis-

ter S 1 and S 2 . At each rotation value we registered 240 pairs of

deformed curves for each method and the mean square errors

computed can be seen in Fig. 3 (b). C x,u performs best, followed

by C x , GLMD [23] and CPD [6] . The addition of the normal infor-

mation in the cost function ensured that in general C x,u esti-

mated the correct rotation and deformation, while in the case

of the other cost functions, the non-rigid deformation param-

eters were often used to attempt to account for the rotation

difference. 

3. Setting the degree of deformation to 4 without rotation, a per-

centage of points is randomly removed from S 1 before regis-

tration on S 2 . Fig. 3 (c) shows that C x,u 
corr performed as well as

GLMD [23] , followed by C x corr and CPD [6] . Without correspon-

dences we found that both C x,u and C x (not reported) tried to
maximize the amount of overlap between the curves and rarely

estimated the correct parameters. For this experiment corre-

spondences were estimated using Yang et al.s technique, as de-

scribed in Section 4.5 , and were used when optimizing C x,u 
corr and

C x corr . 120 pairs of curves were registered at each level of miss-

ing data (reported in abscissa) and the average MSE is reported

in Fig. 3 (c). 

. Experimental results in 3D 

.1. 3D rotation registration 

We now consider two 3D shapes S 1 = { (x (i ) 
1 

, u (i ) 
1 

) } i =1 , ··· ,n and

 2 = { (x 
( j) 
2 

, u 
( j) 
2 

) } j=1 , ··· ,n which are represented by their point lo-

ations { x (i ) } ∈ R 

3 and normal vectors { u (i ) } ∈ S 
2 . Shapes S 1 and S 2 

iffer by a rotation φ which is defined as φ(x, θ ) = R x with θ = R .

n this case our latent space is of dimension 9. We compared our

esults to those obtained using Jian and Vemuri’s method C x [5] ,

PD [6] and Go-ICP [7] . The shapes used in this experiment are the

tanford Bunny, Dragon and Buddha meshes 2 , and the Horse mesh

rovided by Sumner and Popovic [27] . Each shape has both ver-

ex and edge information available, from which normal vectors are
2 http://graphics.stanford.edu/data/3Dscanrep/ . 

http://graphics.stanford.edu/data/3Dscanrep/
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easily calculated ( Section 4.3 ). A sub-sample of vertices and their

corresponding normal vectors are used in all of our experiments. 

When testing our results we found that C u and C u 
δ

as well as

C x,u and C x,u 
δ

are practically equivalent, so for ease of comparison

we only present results for C u 
δ

and C x,u 
δ

in the following section.

Further comparisons with C u and C x,u can be found in the ap-

pendix. 

The MSE errors for the following experiments are presented in

Fig. 4 . 

1. The first column of Fig. 4 presents the results of rigid regis-

tration when target and model meshes have the same sam-

pling w.r.t. different levels of rotation magnitude (reported in

abscissa). At each level of rotation magnitude, 15 different pairs

of shapes S 1 and S 2 were registered from which MSE is calcu-

lated. Correspondences are not used to enhance the registration

process in this case and overall CPD performs best, followed

by Go-ICP and C u 
δ
, while C x,u 

δ
and Jian and Vemuri’s method C x 

seem to generate similar results. Since there is a one to one cor-

respondence between the samples from each shape, all meth-

ods perform very well with an average MSE of around 10 −34 

for CPD and 10 −12 in all other cases. Both CPD and Go-ICP have

a tendency to fall into local minima as the rotation increases

while C u 
δ
, C x 

δ
and C x,u 

δ
continue to estimate good solutions. 

2. Similarly the second experiment (reported in the second col-

umn of Fig. 4 ) considers the case where target and model

meshes do not have the same set of vertices but instead differ-

ent samples of 10 0 0 points were chosen from S 1 and S 2 , along

with their corresponding normal vectors, so that no one to

one correspondence exist between the subsampled target and

model shapes. C x,u 
δ

performs the best in this case, followed by

Jian and Vemuri’s method C x . Here C u 
δ

performed the worst as

unlike vertices, normal vectors represent the first derivative of

the surface and are more sensitive to noise, thus varying more

when they are not sampled at exactly the same locations on S 1 
and S 2 . Again both CPD and Go-ICP fall into local solutions as

the rotation magnitude increases. Fig. 5 shows a sample of the

results achieved by the algorithms when registering the bunny

mesh. 

3. Our cost functions are assessed when noise is present in the

data (third column of Fig. 4 )) with three levels of Gaussian

noise (mean zero and standard deviation varying from 0.001 to

0.003 reported in abscissa) applied to vertices of S 2 , which dif-

fers from S 1 by a rotation of magnitude 30 °. When computing

the normal vectors of the noisy shape S 2 we used the nearest

neighbours approach implemented by Meshlab, as described in

Section 4.3 . We found that when noise is present in the point

positions, this gives a better estimate of the normal vector than

using the vertex connectivity. As the noise on the points { x (i ) 
2 

}
increases we also increase the number of nearest neighbours

( N k ) used to compute the normal vectors, for example we set

N k = 40 , 60 and 120 for noise levels 0.0 01, 0.0 02 and 0.0 03 re-

spectively when registering two Bunny shapes. The normal vec-

tors associated with the noise free shape S 1 were computed us-

ing the vertex and edge information provided in the .ply. Differ-

ent samples of 10 0 0 points, along with their associated normal

vectors, were then chosen from S 1 and the noisy S 2 , so that no

one to one point correspondences exist between the target and

model point clouds. The registration process was repeated 15

times for each noise level, and in all cases, C x,u 
δ

performs the

best, followed by C x , CPD and Go-ICP. The additional smoothed

normal vector information used by C x,u 
δ

allows it to converge to

a more accurate solution, even when a large degree of noise is

added to the points in the shape S 1 . Again C u 
δ

does not perform

as well as the other approaches. Fig. 5 shows a sample of the
results achieved by the algorithms when registering the bunny

mesh. 

.2. 3D non-rigid registration 

Finally we consider two 3D shapes S 1 and S 2 differ by a non-

igid deformation. We register these shapes by estimating a non-

igid TPS transformation. We choose the number of control points

s N = 125 so our latent space has (125 × 3) + 12 = 387 dimen-

ions. Point correspondences are used here in the cost functions

 

x and C x,u , notated as C x corr and C x,u 
corr . Again we omit C u and C u 

δ
s they did not perform well when estimating a non-rigid trans-

ormation. We also omit C x,u 
δ

as it has previously been shown to

erform similarly to C x,u . Additional graphical results can also be

ound in the supplementary material. 

We present two sets of experiments in this section. In the

rst set we compare how C x corr and C x,u 
corr perform when register-

ng shapes with known correspondences and in the second we

ompare C x corr , C x,u 
corr , CPD [6] and GLMD [23] when registering shapes

ith unknown correspondences that must be estimated. 

1. In this first experiment we use the dataset of shapes provided

by Sumner and Popovic [27] containing meshes of several dif-

ferent types of animal in different poses, including a cat, lion

and horse. Each mesh of the same animal has an equal number

of vertices and exact point correspondences. We use the ground

truth point correspondences when computing C x corr and C x,u 
corr to

reduce computational complexity. Choosing two meshes of the

same type of animal, we let the vertices of each mesh be the

points { x (i ) 
1 

} and { x (i ) 
2 

} and compute the corresponding normal

vectors { u (i ) 
1 

} and { u (i ) 
2 

} using the edge information provided in

the mesh. We then apply a rotation to S 1 so that the shapes

differ by both a rotation and non-rigid deformation. For each

level of rotation tested we register 10 pairs of shapes S 1 and S 2 .

Fig. 6 (a) reports MSE comparing C x corr and C x,u 
corr : due to the large

dimension of the latent space (387 dimensions), the gradient

ascent technique required a large number of iterations to regis-

ter the shape S 1 to S 2 . For each cost function, to reduce compu-

tation time the limit of on the number of function evaluations

computed during optimization is set to 50,0 0 0 (at each simu-

lated annealing step). Very little difference is observed between

the cost functions and even with 50,0 0 0 functions evaluations,

both C x corr and C x,u 
corr failed to converge to a good solution. 

2. In this experiment a scan taken of the Stanford Bunny with

10 0 0 points is used to generate S 1 and S 2 . Taking the points of

the scan to be { x (i ) 
2 

} , we computed the normals vectors { u (i ) 
2 

}
using the nearest neighbour approach ( Section 4.3 ). Then using

the same deformation technique proposed by Yang et al. [23] ,

we used 9 control points on the boundary of the points { x (i ) 
2 

}
to deform them, generating the points { x (i ) 

1 
} . Again the normal

vectors { u (i ) 
1 

} were computed using the nearest neighbour ap-

proach. 

For cost functions C x corr and C x,u 
corr , we estimate the point corre-

spondences using the method proposed by Yang et al. [23] and

detailed in Section 4.5 . We test 4 levels of deformation and reg-

ister 15 pairs of shapes at each level. We also test the case in

which S 1 and S 2 differ by a rotation and non-rigid deformation

by applying a rotation to the shape S 1 . We set the level of de-

formation to 3 and test 5 levels of rotation, with 15 pairs of

shapes registered for each rotation. 

The MSE results can be seen in Fig. 6 (b) and (c). In Fig. 6 (b),

for all degrees of deformation, GLMD performs the best, while

C x corr and C x,u 
corr perform similarly. Although we found that the

correspondences estimated by Yang et al.s technique and used

by C x corr and C x,u 
corr were accurate, using only 125 control points

for the estimated TPS transformation limited the accuracy of
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Fig. 4. MSE results for rigid registration with 3D data: same sampling (column 1), different sam pling (column 2) and with added noise (column 3). Rows 1–4 give the error 

results for the Bunny, Dragon, Buddha and Horse meshes respectively. 



460 M. Grogan, R. Dahyot / Pattern Recognition 79 (2018) 452–466 

Fig. 5. Results obtained when registering two Bunny shapes S 1 (red) and S 2 (green) differing by a rotation. In (a) the shapes have a different sampling and in (b) noise has 

been added to the points in S 2 , as described in Section 6.1 . The graphs on the left show S 1 and S 2 before registration. As S 1 and S 2 will not overlap exactly after registration 

due to different sampling and added noise, to clarify the difference in accuracy we have also plotted in black the shape S 1 under the same rotation as S 2 . After registration, 

the black and red shapes should overlap exactly. On the right, the registration results of the four algorithms, Go-ICP, CPD, C x and C x,u 
δ

are shown, with a zoom-in shown in 

the top right corner of each graph. In both cases C x,u 
δ

performs best. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 6. (a) Comparison between C x corr and C x,u 
corr when registering meshes with correspondences that differ by a deformation and rotation. Standard error bars emphasise 

the similarity between the cost functions; (b) Transformation estimation between bunny shapes differing by a deformation varying from degree 1 to 4; (c) Non-rigid 

transformation estimation when two bunny shapes differ by a deformation of degree 3 and rotation varying from 15 ° to 75 °. 

Table 1 

Time taken by each cost function to compute 100 iterations of the gradient ascent algorithm, 

with the number of TPS control points (col. 2) and latent space dimension (col. 3). 

ctrl pts dim n 1 n 2 C x C u C u 
δ

C x,u C x,u 
δ

2D Rotation ✗ 1 100 100 0.20s 0.20s 0.16s 0.21s 0.20s 

3D Rotation ✗ 9 100 100 0.22s 0.27s 0.29s 0.30s 0.4695 

2D TPS 12 30 100 100 2.2s ✗ ✗ 2.9s ✗ 

3D TPS 125 387 100 100 16s ✗ ✗ 30s ✗ 

Table 2 

Number of iterations typically taken by each algorithm to register two pointclouds with 100 

points each, computed using our full simulated annealing strategy(number of simulated an- 

nealling steps is given in col. 5). ∗Due to the high dimension of the latent space, we limited 

the number of function evaluations and iterations in these cases. 

dim n 1 n 2 Ann Steps C x C u C u 
δ

C x,u C x,u 
δ

2D Rotation 1 100 100 6 50 43 50 40 48 

3D Rotation 9 100 100 8 220 275 240 390 400 

2D TPS 30 100 100 5 1370 ✗ ✗ 1500 ✗ 

3D TPS 387 100 100 8 880 ∗ ✗ ✗ 880 ∗ ✗ 

Table 3 

The time taken, on average, by the Go ICP, CPD and GLMD 

methods to converge to the correct solution. 

n 1 n 2 Go ICP CPD GLMD 

3D Rotation 100 100 0.78s 32s ✗ 

2D TPS 100 100 ✗ 0.09s 0.13s 

3D TPS 100 100 ✗ 0.05s 0.12s 
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both C x corr and C x,u 
corr in comparison to GLMD, which uses all 10 0 0

points in S 1 as control points. However, increasing the number

of control points used by C x corr and C x,u 
corr also increases the di-

mension of the latent space, requiring a larger number of iter-

ations to converge to a good solution. 

Fig 6 (c) shows the results of registering Bunny shapes differed

by both a non rigid deformation and rotation. In this case

we found that the correspondences estimated by Yang et al.s

technique had some errors due to the rotation difference be-

tween the shapes. This decreased the accuracy of both GLMD

and the cost functions C x corr and C x,u 
corr , although GLMD still per-

formed the best. Although C x,u 
corr typically performs well when

the shapes differ by a rotation, when the wrong point corre-

spondences are used the accuracy of C x,u 
corr is reduced. Again we

found that using only 125 control points also reduced the accu-
x x,u 
racy achievable by C corr and C corr . 
.3. Computation time 

In Table 1 we present the computation times needed by

he proposed cost functions to carry out 10 iterations of the

radient ascent algorithm used to register two shapes S 1 =
 (x (i ) 

1 
, u (i ) 

1 
) } i =1 , ··· , 100 and S 2 = { (x 

( j) 
2 

, u 
( j) 
2 

) } j=1 , ··· , 100 , each with 100

oints and unit normal vectors. In Table 2 we give the average

umber of iterations needed by each cost function to converge to

he correct solution. These figures were computed when using our

ull annealing strategy, with the number of annealing steps used

iven in column 5 of Table 2 . In Table 3 we also present the com-

utation times needed by the CPD, Go ICP and GLMD algorithms

o register shapes S 1 and S 2 . 

. Shape registration and interpolation (qualitative 

xperiments) 

We applied the cost functions C x,u and C x to the registration

f curves extracted from images of patterned letters, taken from a

ataset provided by Lu et al. [28] 3 . For a given pair of model and
Available at http://gfx.cs.princeton.edu/pubs/Lu _ 2014 _ DDS/ . 

http://gfx.cs.princeton.edu/pubs/Lu_2014_DDS/
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Fig. 7. Rows 1, 3, 5 and 7 show the 50 points extracted along the external bound- 

ary of the model (col. 1) and target (col. 2) letters, and the transformation results 

estimated using C x (col. 3) and C x,u (col. 4). The connectivity information between 

points is shown, and is used when computing the normal vectors for C x,u . In rows 

2, 4, 6 and 8 we show the patterned model letter (col. 1) and target letter (col. 2), 

and the transformed model letters estimated using C x (col. 3) and C x,u (col. 4). 
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target letters we extracted 50 points along their external bound-

ary contour (cf. Fig. 7 , row 1,3,5,7). We then registered these point

clouds, and applied the estimated transformation to all black pix-

els in the model letter, transforming it into the target letter (cf.

Fig. 7 , row 2,4,6,8). From Fig. 7 we can see that C x,u outperforms C x 
when registering the model and target point clouds (row 1,3,5,7).

While the connectivity between the points is not taken into ac-
Fig. 8. Curve registration and interpolation results generated using (a) C x and (b) C x,u . In b

‘V’ and ‘Z’ (green). The registration results after transformation using the estimated para

when registering ‘L’ to ‘Z’. In both cases, new shapes can be created by interpolating bet

in the pyramids. (For interpretation of the references to colour in this figure legend, the r
ount when registering the point clouds using C x , with C x,u the

ormal vectors are computed by fitting a spline to the ordered

oints, thus capturing some of the connectivity information be-

ween them, and giving a better registration result. When the es-

imated transformation is applied to all black pixels in the model

etter, C x,u again gives a better result. In row 6 and 8 we can see

hat artifacts can emerge during this step, even when the orig-

nal point clouds have been registered almost exactly. This oc-

urs when some points inside the boundary curve of the model

etter, which are not taken into account during registration, get

apped outside the boundary contour by the TPS transformation,

g. in row 6, column 4, points inside the model letter ‘V’ have

een mapped outside the boundary contour when it is transformed

o ‘N’. This could be resolved by considering points inside the

oundary contour during registration. We also found that in some

ases, neither cost function performed well as the model and tar-

et letters were too different, and an appropriate TPS transforma-

ion could not be estimated that would transform one shape into

nother. 

As the transformations being estimated are parametric, we can

reate new transformations by interpolating between solutions. For

xample, given two solutions θ1 and θ2 , estimated when register-

ng a model letter to two different tar get letters, we can create in-

erpolations between the three letters using the new transforma-

ion θnew 

: 

new 

= α1 θId + α2 θ1 + α3 θ2 , (27)

here θ Id is the identity transformation and αi are scalars. The

yramids in Fig. 8 display samples of shapes generated by in-

erpolating between the estimated transformations, computed us-

ng different values of αi . Similar interpolation results have been

resented when using optimal transport for colour transfer and

hape registration. These methods use a discrete grid representa-

ion of shapes in 2D and 3D and do not explicitly take into ac-

ount shape connectivity when estimating a registration solution

29,30] . 
oth cases, C x and C x,u are used to register the model letter ‘L’ (red) to target letters 

meters θ 1 and θ2 are outlined in blue, showing that C x,u performs better than C x 
ween the model shape ‘L’ and its transformations into ‘V’ and ‘Z’. These are shown 

eader is referred to the web version of this article.) 
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Fig. B1. MSE results for each of our experiments on 2D data differing by a rotation. 
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. Conclusion 

We have proposed several cost functions to perform registra-

ion of shapes encoded with vertex and normal information. These

ere assessed experimentally for rigid (rotation) and non-rigid

ransformation for 2D contours and 3D surfaces. We found that our

ew cost function C x,u combining normal and vertex information

verall outperform others: 

• For rotation estimation (2D & 3D), C x,u performs best overall in

terms of accuracy, outperforming Jian and Vemuri’s cost func-

tion C x [5] as well as CPD [6] and Go ICP [7] . 
• For 2D shapes differing by ONLY a non-rigid transformation we

found that all techniques perform similarly. 
• For 2D shapes differing by a non-rigid transformation AND a

rotation, C x,u outperforms C x [5] as well as CPD [6] and GLMD

[23] . 
• When partial curves are registered and correspondences are

used, C x,u 
corr also outperforms CPD [6] and C x corr , giving similar re-

sults to GLMD [23] . 

However, in the case of 3D shapes differing by a non-rigid de-

ormation we found that the high dimensional latent space and

mall number of control points used reduced the accuracy of C x,u 
corr 

nd C x corr . The accuracy of the results also depended on the qual-

ty of the correspondences estimated, and the need to compute

erivatives and normals vectors at each iteration when using C x,u 
corr 

lso increased it’s computational cost. Implementing a less time

onsuming optimisation technique which could explore the latent

pace quickly would ensure that this type of cost function could

e used in higher dimensions. Optimising a combination of these

ost functions could also prove beneficial for robust registration,

uch as removing the rotational difference between shapes using

ormal information with C x before estimating the non-rigid trans-

ormation with C x,u . 
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ppendix A. Scalar products 

The product of two von Mises-Fisher distributions, v MF 1 =
 (u ;μ1 , κ1 ) and v MF 2 = V (u ;μ2 , κ2 ) can be written as: 
d d 

Table A1 

Scalar products for Gaussian ( N ), von Mises-Fisher ( vMF ) and Dirac 

( δ) kernels. 

u ∈ S d−1 

δ(u − μ1 ) vMF ( μ1 , κ1 ) 

δ(u − μ2 ) ✗ C d (κ1 ) exp (κ1 μT 
1 μ2 ) 

vMF ( μ2 , κ2 ) C d (κ2 ) exp (κ2 μT 
2 μ1 ) 

C d (κ1 ) C d (κ2 ) 
C d (‖ κ1 μ1 + κ2 μ2 ‖ ) 

x ∈ R d 

δ(x − μ1 ) N (x ;μ1 , h 
2 
1 ) 

δ(x − μ2 ) ✗ N (μ1 ;μ2 , h 
2 
1 ) , [9] 

N (x ;μ2 , h 
2 
2 ) N (μ1 ;μ2 , h 

2 
2 ) , [9] N (μ1 ;μ2 , h 

2 
1 + h 2 2 ) [5] 

i  

C  

b  

F  

f  

d  

t  

c

S

 

f

 M F 1 × v M F 2 = C d (κ1 ) C d (κ2 ) 

× exp 

(
‖ κ1 μ1 + κ2 μ2 ‖ 

u 

T (κ1 μ1 + κ2 μ2 ) 

‖ κ1 μ1 + κ2 μ2 ‖ 

)
(A.1) 

nd is proportional to v MF = V d (u ;μ, κ) such that: 

 M F 1 × v M F 2 = 

C d (κ1 ) C d (κ2 ) 

C d (κ) 
v M F (A.2)

ith κ = ‖ κ1 μ1 + κ2 μ2 ‖ and μ = 

κ1 μ1 + κ2 μ2 ‖ κ1 μ1 + κ2 μ2 ‖ . Since vMF inte-

rates to 1, the scalar product between vMF 1 and vMF 2 can be de-

ned as: 

 v M F 1 | v M F 2 〉 = 

∫ 
u ∈ S d−1 

v M F 1 × v M F 2 du = 

C d (κ1 ) C d (κ2 ) 

C d (κ) 
(A.3)

he scalar product between two von Mises-Fisher distributions can

herefore be easily computed when an explicit expression for the

unction C d ( κ) is available (e.g. Eq. (6) for d = 3 ). Alternatively nu-

erical integration can be used as an approximation to Eq. (5) for

ny value d > 1. 

Computing the L 2 distance between the KDEs proposed in

ection 3 relies on the scalar products between their associated

ernels, all of which are summarised in Table A.1 . 

ppendix B. Additional results 

Here we present additional results comparing all cost functions.

ig. B.1 presents results on 2D rotation estimation, similar to those

n Fig. 3 . We can see that C u and C u 
δ

perform similarly in (a), as do

 

x,u and C x,u 
δ

. In (b) C u 
δ

seems to perform better than C u , however

oth still perform better than C x and worse than C x,u and C x,u 
δ

. In

ig. B.2 we present results similar to those in Fig. 4 of the paper

or all cost functions. Again both C x,u and C x,u 
δ

perform similarly, as

o C u and C u 
δ
, although C u appears to get caught in alternate solu-

ions at times, creating spikes in the average MSE results ( Fig. B.2 ,

olumn 1). 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.patcog.2018.02.021 . 

https://doi.org/10.13039/501100001637
https://doi.org/10.1016/j.patcog.2018.02.021
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Fig. B2. Error results obtained when registering shapes S 1 and S 2 with the same sampling (row 1), registering shapes with different sampling (row 3) and with added noise 

(row 4). 
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