
L2(R) Solutions of Dilation Equations and

Fourier-like Transforms

David Malone∗

December 6, 2000

Abstract

We state a novel construction of the Fourier transform on L2(R) based

on translation and dilation properties which makes use of the multiresolu-

tion analysis structure commonly used in the design of wavelets. We ex-

amine the conditions imposed by variants of these translation and dilation

properties. This allows other characterisations of the Fourier transform to

be given, and operators which have similar properties are classified. This

is achieved by examining the solution space of various dilation equations,

in particular we show that the L2(R) solutions of f(x) = f(2x)+f(2x−1)

are in direct correspondence with L2(±[1, 2)).
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1 Introduction and Notation

Two scale dilation equations or refinement equations (such as f(x) = f(2x) +

f(2x− 1)) have been studied in detail recently. This is because of applications

to the construction of wavelets [3], and approximation of curves and surfaces

in computer graphics [1]. There are many interesting works concerning dilation

equations; see the references for a small sample. In the context of this paper,

where we are concerned with existence and uniqueness of solutions to dilation

equations, [4] provides a good background. However these works concentrate ei-

ther on the L1(R) or compactly supported Lp(R) solutions of dilation equations.

This ensures the continuity of the Fourier transform of the solutions, making

certain uniqueness arguments possible.

Mallat’s multiresolution analysis structure (eg. [8]), which is used by those

constructing wavelets, is closely linked with two scale dilation equations. This

structure is used in the construction mentioned in Section 2, which focuses on the

interaction between dilation, translation and the Fourier transform uses. The

construction is interesting because it is straightforward (for example cf. [10])

and it also highlights the possibility of constructing other operators which have

translation and dilation properties similar to those of the Fourier transform.

In Section 3 we eliminate these other operators by considering several two

scale dilation equations simultaneously. This provides a another characterisation

of the Fourier transform. The argument shows that in L2(R) solutions of two

scale dilation equations are not unique.

Section 4 looks at the idea of a “maximal” solution to a dilation equation.
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This is a solution from which all other solutions can be derived. We show that

the L2(R) solutions of a most basic dilation equation: f(x) = f(2x) + f(2x −

1) are actually in correspondence with L2(±[1, 2)). This is used to classify

all operators which behave in a similar manner to the Fourier transform with

respect to shifts (translations by integer amounts) and dilation by two.

Finally, Theorem 10 of Section 5 summarises the operator results of the

previous sections in terms of operators which commute with shifts and dilations

by various scales.

We make the following definitions. Let {Vj}j∈Z be the sets of the mul-

tiresolution analysis generated by χ[0,1), the characteristic function of [0, 1).

Explicitly:

Vj = span{χ[0,1)(2jx− r) : r ∈ Z},

or Vj contains simple functions constant on 2−j [r, r + 1). Note that Vj ⊂ Vj+1

and f(x) ∈ Vj iff f(2x) ∈ Vj+1. Let D :=
⋃
Vj — this set is dense in L2(R).

We use f̂ or Ff to denote the Fourier transform of f . We also use the

following linear operators:

Translation: (Tαf)(x) := f(x+ α) for any α ∈ R,

Rotation: (Rαf)(x) := eiαxf(x) for any α ∈ R,

Dilation: (Dλf)(x) := f(λx) for any λ ∈ R \ {0}.
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2 Construction of the Fourier Transform on L2(R)

In [6, 7] it was shown that we could construct the Fourier transform on L2(R)

using the following definition in the spirit of multiresolution analysis.

Definition 1. We define an operator on D using the following rules:

(1.1) F : D → L2(R) is linear,

(1.2) FTnf = RnFf for all n ∈ Z and f ∈ D,

(1.3) FDλf = 1
|λ|D 1

λ
Ff for all λ ∈ 2Z and f ∈ D,

(1.4) F(χ[0,1)) = 1−e−iω
iω .

The last rule (1.4) allows us to define F on the generating function of V0. The

“translation property” (1.2) allows us to define F on the shifts of the generating

function. The linearity (1.1) allows us to define F on all of V0 and the “dilation

property” (1.3) allows us to define F on each Vj and so on all of D.

The expected properties of F , such as continuity and invertibility, can be now

be derived in a manner with a feel of multiresolution analysis. This definition

also works well on L2(Rn) and L1(Rn) with little modification.

While checking this definition led to a well defined F we had to check that

the dilation equation:

χ[0,1)(x) = χ[0,1)(2x) + χ[0,1)(2x− 1),
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was respected by F . By application of the rules this led to:

1− e−iω

iω
=
(

1 + e−i
ω
2

2

)(
1− e−iω2

iω2

)

which is clearly true. Iterating this we get:

(Fχ[0,1))(ω) = p2(
ω

2
)p2(

ω

4
) . . . p2(

ω

2m
)(Fχ[0,1))(

ω

2m
)

where p2(ω) = (1 + eiω)/2. By forming the implied infinite product we see that

the following is actually sufficient to define F (on D).

Definition 2. Define F using (1.1),(1.2) and (1.3), and also:

(2.4) F(χ[0,1)) is continuous at zero with value 1.

This second definition is also “natural” in the sense that we expect the

Fourier transform of L1 functions to be continuous. The complete details of all

these constructions can be found in Chapter 3 of [6].

3 Stronger Dilation Rules

If we have a linear operator A : L2(R) → L2(R) with the dilation property for

scales 2Z (1.3) and the translation property for integers (1.2) then we have:

(Aχ[0,1))(ω) = p2(
ω

2
)(Aχ[0,1))(

ω

2
).
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It is easy to verify that some functions in L2(R), other than Fχ[0,1), are can-

didates for Aχ[0,1). Two examples are −i sign(ω)χ̂[0,1)(ω) and χ̂[0,1)(ω)χ2ZE(ω)

where E ⊂ [1, 2). By using these as Aχ[0,1) and proceeding as in Section 2 we

could attempt to produce Fourier-like transforms.

We eliminate these other solutions by allowing dilations by other scales and

arrive at another classification of the Fourier transform. We begin by making

two observations.

First, χ[0,1) satisfies the dilation equation f(x) = f(2x) + f(2x − 1). This

produced the relation between Aχ[0,1) at ω and at ω
2 . Other dilation equations

which χ[0,1) satisfies produce other relations. In particular it satisfies all of these

“dilation equations”.

f(x) = f(nx) + f(nx− 1) + . . .+ f(nx− n+ 1) n ∈ N

f(x) = f(1− x)

If A has the dilation property for the scale n and −1 respectively then Aχ[0,1)

satisfies:

(Aχ[0,1))(ω) = pn(
ω

n
)(Aχ[0,1))(

ω

n
),

(Aχ[0,1))(ω) = e−iω(Aχ[0,1))(−ω).

Here pn(ω) = 1
n

1−e−iω
1−e−iω/n , which is an analytic function with period 2π.

Second, suppose we know a function f̃ on [0, ε) which is a solution to an
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equation like f̃(ω) = p(ωα )f̃(ωα ) where α > 1. We can determine f̃ on all of R+.

Similarly if we know f̃ on R+ and f̃ is a solution of f̃(ω) = e−iω f̃(−ω) then we

can determine f̃ on all of R.

The following theorem uses all the dilation equations above, so we assume

the dilation property for all necessary scales.

Theorem 3. Suppose A : L2(R) → L2(R) is a bounded linear transform with

the translation property (1.2) and the dilation property for scales n ∈ Z \ {0}:

(3.3) ADλf = 1
|λ|D 1

λ
Af for all λ ∈ Z \ {0} and f ∈ D.

Then A is a constant multiple of the Fourier transform.

Proof. Let f̃ := Aχ[0,1). Then we know that f̃ satisfies:

f̃ = D 1
n
pnf̃ n ∈ N.

We also know that f̃0 := Fχ[0,1) satisfies the same relations. Noting that f̃0 is

not zero in the interval [0, π], we can divide by it. Likewise, none of the pn are

zero on [0, π], so we cancel the pn:

f̃

f̃0

=
D 1
n
pnf̃

D 1
n
pnf̃0

=
D 1
n
f̃

D 1
n
f̃0

= D 1
n

f̃

f̃0

.

Writing g := f̃/f̃0 on [0, π] we get g = D 1
n
g. Iterating this for values of n,m:

D n
m
g = D 1

m
Dng = D 1

m
g = g.
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So for α ∈ Q we have g = Dαg, while both sides are evaluated in [0, π].

Now consider G(ω) :=
∫ ω

0
g(t) dt. As f̃ is in L2(R), g is in L1([0, π]). Thus

G is continuous. However for rational α ∈ (0, π]:

G(α) =
∫ α

0

g(t) dt =
∫ α

0

g(
t

α
) dt = α

∫ 1

0

g(s) ds

So G(α) = αG(1). But G is continuous, so G(ω) = ωG(1) for ω ∈ [0, π].

From the definition of G we have G′ = g almost everywhere, thus g(ω) =

G(1) at almost every point in [0, π]. This means that f̃ is a constant multiple of

f̃0 on [0, π]. However, functions satisfying the dilation relations are determined

by their value of [0, π]. Thus, f̃ and f̃0 must be constant multiples of one another

almost everywhere.

To complete the proof we apply the translation property & linearity, dilation

property and boundedness to get A = cF on V0, D and L2(R) respectively. �

Suppose A has the dilation property for scales in S ⊂ Z \ {0}. We see

that what was used in the above proof was that S× (the multiplicative group

generated by S) was dense in R. Much smaller sets than all of Z \ {0} do this,

for example S = {−1, 2, 3}.

This proof can be used to prove the uniqueness of L2(R) solutions to cer-

tain systems of dilation equations, providing a reasonably well behaved solution

exists.
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4 Maximal Solutions to Dilation Equations

We now consider a slightly different question, where we allow dilations of only

one scale. Suppose we take a bounded linear operator A : L2(R) → L2(R)

with the translation property for integers and the dilation property for 2. What

choices do we have for Aχ[0,1)? This question is related to the problem of finding

all the solutions to f(x) = f(2x) + f(2x− 1), or f̃(ω) = p2(ω2 )f̃(ω2 ).

Initially we consider the second form of this problem, in a completely point-

wise manner. Define F (p) as follows:

F (p) :=
{
f̃ : R→ C : f̃(ω) = p(

ω

2
)f̃(

ω

2
)
}

We note that if f̃ ∈ F (p) and if π is chosen so that π(ω) = π(2ω) for all ω ∈ R

then πf̃ is also in F (p).

A converse to this is: We can find m ∈ F (p) so that for any f̃ in F (p) there

is a π such that f = mπ and π(ω) = π(2ω). The proof is in the form of the two

following lemmas.

Lemma 4. We can find m in F (p) such that m(ω) = 0 implies f̃(ω) = 0 for

all f̃ ∈ F (p).

Proof. For each y ∈ ±[1, 2) we examine the following set:

{n ∈ Z : p(2ny) = 0}.

If this set has no lower bound we set m(2ny) = 0 for all n ∈ Z. If it has a lower
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bound l then we set m(2ly) = 1 or if it is empty we set m(y) = 1 and then use:

m(2ny) =
m(2n+1y)
p(2ny)

,

m(2ny) = p(2n−1y)m(2n−1y)

to extend m to the set y2Z. We do not have problems dividing by zero because

of where we have chosen the value of m.

It remains to define m at 0, where we want m(0) = p(0)m(0), so we set

m(0) = 1 if p(0) = 1 and m(0) = 0 otherwise.

By construction m ∈ F (p), and by checking the various cases we can show

that m(ω) = 0 implies f̃(ω) = 0. �

Lemma 5. Suppose we have m ∈ F (p) as in Lemma 4. Then for each f̃ ∈ F (p)

we can find a π : R→ C so that f̃ = mπ and π(ω) = π(2ω).

Proof. We know that is it “safe” to divide f̃ by m from Lemma 4. Based on

this we define π by:

π(ω) =
f̃(ω)
m(ω)

or
f̃(ω/2)
m(ω/2)

or
f̃(ω/4)
m(ω/4)

or
f̃(ω/8)
m(ω/8)

or . . . or 0

depending on which one is the first to have m(ω/2n) 6= 0 for n = 0, 1, 2, . . ., or

if they are all zero we set π(ω) = 0.

First we check if f̃ = πm. If m(ω) 6= 0 then f̃(ω) = π(ω)m(ω) by π’s

definition, and if m(ω) = 0 then f̃(ω) = 0 so the value of π(ω) doesn’t matter.

Now we have to check if π(ω) = π(2ω). First consider the case m(2ω) 6= 0.
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Then p(ω) 6= 0 so:

π(2ω) =
f(2ω)
m(2ω)

=
f(ω)p(ω)
m(ω)p(ω)

=
f(ω)
m(ω)

= π(ω),

as m(ω) also cannot be zero. On the other hand if m(2ω) = 0 then:

• either m(2ω/2n) = 0 for all n = 0, 1, 2, 3, . . ., which means π(2ω) = 0 and

π(ω) = 0, as required,

• or π(2ω) = f(ω/2n)
m(ω/2n) , and π(ω) is the same, also as required.

�

We can now apply the above lemma to give the following result regarding

dilation equations.

Theorem 6. Given a finite dilation equation:

f(x) =
∑

cnf(2x− n),

we can find a function m(ω) with the following property: given g a solution of

the dilation equation whose Fourier transform ĝ converges almost everywhere

then ĝ = πm almost everywhere and π(ω) = π(2ω).

Proof. We apply our lemma to F (p) where p(ω) = 1
2

∑
cne
−inω. The only

complication is that ĝ may fail to satisfy the relation ĝ(ω) = p(ω2 )ĝ(ω2 ) on a set

of measure zero. To get around this we can redefine ĝ on a countable union of

sets of measure zero so that it is in F (p). �
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We have constructed an example of a “maximal” m. This example need not

be well behaved — it is not obvious that it is even measurable. However, this

maximal function is not unique and there are some simple sufficient conditions

for maximality. For instance, if we have f̃ ∈ F (p) with f̃ non-zero on (−ε, ε)

then it is easy to show that f̃ is maximal.

Similarly, if p is continuous at zero and f̃ ∈ F (p) is analytic then either f̃ is

identically zero or f̃ is maximal. This shows the L1(R) solutions with
∑
cn = 2

(discussed in [4]) have maximal Fourier transforms, as they are analytic and p

is a trigonometric polynomial.

We are now in a position to prove two quite interesting results.

Theorem 7. The L2(R) solutions of:

f(x) = f(2x) + f(2x− 1)

are in a natural one-to-one correspondence with the functions in L2(±[1, 2)).

Proof. We classify the solutions of the Fourier transform of the dilation equation,

and use the fact that the Fourier transform is bijective. We observe χ̂[0,1) is

maximal so any solution of the transformed equation is of the form:

ĝ = πχ̂[0,1)

with π(ω) = π(2ω). We show that π ∈ L2(±[1, 2)) iff ĝ is in L2(R).
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First suppose ĝ ∈ L2(R). Note that |χ̂[0,1)| > 0.1 on [1, 2] so:

∞ >

∫ 2

1

|ĝ(ω)|2 dω =
∫ 2

1

|π(ω)χ̂[0,1)(ω)|2 dω > (0.1)2

∫ 2

1

|π(ω)|2 dω,

So π ∈ L2([1, 2)). Similarly we show π ∈ L2(−[1, 2)).

Conversely, suppose π is in L2(±[1, 2)). We use the fact that χ̂[0,1) is bounded

near zero and χ̂[0,1) decays like 2/ω away from zero. Again we do R+ first.

∫ ∞
0

|ĝ(ω)|2 dω =
∑
n∈Z

∫ 2n+1

2n
|π(ω)χ̂[0,1)(ω)|2 dω

≤
∑
n∈Z

sup
[2n,2n+1]

|χ̂[0,1)(ω)|22n
∫ 2

1

|π(ω)|2 dω

=
∑
n≤0

2n
∫ 2

1

|π(ω)|2 dω +
∑
n>0

4
22n

2n
∫ 2

1

|π(ω)|2 dω

= 6
∥∥∥π|[1,2)

∥∥∥2

2
.

Completing the argument for R− shows ‖ĝ‖2 ≤
√

6
∥∥∥π|±[1,2)

∥∥∥
2
. �

In the folklore of dilation equations this could be considered surprising: many

people think of the uniqueness result of [4]. This deals with L1(R) solutions

where
∑
cn = 2. This can be applied to compactly supported L2(R) functions,

which are all in L1(R).

Theorem 7 can clearly be used to calculate a basis for the L2(R) solutions

to the equation f(x) = f(2x) + f(2x − 1), however we will not pursue this

here. Theorem 7 can be extended to dilation equations which have a (non-

zero L2(R)) solution with analytic Fourier transform which decays like |ω|−p for
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some p > 1
2 . This case includes the dilation equations used to build Daubechies’

family of orthonormal wavelet bases.

Theorem 8. Suppose A : L2(R) → L2(R) is a bounded linear operator which

has the translation property for integers (1.2) and the dilation property for 2Z

(1.3). Then A is of the form:

A = πF

where π(ω) = π(2ω) and π ∈ L∞(R). Conversely any such π gives rise to

a bounded linear A which has the dilation property for 2Z and the translation

property for all reals.

Proof. Let p = p2 be the function corresponding to f(x) = f(2x)+f(2x−1). We

know that Aχ[0,1) ∈ F (p) and Fχ[0,1) is maximal in F (p). So Aχ[0,1) = πFg,

where π(ω) = π(2ω) and π ∈ L2(±[1, 2)).

We note that χ[ n2m ,n+1
2m ) can be obtained by integer translations and dilations

of scale 2n applied to χ[0,1). This allows us to make the following calculation:

Aχ[ n2m ,n+1
2m ) = AD2mT−nχ[0,1) = 2−mD2−me

in·Aχ[0,1)

= 2−mD2−me
in·πFχ[0,1) = π2−mD2−me

in·Fχ[0,1)

= πFD2mT−nχ[0,1) = πFχ[ n2m ,n+1
2m )

Thus, as both A and πF are linear, we can see that Af = πFf for any f in

D. But this is a dense subset and A is continuous so if πF is continuous they

agree everywhere. It is clear that if π ∈ L∞(R) then πF will be continuous.
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So it remains to show that π ∈ L∞(R). If it were not we could consider π

as an unbounded multiplier on a dense subset of L2(R), which would make A

unbounded.

The converse is a simple matter of algebra and using π(ω) = π(2ω). �

Corollary 9. Suppose A : L2(R) → L2(R) is a bounded linear operator which

has the translation property for integers and the dilation property for 2Z. Sup-

pose also that A preserves inner products. Then A is of the form:

A = πF

where π(ω) = π(2ω) and |π(ω)| = 1√
2π

almost everywhere.

5 Shift and Dilation invariant Operators

By applying the inverse Fourier transform these results can be nicely summed

up. The “translation property” now becomes “commutes with translation” and

the “dilation property” becomes “commutes with dilation”. We restate the

results in this language.

Theorem 10. Suppose A : L2(R)→ L2(R) is a bounded linear operator which

commutes with translation by integers, then:

1. AD2 = D2A and A(χ[0,1)) = χ[0,1) implies A = I,

2. AD2 = D2A and A(χ[0,1)) ∈ L1(R) implies A = cI,
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3. ADn = DnA for n ∈ S ⊂ Z \ {0} and S× (the multiplicative group

generated by S) is dense in R implies A = cI,

4. AD2 = D2A implies A = F−1πF where π ∈ L∞(R) and π = D2π,

5. AD2 = D2A and A is unitary implies A = F−1πF where |π(ω)| = 1 and

π = D2π.

Part 5, which is a reformulation of Corollary 9, has been proved in different

ways in other contexts [2, 9].

This theorem has been stated with scale two in mind, but any scale λ =

2, 3, 4, 5, . . . would produce similar results.

References

[1] Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Sta-

tionary subdivision, vol. 93, Mem. Amer. Math. Soc., no. 453, American

Mathematical Society, Rhode Island, 1991.

[2] Xingde Dai and David R. Larson, Wandering vectors for unitary systems

and orthogonal wavelets, Mem. Amer. Math. Soc., vol. 134, American Math-

ematical Society, Rhode Island, 1998.

[3] Ingrid Daubechies, Orthonormal bases of compactly supported wavelets,

Comm. Pure Appl. Math. 41 (1988), 909–996.

16



[4] Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations.

1: Existence and global regularity of solutions, SIAM J. Math. Anal. 22

(1991), no. 5, 1388–1410.

[5] , Two-scale difference equations. 2: Local regularity, infinite prod-

ucts of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no. 4, 1031–

1079.

[6] David Malone, Fourier analysis, multiresolution analysis and dilation equa-

tions, Master’s thesis, Trinity College, Dublin, 1997.

[7] , An unusual construction of the fourier transform, Bulletin of the

Irish Math. Soc. (1999), no. 42, 15–20.

[8] Yves Meyer, Wavelets and operators, Cambridge University Press, Cam-

bridge, 1992.

[9] Manos Papadakis, Theodoros Stavropoulos, and N. Kalouptsidis, An equiv-

alence relation between multiresolution analyses of L2(R), Wavelets and

Multilevel Approximation (C. K. Chui and L. L. Schumaker, eds.), Ap-

proximation Theory VIII, vol. 2, World Scientific Publishing, Singapore,

1995, pp. 309–316.

[10] Elias M. Stein and Guido Weiss, Introduction to fourier analysis on eu-

clidean spaces, Princeton University Press, Princeton, 1971.

17



[11] Lars F. Villemoes, Energy moments in time and frequency for two-scale

difference equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992),

no. 6, 1519–1543.

18


