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Abstract

Convolutional neural networks (CNNs) learn filters in order to capture local correla-
tion patterns in feature space. In contrast, in this paper we propose harmonic blocks that
produce features by learning optimal combinations of responses to preset spectral filters.
We rely on the use of the Discrete Cosine Transform filters which have excellent energy
compaction properties and are widely used for image compression. The proposed har-
monic blocks are intended to replace conventional convolutional layers to produce par-
tially or fully harmonic versions of new or existing CNN architectures. We demonstrate
how the harmonic networks can be efficiently compressed by exploiting redundancy in
spectral domain and truncating high-frequency information. We extensively validate our
approach and show that the introduction of harmonic blocks into state-of-the-art CNN
models results in improved classification performance on CIFAR and ImageNet datasets.

1 Introduction
CNNs have been designed to take advantage of implicit characteristics of natural images,
specifically correlation in local neighborhood and feature equivariance. The wide application
of features obtained by convolving images with explicitly defined local filters highlights the
shift from the extraction of global information towards local learning.

Standard CNNs rely on the learned convolutional filters that allow them to be adjusted
flexibly to the problem and available data. In some cases, however, it may be advantageous
to revert to preset filter banks, e.g., in the case of limited training data, when the use of appro-
priate filter collections can help to avoid overfitting, or in order to reduce the computational
complexity of the system. Previously, several collections of preset filters have been proposed
to replace learned convolutions or perform preprocessing in the task of image classification.
The scattering network have been proposed in [4] to use multiple layers of wavelet filters to
model geometrical visual information. It has been shown that the scattering network built
on complex-valued Morlet wavelets could achieve state of the art results in handwritten digit
recognition and texture classification. The scattering network with its filters designed to
extract translation and rotation invariant representations was shown to achieve comparable
classification accuracy to unsupervised deep learning [21]. Other types of filters proposed to
introduce preset filters in CNNs include oriented Gabor filters [20], Gaussian derivatives [15]
and circular harmonics to enforce rotation equivariance [35].
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Figure 1: Left: Design of the harmonic block. Boxes show operation type, size of filter
(if applicable) and the number of output channels given the block filter size K, number of
input channels N and output channels M. Batch normalization (BN) block is optional. Right:
Visualization of the harmonic block applied to an input layer.

In this paper we propose to replace the standard convolutional operations in CNNs by
harmonic blocks that learn the weighted sums of responses to the Discrete Cosine Transform
(DCT) filters, see Fig. 1. The latter have been successfully used in JPEG encoding to trans-
form image blocks into spectral representations to capture the most information with a small
number of coefficients. Motivated by frequency separation and energy compaction proper-
ties of DCT, the proposed harmonic networks rely on combining responses of window-based
DCT with a small receptive field. The key distinction from scattering networks is that these
create a new path for each wavelet filter used at every layer, which consequently increases
the number of paths exponentially with the increase of the network’s depth. Our method
learns how to optimally combine spectral coefficients at every layer to produce a fixed size
representation defined as a weighted sum of responses to DCT filters. The use of DCT fil-
ters allows one to easily address the task of model compression. We extensively validate
harmonic networks performance on CIFAR-10/100 and ImageNet-1k classification datasets.

The paper is organized as follows. We first review the related work in Sec. 2, and briefly
recall the basics of DCT in Sec. 3. We then introduce the harmonic networks in Sec. 4, assess
experimentally their classification performance in Sec. 5, and conclude the paper in Sec. 6.

2 Related work
DCT & CNNs Several works consider combining spectral information with CNNs. Net-
works trained on DCT coefficients are frequently used in forensics, specially for detection
of multiply compressed images. A common practice in several works [2, 3, 31] is to clas-
sify histograms of preselected DCT coefficients by 1D convolutional network. In another
work [18] a multi-branch 2D CNN is trained on feature maps spanned by the first 20 AC
coefficients (corresponding to non-zero frequencies in DCT) extracted from JPEG images.

A number of studies have investigated the use of spectral image representations for object
recognition. DCT on small resolution images coupled with coefficient truncation was used to
speed up training of fully connected sparse autoencoders [37]. DCT features from the entire
image were used to train Radial Basis Function Network for face recognition [7]. A signif-
icant convergence speedup and case-specific accuracy improvement have been achieved by
applying DCT transform to early stage learned feature maps in shallow CNNs [9] whereas
the later stage convolutional filters were operating on a sparse spectral feature representation.
In [12, 29] it was demonstrated how precomputed or JPEG-extracted DCT coefficients can
be efficiently used to train classification CNNs.
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Wavelets & CNNs The scattering network based on rotation and scale invariant wavelet
transform was shown to effectively reduce the input representation while preserving discrim-
inative information for training CNN on image classification [22, 27] and object detection
task [23] achieving performance comparable to deeper models. Williams et al. [33] have
advocated image preprocessing with wavelet transform, but used different CNN for each fre-
quency subband. Wavelet filters were also used as a preprocessing method prior to NN-based
classifier [26], and to enhance edge information in images prior to classification [6].

Other works have used wavelets in CNN computational graphs. Second order coefficients
from Fast Wavelet Transform were used in [34] to design wavelet pooling operator. Simi-
lar approach was taken by Ripperl et al. who designed spectral pooling [25] based on Fast
Fourier Transform of the features and high-frequency coefficient truncation. They also pro-
posed to parametrise filters in Fourier domain to decrease their redundancy and speed up the
convergence. In both works, the pooled features were recovered with Inverse Fast Wavelet
or Discrete Fourier Transform respectively, thus the CNN still operates in spatial domain. To
address texture classification, Fujieda et al. [8] proposed a Wavelet Convolutional Network
that is trained on responses to Haar wavelets and concatenates higher order coefficient maps
along with features of the same dimensionality learned from lower-order coefficients. Simi-
lar approach is taken by Lu et al. [19] that learns from both spatial and spectral information
that is decomposed from first layer features. The higher-order coefficients are also concate-
nated along with the lower dimensional feature maps. However, contrary to our method,
Wavelet CNNs decompose only the input features and not features learned at intermediate
stages. Moreover, the maximum number of decompositions performed was limited to the
number of spatial resolutions of CNN features. Robustness to object rotations was addressed
by modulating learned filters by oriented Gabor filters [20]. Furthermore, Worrall et al.
incorporated complex circular harmonics into CNNs to learn rotation equivariant represen-
tations [35]. Similarly to our harmonic block, the structured receptive field block [15] learns
new filters by combining fixed filters, i.e. a considerably larger set of Gaussian derivatives.
DCFNet [24] expresses filters by truncated expansion of Fourier-Bessel basis, maintaining
accuracy of the original model while reducing the number of parameters.
Compressing DNNs Numerous works have focused on compressing the size of neural net-
works and decreasing the inference and training time. Speedup and memory saving for infer-
ence can be achieved by approximating the trained full-rank CNN filters by separable rank-1
filters [16]. Assuming smoothness of learned filters, Frequency-Sensitive Hashed Network
(FreshNet) [5] expresses filters by their DCT representation and groups their parameters to
share the same value within each group. Wang et al. [32] relaxes this constrain to express
each weight by its residual from the cluster center. Weights in this form were quantized
and transformed via Huffman coding for storage purposes. Convolution was performed in
the frequency domain to reduce the computational complexity. Han et al. [13] compressed
networks by pruning, clustering and quantizing weights which are consequently fine-tuned.
It has been shown [17] that a model complexity can be adjusted during the training time:
increased via introduction of new filters by rotating and applying noise to existing ones, and
reduced by clustering to selectively decrease their redundancy.

3 Discrete Cosine Transform
DCT is an orthogonal transformation method that decomposes an image to its spatial fre-
quency spectrum. In continuous form, a 2D signal is projected to a sum of sinusoids with
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different frequencies. The contribution of each sinusoid towards the whole signal is de-
termined by its coefficient calculated during the transformation. DCT is also a separable
transform and due to its energy compaction properties on natural images [10] it is commonly
used for image and video compression in widely used JPEG and MPEG formats. Karhunen-
Loève transform is considered to be optimal in signal decorrelation, however it transforms
signal via unique basis functions that are not separable and need to be estimated for every
image.

The literature provides several distinct definitions of DCT. We will rely on the most
common formulation, DCT-II, which is computed on a 2-dimensional grid X of size A×B
representing the image patch with 1 pixel discretisation step as

Yu,v =
A−1

∑
x=0

B−1

∑
y=0

√
αu

A

√
αv

B
Xx,y× cos

[
π

A

(
x+

1
2

)
u
]

cos
[

π

B

(
y+

1
2

)
v
]
. (1)

This reports the DCT coefficient Yu,v representing the transformation of the input with sinu-
soids at frequency u and v in horizontal and vertical orientations, respectively. Basis func-
tions are typically normalized with factors α0 = 1 and αi = 2, i > 0 to ensure orthogonality.

4 Harmonic Networks
A convolutional layer extracts correlation of input patterns with locally applied learned fil-
ters. The idea of convolutions applied to images stems from the observation that pixels in
local neighborhoods of natural images tend to be strongly correlated. In many image analysis
applications, transformation methods are used to decorrelate signals forming an image [10].
In contrast with spatial convolution with learned kernels, this study proposes feature learn-
ing by weighted combinations of responses to predefined filters. The latter extract harmonics
from lower-level features in a region. The use of well selected predefined filters allows one
to reduce the impact of overfitting and decrease computational complexity.

A harmonic block is proposed to replace a conventional convolutional operation and re-
lies on processing the data in two stages, see Fig. 1: Firstly, the input features undergo
harmonic decomposition by a transformation method. Conceptually, various transformation
methods can be used e.g. wavelets, derivatives of Gaussians, etc. In this study we focus on
window-based DCT. In the second stage, the transformed signals are combined by learned
weights. The fundamental difference from standard convolutional network is that the opti-
mization algorithm is not searching for filters that extract spatial correlation, rather learns
the relative importance of preset feature extractors (DCT filters) at multiple layers.

Harmonic blocks are integrated as a structural element in the existing or new CNN ar-
chitectures. Specifically, we design harmonic networks that consist of one or more harmonic
blocks and, optionally, standard learned convolutions and fully-connected layers. Spectral
decomposition of input features into block-DCT representation is implemented as a convo-
lution with DCT basis functions. A 2D kernel with size K×K is constructed for each basis
function, comprising a filter bank of depth K2, which is separately applied to each of the
input features. Convolution with the filter bank isolates coefficients of DCT basis functions
to their exclusive feature maps, creating a new feature map per each channel and each fre-
quency considered. The number of operations required to calculate this representation can
be minimized by decomposing 2D DCT filter into two rank-1 filters and applying them as
separable convolution to rows and columns sequentially. Despite the operation being com-
putationally cheaper compared to dense convolutions, the spectral decomposition upsamples
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Figure 2: 3x3 DCT filter bank employed in the harmonic networks and its compression.

the number of intermediate features by K2 factor, thus notably increasing the corresponding
memory requirements.

Each feature map hl at depth l is computed as a weighted linear combination of DCT
coefficients across all input channels N:

hl =
N−1

∑
n=0

K−1

∑
u=0

K−1

∑
v=0

wl
n,u,vψu,v ∗∗hl−1

n (2)

where ψu,v is a u,v frequency selective DCT filter of size K×K, ∗∗ the 2-dimensional convo-
lution operator and wl

n,u,v is learned weight for u,v frequency of the n-th feature. The linear
combination of spectral coefficients is implemented via a convolution with 1x1 filter that
scales and sums the features, see Fig. 1. Since the DCT is a linear transformation, backward
pass through the transform layer is performed similarly to a backward pass through a convo-
lution layer. Harmonic blocks are designed to learn the same number of parameters as their
convolutional counterparts. Such blocks can be considered a special case of depth-separable
convolution with predefined spatial filters.

DCT is distinguished by its energy compaction capabilities which typically results in
higher filter responses in lower frequencies. The undesirable behaviour of relative loss of
high frequency information can be efficiently handled by normalizing spectrum of the input
channels. This can be achieved via batch normalization that adjusts per frequency mean and
variance prior to the weighted combination. The spectrum normalization transforms Eq. 2
into:

hl =
N−1

∑
n=0

K−1

∑
u=0

K−1

∑
v=0

wl
n,u,v

ψu,v ∗∗hl−1
n −µ l

n,u,v

σ l
n,u,v

, (3)

with parameters µ l
n,u,v and σ l

n,u,v estimated per input batch.
The JPEG compression encoding relies on stronger quantisation of higher frequency

DCT coefficients. This is motivated by the human visual system which often prioritises low
frequency information over high frequencies. We propose to employ similar idea in the har-
monic network architecture. Specifically, we limit the visual spectrum of harmonic blocks
to only several most informative low frequencies, which results in a reduction of number of
parameters and operations required at each block. The coefficients are (partially) ordered
by their relative importance for the visual system in triangular patterns starting at the most
important zero frequency at the top-left corner, see Fig. 2. We limit the spectrum of con-
sidered frequencies by hyperparameter λ representing the number of levels of coefficients
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Method dropout compression parameters CIFAR-10 CIFAR-100
WRN-28-10 [36] X 36.5M 3.91 18.75
Harm1-WRN-28-10 (no BN) 36.5M 4.10 19.17
Harm1-WRN-28-10 36.5M 3.90 18.80
Harm1-WRN-28-10 X 36.5M 3.64 18.57
Harm-WRN-28-10 X 36.5M 3.86 18.57
Harm-WRN-28-10 X λ = 3 24.4M 3.84 18.58
Harm-WRN-28-10 X λ = 2 12.3M 4.25 19.97
Harm-WRN-28-10 progressive λ 15.7M 3.93 19.04
Gabor CNN 3-28 [20] 17.6M 3.88 20.13
WRN-28-8 [36] X 23.4M 4.01 19.38
WRN-28-6 [36] X 13.1M 4.09 20.17

Table 1: Settings and median error rates (%, out of 5 runs) achieved by WRNs and their
harmonic modifications on CIFAR datasets. Number of parameters reported for CIFAR-10.

included perpendicularly to the main diagonal direction starting from zero frequency: DC
only for λ = 1, 3 coefficients (green) for λ = 2, and 6 coefficients (purple) for λ = 3. Fig. 2
illustrates filters used at various levels assuming a 3x3 receptive field.

5 Experiments
In this section we validate the performance of the harmonic networks on CIFAR-10/100 and
ImageNet-1K datasets. We will consider two typologies of Residual Networks [14, 36] as
the baselines for substituting the standard convolution operations with harmonic blocks1.

5.1 CIFAR-10/100 datasets

The first set of experiments is performed on popular benchmark datasets of small natural
images CIFAR-10 and CIFAR-100. Images have three color channels and resolution of
32x32 pixels. The dataset is split into 50k images for training and 10k for testing. Images
have balanced labeling, 10 classes in CIFAR-10 and 100 in CIFAR-100.

Baseline. For experiments on CIFAR datasets we adopt WRNs [36] with 28 layers and width
multiplier 10 (WRN-28-10) as the main baseline. These improve over the standard ResNets
by using much wider residual blocks instead of extended depth. Model design and training
procedure are kept unchanged as in the original paper. Harmonic WRNs are constructed by
replacing convolutional layers by harmonic blocks with the same receptive field, preserving
batch normalization and ReLU activations in their original positions after every block.

Results. We first investigate whether the WRN results can be improved if trained on spec-
tral information, i.e. when replacing only the first convolutional layer preceding the residual
blocks in WRN by a harmonic block with the same receptive field (Harm1-WRN). The net-
work learns more useful features if the RGB spectrum is explicitly normalized by integrating
the BN block as demonstrated in Fig. 1, surpassing the classification error of the baseline
network on both CIFAR-10 and CIFAR-100 datasets, see Table 1. We then construct a fully

1The PyTorch implementation of the harmonic network is publicly available at https://github.com/
matej-ulicny/harmonic-networks.
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Figure 3: Distribution of weights (averaged in each layer) assigned to DCT filters in the
first harmonic block (left-most) and the remaining blocks in the Harm-WRN-28-10 model
trained on CIFAR-10. Vertical lines separate the residual blocks.

harmonic WRN (denoted as Harm-WRN) by replacing all convolutional layers with har-
monic blocks, retaining the residual shortcut projections unchanged. Zagoruyko et al. [36]
demonstrated how dropout blocks placed inside residual blocks between convolutional lay-
ers can provide extra regularization when trained on spatial data [36]. We have observed a
similar effect when training on spectral representations, therefore we adopt dropout between
harmonic blocks. The harmonic network outperforms the baseline WRN, see Table 1. Based
on this empirical evidence we always employ BN inside the first harmonic block.

Analysis of fully harmonic WRN weights learned with 3x3 spectrum revealed that the
deeper network layers tend to favour low-frequency information over high frequencies when
learning representations. Relative importance of weights corresponding to different frequen-
cies shown in Fig. 3 motivates truncation of high-frequency coefficients for compression

Figure 4: Graphs show a decrease of classification error as a function of model size on
CIFAR-10 (solid lines) and CIFAR-100 (dashed). Parameters of harmonic networks are
controlled by the compression parameter λ , the WRN baselines by the width multiplier w.
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purposes. While preserving the input image spectrum intact, we train the harmonic networks
on limited spectrum of hidden features for λ=2 and λ=3 using 3 and 6 DCT filters for each
feature, respectively. To assess the loss of accuracy associated with parameter reduction we
train baselines with reduced widths having comparable numbers of parameters: WRN-28-8
and WRN-28-6, see Fig. 4. Fully harmonic WRN-28-10 with λ=3 has comparable error to
the network using the full spectrum and outperforms the larger baseline WRN-28-10, show-
ing almost no loss in discriminatory information. On the other hand Harm-WRN-28-10 with
λ=2 is better on CIFAR-100 and slightly worse on CIFAR-10 compared to the similarly sized
WRN-28-6. The performance degradation indicates that some of the truncated coefficients
carry important discriminatory information. Detailed comparison is reported in Table 1.

We further compare the performance of the harmonic version of WRN-28-10 with the
Gabor CNN 3-28 [20] that relies on modulating the learned filters with Gabor orientation
filters. To operate on a similar model we remove dropouts and reduce complexity by applying
progressive λ : no compression for 32x32 feature sizes, λ=3 for 16x16, and λ=2 for the rest.
With a smaller number of parameters the Harm-WRN-28-10 performs similarly on CIFAR-
10 and outperforms Gabor CNN on CIFAR-100.

5.2 ImageNet dataset
In this section we present results obtained on ImageNet-1K classification task. To deploy
harmonic networks on large-scale datasets a few adjustments are applied to the harmonic
blocks: Firstly, in the absence of BN inside harmonic block we merge the linear operations
of feature extraction with DCT basis and weighted combination of responses. This prevents
the need to allocate memory for intermediate features and is applied to all layers except for
the first (where BN is employed). Secondly, we normalize DCT filters by their L1 norm.

ResNet [14] with 50 layers is adopted as the baseline. Following [11] we apply stride
on 3x3 convolution instead of the first 1x1 convolution in the block. To reduce memory
consumption maxpooling is not used, instead the first convolution layer employs stride 4 to
produce equally-sized features; we refer to this modification as ResNet-50 (no maxpool).
Similarly to the above reported CIFAR experiments we investigate the performance of three
harmonic modifications of the baseline: (i) replacing solely the initial 7x7 convolution layer
with harmonic block (with BN) with 7x7 DCT filters, (ii) replacing all convolution layers
with receptive field larger than 1x1 with equally-sized harmonic blocks, (iii) compressed
version of the fully-harmonic network. Each model is trained with stochastic gradient de-
scent with learning rate 0.1, reduced 10 times every 30 epochs reporting the final accuracy

Type Model Parameters Top-1 % Top-5 %

fully trained

ResNet-50 (no maxpool) 25.6M 24.36 7.34
Harm1-ResNet-50 25.6M 23.34 6.75
Harm-ResNet-50 25.6M 23.58 6.91
Harm-ResNet-50, progr. λ 19.7M 23.71 6.94

converted ResNet-50⇒ Harm-ResNet-50 25.6M 24.15 7.15
+ finetuned ResNet-50⇒ Harm-ResNet-50, progr. λ 19.7M 24.60 7.43

benchmark
ResNet-50 (maxpool) [1] 25.6M 23.85 7.13
ScatResNet-50 [23] 27.8M 25.5 8.0
JPEG-ResNet-50 [12] 25.6M 23.94 6.98

Table 2: Classification errors on ImageNet validation set using central crops.
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Figure 5: Training of harmonic networks on ImageNet classification task. Left: comparison
with the baseline showing validation error (solid line) and training error (dashed). Right: last
30 epochs of training for all the models including scores reported for the benchmark models.

at epoch 90. We employ batch size of 256, weight decay 0.0001 and random scale, aspect
ratio & horizontal flip augmentation as recommended in [28], producing 224×224 crops.

Table 2 reports error rates on ImageNet validation set using central 224×224 crops from
images resized such that the shorter side is 256. All three harmonic networks have similar
performance and improve over the baseline by 0.6−1% in top1 and 0.4−0.6% in top5 ac-
curacy. We observe similar progress of the three modifications during training, see Fig. 5.
ResNet-50 architecture has 17 layers with spatial filters which correspond to 11M parame-
ters. We reduce this number by using progressive λ compression: λ=3 on 14x14 features
and λ=2 on the smallest feature maps. This reduces the number of weights roughly by half,
in total by about 23% of the network size. The compressed network loses about 0.25% in ac-
curacy but still clearly outperforms the baseline. It should be noted that harmonic networks
with less bottleneck blocks can be more efficiently compressed. Even with compression the
proposed Harm-ResNet-50 confidently outperforms the standard ResNet-50 (maxpool), as
well as the more recent ScatResNet-50 [23] and JPEG-ResNet-50 [12], see Table 2.

Finally, we evaluate the conversion of the weights of a pretrained non-harmonic network
to those of its harmonic version. To this end each learned filter in the pretrained baseline
(ResNet-50 without maxpooling after 90 epochs of training) is expressed as a best matching
combination of DCT filters. We skip BN inside the first harmonic layer since the related
parameters are not available. The direct conversion resulted in the exact same numerical
performance due to the basis properties of DCT. We observe a similar pattern of relative
importance of DCT filters to the one reported in Fig. 3. We then finetune the converted
model for another 5 epochs with the learning rate of 0.001, which results in the top1 (top5)
performance improvement of 0.21% (0.19%) over the pretrained baseline, see Table 2. We
also investigate the conversion to a harmonic network with progressive λ compression. After
casting the pretrained filters into the available number of DCT filters (from full basis at the
early layers to 3 out of 9 filters at the latest layers), the top1 performance degrades by 6.3%
due to loss of information. However, if we allow finetuning for as few as 5 epochs the
top1 (top5) accuracy falls 0.24% (0.09%) short of the baseline by reducing the number of
parameters by 23%. This analysis shows how the harmonic networks can be used to improve
the accuracy and / or compress the existing pretrained CNN models.
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6 Conclusion
We have presented a novel approach to incorporate spectral information from DCT into CNN
models. To this end a harmonic architectural block has been proposed that extracts per-pixel
spectral information from image features and learns weights to combine this information to
form new representations. We empirically evaluate the use of harmonic blocks with the well-
established state-of-the-art CNN architectures to validate the related improvement in classifi-
cation accuracy as well as parametric complexity. We also ascertain that harmonic networks
can be efficiently set-up by converting the pretrained CNN baselines. The use of DCT al-
lows one to order the harmonic block parameters by their significance from most relevant
low frequency to less important high frequencies. This enables efficient model compression
by parameter truncation with only minor degradation in the model performance. This has
been shown to be particularly useful for tasks with limited training samples [30].
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