
Multi-Code Multi-Rate Universal Maximum
Likelihood Decoder using GRAND

Arslan Riaz1*, Vaibhav Bansal1*, Amit Solomon2+, Wei An2+, Qijun Liu1, Kevin Galligan3,
Ken R. Duffy3, Muriel Medard2, and Rabia Tugce Yazicigil1

1Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA, *Equal Contribution
2Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA, +Equal Contribution

3Hamilton Institute, Maynooth University, Ireland

Abstract—We present the first fully-integrated universal Max-
imum Likelihood decoder in 40 nm CMOS using the Guessing
Random Additive Noise Decoding (GRAND) algorithm for low-
power applications. The 0.83 mm2 multi-code multi-rate universal
decoder can efficiently decode any code of length up to 128 bits
with 1 µs latency at 68 MHz. Dynamic clock gating leveraging
noise statistics reduces the average power dissipation to 3.75 mW
at 1.1 V or 30.6 pJ/decoded bit with a throughput of 122.6 Mb/s.
Universal decoding reduces hardware footprint, and the design
allows seamless swapping between codebooks with no downtime,
enabling use by multiple applications without switch-over.

Index Terms—error correcting codes, maximum likelihood
decoding, GRAND, hard-detection, universal decoder

I. INTRODUCTION

All data is encoded prior to storage or transmission to
protect it from potentially harmful corruption that can result
in the received information differing from the original. By
adding redundant bits, error detecting codes allow the data’s
integrity to be efficiently tested. Cyclic Redundancy Check
(CRC) codes, for example, are ubiquitously deployed as error
detection codes [1], [2]. Recent examples include Bluetooth
Low Energy (BLE) packets, which have a 24-bit CRC ap-
pended, and all IEEE 802.15.4 IoT standard packets, which
have a 16-bit CRC appended.

Error correcting codes allow errors to be rectified through
the use of involved decoding algorithms. In some applications,
such as data storage and optical communications, no additional
information beyond the bits that are received is available to the
decoder, which is called the hard-detection situation. In others,
bits are received with a reliability measure that can be used
to help guide error correction, which is called soft-detection.

Since the 1950s, by co-designing codes with particular
structure and corresponding, distinct code-specific decoders,
a wide variety of codes have been developed and deployed
for error correction. Examples of codes with dedicated hard-
detection decoders include Reed-Muller (RM) codes [3], [4]
with Majority Logic Decoding, Reed-Solomon codes [5] and
Berlekamp-Massey decoding [6], [7]. A recent example of an
important code-structure that has a dedicated soft-detection
decoder is CRC-Assisted Polar (CA-Polar) codes, which will
be used for all control channel communications in 5G New
Radio, with CRC-Assisted Successive Cancellation List (CA-
SCL) decoding [8]–[10]. Efficient hardware realization for all
of those decoders have been reported, e.g. [11]–[17], but, as

the decoder is entirely coupled to the code structure, one needs
a distinct implementation for each of them and often distinct
pieces of hardware for different levels of redundancy. As a
consequence, the standard co-design paradigm either leads to
a proliferation of hardware to decode distinct codes or to
restrictive code standardization to limit hardware footprint.
As most codes only have a dedicated hard or soft-detection
decoder, application design choices are further limited.

Guessing Random Additive Noise Decoding (GRAND) is
a recently proposed class of universal decoding algorithms
that challenges those limitations. Both hard and soft-detection
variants [18]–[21] have been developed that, in theory and
simulation, offer optimally precise Maximum Likelihood (ML)
decoding for any moderate redundancy code. If GRAND
algorithms can be translated into efficient hardware, they offer
the possibility of decoding any code, regardless of whether it
only has a hard or soft-detection decoder presently, in a single
instantiation. Such a realization would significantly reduce
existing hardware footprint while future-proofing a device so
that it can decode any forthcoming code. Moreover GRAND
would enable the automatic upgrade of omnipresent CRCs
from error detection to accurate error correction [22].

Here we present the first fully-integrated universal hard-
detection GRAND decoder shown in Fig. 1 for low-power,
area-constrained, multi-code multi-rate applications. Our test
chip demonstrates the multi-code and multi-rate efficient de-
coding up to 128 bits with a flexible rate R=0.66-1 that can
correct up to 3-bit errors, at or above the guaranteed error-
correction capability (GECC) of high-rate codebooks used
in this work. In contrast to existing hardware that can only
decode a handful of codes, the chip can accurately decode
more than 23696 distinct codes. Moreover, a single chip can
support efficient, hard-detection decoding of any product code
of up to 16,384 bits with rate R=0.43-1 and a higher GECC
than its 128-bit component codes [23].

II. GUESSING RANDOM ADDITIVE NOISE DECODING

Consider a binary codebook Cn which is a set of 2k strings
in {0, 1}n where n is the code length, k is the number of
information bits, and R = k/n is the code rate. A transmitter
sends a codeword Xn from the codebook Cn. Assume that a
random noise effect Nn, which is independent of the channel
input and also takes values in {0, 1}n, additively alters the

978-1-6654-3751-6/21/$31.00 ©2021 IEEE 239

ES
SC

IR
C

20
21

 -
IE

EE
 4

7t
h

Eu
ro

pe
an

 S
ol

id
 S

ta
te

 C
irc

ui
ts

 C
on

fe
re

nc
e

(E
SS

CI
RC

) |
 9

78
-1

-6
65

4-
37

51
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
SC

IR
C5

34
50

.2
02

1.
95

67
86

7

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

channel transmitted codeword Xn resulting in the received
sequence:

Y n = Xn +Nn. (1)

Code-centric decoders attempt to identify Xn given Y n by
exploiting the structure of a specific codebook. GRAND’s uni-
versality stems from the observation that if one can determine
the effect of the noise, Nn in equation (1), one can deduce Xn,
and doing so is more efficient for low or moderate redundancy
codes [18]. To identify the noise effect Nn, GRAND generates
a series of putative noise sequences En, subtracting them in
turn from the received bits Y n and checking if the resulting
Y n−En is a member of the codebook. For a linear codebook,
this can be achieved by calculating the product of Y n − En

with the parity check matrix H for the given codebook. If
the product is zero, the calculated sequence belongs to the
codebook, and the membership check is satisfied. The first
En that passes the membership check for Y n−En is used to
identify Xn. If the transmitted codewords are all equally likely
and the noise sequence En is generated from most likely to
least likely according to the channel statistics, then the first
resultant sequence Y n − En found in the codebook is an
optimally accurate ML decoded output.

For a hard-detection binary symmetric channel (BSC),
GRAND generates the sequence of noise patterns according to
the Hamming weight from low to high, i.e. i = 0, 1, 2, 3, ..., n
-bit errors. With one query for each noise sequence, the total
number of queries required for a Hamming weight of i is

(
n
i

)
.

It has been mathematically established that we do not need to
query all the possible noise patterns for the GRAND decoding
to be capacity achieving [18]. An upper bound or abandonment
threshold can be set on the number of queries to be made
after which the decoder reports failure to decode and either
requests a re-transmission or drops the packet. We choose this
abandonment threshold as 3 for the hard-detection GRAND
decoder presented in this work. This threshold matches well
with a realistic channel condition with a Bit Error Rate (BER)
of 10−3 where the probability of having 4 or more bit errors is
as low as 9.66×10−6. This threshold also suits the guaranteed
error-correction capability (GECC) of high-rate codebooks
used in this work.

III. UNIVERSAL MAXIMUM LIKELIHOOD DECODER
ARCHITECTURE

Our universal decoder efficiently creates, on the fly, pu-
tative error sequences in decreasing order of likelihood and
then forms the difference between the demodulated channel
output, Y , and the next most likely noise effect sequence, E.
Sequentially, the resultant bit string is checked for codebook
membership by querying the codebook. The first member
codeword (CW) found by successful noise guessing corre-
sponds to the ML decoding. Conventional Syndrome Decoding
uses large and onerous pre-computed code-specific syndrome
look-up tables (LUTs), while GRAND computes only the
minimum number of needed syndromes per decoding without
requiring any LUT. Our decoder in Fig. 2 consists of a

Universal Channel
Decoder (GRAND)

Error
Correction

BCH CRC Polar RM Encoded
Data

Traditional Channel Decoders

Berlekamp–
Massey

Algorithm

Error
Detection

Successive
Cancellation

Algorithm

Majority Logic
Decoding

Error
Correction

Error
Correction

Error
Correction

RLC

GRAND

Dynamic Code-
book Selection

No Decoder

Error
Correction

0110101...0101

Source Data
M = k bits

Channel-Encoded Data
C = n bits

Encoded Data with Errors
Y = C+N = n bits

0110101...0101

Channel
Decoder

Channel
Encoder

Noise

Communication Channel

Adder

Errors (Noise)
N = n bits

Comparison with Traditional Channel Decoders

Features Traditional GRAND

Universality

RLC decoding

Security through
re-randomization

Noise guessing
Channel Decoded Data

M̂ = k bits

*ML: Maximum Likelihood
*H: Parity-Check Matrix

Low latency

HY == 0 ?

ML Data Received

ML Error Found

Yes No

Yes

Fetch Next Error

HY == HE ?

GRAND Algorithm Flow

No

BCH
RLC

Bose-Chaudhuri-Hocquenghem
Random Linear Codes

CRC
RM

Cyclic Redundancy Check
Reed-Muller Codes

Fig. 1. Comparison of traditional code/rate-specific decoding with the uni-
versal noise-centric GRAND for low-power, low-latency, and area-constrained
multi-code multi-rate wireless applications.

Syndrome calculator for checking codebook membership and
an Error Generator (EG) for calculating rank-ordered binary
symmetric channel noise patterns with 1 to 3-bit flips and
checking for membership by querying the codebook. Since all
the codewords have to go through the Syndrome computation
first, the Syndrome block and EG are pipelined to avoid
stalling the syndrome computation of the following codewords
without any errors when the EG is searching through the noise
sequence. The parity check matrix H is loaded into the chip
for the corresponding codebook in a dual-port SRAM. The
dimensions of H are (n−k)×n. The chip supports k ∈ [1, 128]
and n ∈ [k + 1,min(k + 44, 128)]. The channel output Y
is a 128-bit vector that is used in the Syndrome block for
checking the membership of the codebook by computing HY .
The Syndrome block takes 64 cycles for the computation of
HY . The HY matrix-vector multiplication is zero if and only
if the received codeword is a member of the codebook. If
HY is not equal to zero, the Syndrome block passes HY and
Y to the EG. These EGs calculate rank-ordered BSC noise
patterns (Ei) with 1 to 3-bit flips, and check for membership
by querying the codebook.

Considering a code length of 128 bits with a single query
per cycle, checking for all the 3-bit noise sequences will take
341,376 cycles which is 41× higher than the number of queries
required for combined 1- and 2- bit noise pattern search.
Therefore, the EG is further split into Primary and Secondary
EGs. The Primary EG checks two error patterns in parallel
for the 1- and 2- bit errors achieving 2× reduction in latency
while the Secondary EG checks 16 error patterns in parallel for
the 3-bit errors achieving 16× reduction in latency. Further,
we implemented a three-stage pipelining for the Syndrome,
Primary and Secondary EGs to increase the throughput by
1.7× for a channel BER of 10-3.

The three-stage pipelined decoder architecture allows us to
leverage the noise statistics to optimize and reduce the energy
per decoded bit. To achieve this, we use dynamic clock gating

240

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

H.Y==0?

Yes

No

Syndrome
{Tag, Y}

E

H.Y==H.E?

Yes All errors
checked?

No
Yes

Next
Error

Primary Secondary

MUL

MUL
1-2 Bit Error

Generator

{Tag, Ĉ}

Tag=00

Tag=01 Tag=10

CI
H.Y
Y

E

H.Y==H.E?

Yes All errors
checked?

No
No

Yes

Next
ErrorMUL 3 Bit Error

Generator

Tag=11

TAG-based re-ordering

Decoded Codewords

H-matrix A

H-matrix B

Input
H

CI

Clk

Input
Y

SPI

Empty?

EN

Empty?

EN

H Clk

CS

GRAND Chip

H

FIFO_SP FIFO_PSĈ = Y E Ĉ = Y E

H

Clk

CI
H.Y
Y

CI
H.Y
Y

CI
H.Y
YNo

CG
CG

CG

Universal Noise-centric Decoder Signals

CS

EN

00

01
10

11

CG

 Chip select signal

Enable signal to the Error Generator

 Tag showing no error in the codeword

 Tag showing 1 or 2 bit error
 Tag showing 3 bit error

 Tag showing 4 or more bit error

Clock Gating

H.E

Ĉ

 Product of H-matrix and Error vector E

 Decoded codeword

Tag Two bit tag for re-ordering Y

H

E
CI

H.Y

 Demodulated channel output

 Parity-check matrix for syndrome calculation

Candidate error vector (Guessed noise sequence)
 Tag for code-interleaved architecture

 Product of H-matrix and Y

Tag=01

{Tag, Ĉ}Tag=10

Fig. 2. GRAND decoder system architecture and flow diagram.

of the EGs based on the probability of error likelihood. For
example, for a code length n of 128 bits and BER of 10-3,
87.98% of the codewords have no errors, 11.99% of them have
1- or 2-bit flips, and, only 0.03% of them have 3-bit flips. The
Secondary EG remains active only for 0.03%, and the Primary
is active for 11.99% of the decoding, reducing the power and
enabling 8.6× energy savings compared to the performance
when EGs are continuously on.

000000011
000000101
000001001

D1=1
D1=2
D1=3

D1
2-bit Error Distance Logic

Pattern Generator Error Shifter

000000001 D1=0, D2=0

1-bit Error Distance Logic

3-bit Error Distance Logic

D1==127?

D2==126? reset

+1

reset

+1
Select_1

Select_2

clk

clk

Fetch Next Error

D1

D2

Error Logic ERROR GENERATOR

3-BIT ERROR
SHIFTER

Shift 1 1-bit Logical Shift Left
Shift 4 4-bit LSL

OF Overflow

000000111
000001011
000010011

D2=1
D2=2
D2=3

D2

Indices

0

024

D2 D1

127
...

1 0 1 0 1

4

...

3 2 1 0

0 1 0 1 0 0 0

1

Index

Shifted
Index

0
1

Overflow?Yes
(1)

D1
D2

Shift 1 Shift 1 Shift 1

Shift 4

Shift 4

Shift 4

Index2 Index3

Index4 Index5 Index6 Index7

Index9 Index10 Index11Index8

Index13 Index14 Index15Index12

Shift 4

Shift 4

Shift 4

Shift 4

Shift 4

Shift 4

Shift 4

Shift 4

Shift 4

OF check OF check OF check

Index1

4

Index
Shifted
Index0

1

Overflow

H

H.E

MUL
E

D2

D1

D1={1,2,...,127}

D2={1,2,...,126}

D1 = 0, D2 = 0

0
1

OF
pattern

Fig. 3. Key blocks of the GRAND chip: Noise pattern (Error) Generator (top)
and 3-bit Error Shifter (bottom).

A. Error Generator

The EG efficiently creates ordered noise patterns, i.e., error
sequences, in parallel. It consists of three modules: the error
logic, pattern generator, and error shifter as shown in Fig.
3. The error logic sequentially generates a distance pair (D1,
D2) to indicate the distances between the active high bits (1s)
in the guessed noise sequence (Ei). For example, the error
vector with a size of 128 × 1, Ei = (00. . . 0010011) has a

distance logic pair of (D1=1, D2=3). The pattern generator
constructs the bit sequence defined by (D1, D2), which is
then used as the indices of the input-seed 1s for the error
shifter. The error shifter creates in parallel 2 and 16 variations
of the seed sequence through cyclical shifts for the Primary
and Secondary EGs until there is an overflow. This overflow
condition indicates the completion of error generation for the
given distance pair. We check this condition to increment the
distance D1 and then D2 to generate the next set of error
sequences. For the 3-bit Error Shifter, the error vectors are
generated in four parallel branches to reduce critical path
delay via a combination of 1- and 4-bit logical-shift left. Error
vectors are fed into the matrix-vector multiplication unit to
calculate and check if HY , equals HEi.

0 1 1 0 1 0 0
1 1 1 0 1 0 1
0 0 1 1 1 0 1
1 0 1 0 1 0 1
1 1 0 1 0 0 1
0 0 1 1 0 1 0
0 1 0 0 1 0 1

1
0
1
0
0
0
1

Matrix H44x128 Error Vector E128x1

R1
R2
R3
R4
R5
R6
R7

R44 0 1 1 1 0 1 0 0

1
0
0
1
1
1
0

C1 C2 C3 C4 C5 C6 C7 C128
R1
R2
R3
R4
R5
R6
R7

R1280

0 1
1 1
0 1
1 1
1 0
0 1
0 0

R1
R2
R3
R4
R5
R6
R7

R44 0 1

C1 C3
1
1
0
1
0
1
1

R1
R2
R3
R4
R5
R6
R7

R44 1

0
1
1
1
1
0
1

0

C7

HE44x1

= =

XOR ProductH-matrix Columns Address

Address

R
ow

Address (R3) Address (R7)

SPARSE MULTIPLIER

HE44x1SRAM
Array

C7

C1
C3

Column

Address (R1)

SRAM Cell

XOR

WL

BLBL

R
o
w

Fig. 4. Low-latency matrix-vector multiplication enabled by the sparsity of
errors.

241

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

B. Sparse Low-Latency Multiplier

GRAND has heavy matrix-vector multiplication dependen-
cies to check if the syndrome of the decoding HY equals HEi.
Traditional matrix-vector multiplication unit takes (n−k)×n
multiply-add operations for an H parity-check matrix of size
(n − k) × n and Ei of size n × 1. However HEi needs to
be computed in one cycle to keep generating error sequences
without stalling.

To achieve low-latency multiplication in a single cycle,
we leverage the sparsity of error vectors (Ei) with very few
nonzero entries. For instance, to achieve a BER of 10−3 for
n = 128 bits, the BSC noise statistics dictate the probability of
having three-bit flips for only 0.03% of the codewords. Since
the probability of receiving codewords with more than three-
bit flips is negligible (0.00096%), we only check possible noise
patterns up to three-bit flips, e.g., e ∈ [0, 3], and then decide to
abandon. These bit flips are randomly located in the n-length
codeword and, as e << n, the error vector Ei with a size of
n×1 is sparse. Fig. 4 conceptually illustrates using the sparsity
of the noise pattern in an SRAM-based multiplication unit for
a codeword length of n = 128 bits with a flexible rate support
(R ≥ 0.66). This technique uses active high bits of the error
vector Ei as the column address to select the corresponding
columns of the H matrix stored in a dual-port SRAM. These
columns can then be XORed for the final product, HEi.

time

H matrices

Input
codewords

M
U
X

SELPseudo-Random
Number Generator

M
U
X

H-matrix
SRAMA
HA Ready?

1

0

1

0

Priority_SEL

Hx.Yx
1

0

1

0 MULHB Ready?

H-matrix
SRAMB

Code-Interleaved GRAND Architecture Operation

Dead zone Dead zone

Dead zone Dead zoneActive Active

Active Active

Matrix (H1) Matrix (H3)

 HA Loaded

H-Matrix SRAMA

H-Matrix SRAMB

HB Loaded

Input Codewords

1
0

1

0

Matrix (H2) Matrix (H4)

Codewords H1

Codewords H2

Codewords H3

Codewords H4

Loading... Loading...

Loading...Loading...

Fig. 5. Code-interleaved GRAND architecture to dynamically re-randomize
codebooks without dead zones.

C. Code-Interleaved GRAND Architecture

A core feature of a hardware implementation of GRAND
is its ability to decode all distinct codes, limited only by
length and maximum redundancy, in a single chip. Thus we
can use our chip to support multiple codes, say for different
applications. To switch codes on the fly, avoiding expensive
coordination for switch-over, which would lead to decoding
downtime, we implemented a Code-Interleaved (CI) archi-
tecture shown in Fig. 5. This code interleaving architecture
enables seamless loading of a new H matrix and simultaneous

decoding of the received codeword using the previously loaded
H matrix. We use a single bit CI tag to indicate which of
the two SRAMs contains the corresponding H matrix for a
received codeword.

01 0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

011000 00 11

00 00

Primary
Output

Secondary
Output

Syndrome
Output

Final
Data

FIFO_SP 01

Sleep

01

FIFO_PS 10

01

10

Sleep

Sleep Sleep 11

10 01

10

01 01 01

10

01 01

01 01

01 01

time

1-2 bit error3 bit error 4 bit error

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 - 2 bit error

Input Y

Fig. 6. Tag-based reordering of the decoded codeword for the parallelized
and pipelined operation.

8

t0

1

3
4

7

9

11

13

SYN
SYN

SYN
SYN

SYN
SYN

SYN
SYN

SYN
SYN

SYN
SYN

SYN

10

2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t15

Input
Codewords

(CW)

Time (cycles)

OOO latency CW6
IO latency CW6

SEC

PRI

PRI

stall

SEC

PRI

PRI

stall

12

5
6

t14 t16

Fig. 7. In-order and Out-of-order latency for the three stage pipelined
architecture.

D. Tag-Based Re-Ordering

The GRAND architecture can process multiple received
codewords simultaneously and output the decoded results at
different time instances due to its pipelined operation. Stage
one of the three-stage pipeline operation is the Syndrome
calculator which performs the HY syndrome computation and
codebook membership check. This block takes 71 cycles in the
decoding process. In the event of detecting a bit error in the
decoding process, the second stage, the Primary EG, is used
for 1- and 2-bit error detection and correction. A single cycle
is required in the event of a 1-bit error in the most significant
bit of a codeword Y , otherwise a maximum of 4167 cycles
is required for a worst-case 2-bit error pattern. The last block
in the pipeline, the Secondary EG, is used for detecting and
correcting three-bit errors, and requires between one and at
most 25,262 cycles, depending on the positions of the three
bit flips within the codeword Y .

242

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

3m
m Mul

Block
Logic
Block

Error
Gen

SRAM

3mm

SRAM SRAM

SRAM

(a) Die micrograph of the GRAND chip (b) BLER for BCH and RM

Guaranteed Error Correction
Capability (GECC)

Codebook GECC
RM (128,99) 3-bits

BCH (127,113) 2-bits
RLC (128,115) 1-bit
CRC (128,117) 1-bit

CA-Polar (128,107) 1-bit
Polar (128,107) 1-bit

(c) BLER for RLC, CRC, Polar & CA-Polar

Fig. 8. (a) Die micrograph of the universal GRAND decoder implemented in 40 nm CMOS. Universality of chip via measured BLER vs. BER (b) for BCH
and RM and comparison with the standard decoding, (c) for CA-Polar, RLC, and CRC for both error detection and correction.

1.4 mW
(4%)

3.75 mW
(12%)

27.3 mW
(84%)

Syndrome Primary EG Secondary EG

(a) Measured latency for BCH(127,113) (b) Measured energy for BCH(127,113) (c) Voltage and frequency scaling (d) Measured power distribution

Fig. 9. (a) Measured latency vs. frequency; (b) Measured energy per decoded bit using a 1.1V supply voltage for a BER of 10-3 to 10-5 for BCH (127,113);
(c) Scaling of maximum core frequency and minimum supply voltage for a BER of 10-5; (d) Measured power distribution of individual blocks including the
leakage power from a 1.1V supply voltage at 68 MHz of clock frequency.

Given these varying processing times within the Syndrome,
Primary EG, and Secondary EG, the list of decoded results
may be out of order. To re-establish the given input ordering
of the received codewords, we use a simple two-bit tag strategy
for successful information recovery as shown in Fig. 6. The
tag value is initialized to 00 and is incremented in the event
that a block in the pipeline process unsuccessfully recovers
the received codeword. Thus, a tag value of 00 indicates 0-bit
flips in the received codeword, 01 indicates 1- or 2- bit flips,
and 10 indicates 3 bit flips, all indicating successful decoding
with codeword re-ordering. Lastly, a tag value of 11 indicates
decoding failure.

As the pipeline process may result in out-of-order decoded
codewords, we use two latency metrics to analyze the system
performance for this architecture. First, we define in-order (IO)
latency as the processing time of a codeword such that the
processed output list corresponds to the received input list
ordering. Thus, the IO latency of a given codeword has a
dependency on the processing time of the immediately pre-
ceding codeword. Second, we define the out-of-order (OOO)
latency as the minimum time required for a given codeword to
be processed, independently of the codeword list order. Thus,
the OOO latency will be less than or equal to the IO latency,

as illustrated in Fig. 7 by the sixth codeword.

IV. MEASUREMENT RESULTS

The GRAND chip shown in Fig. 8(a) is implemented in
40 nm CMOS technology occupying 0.83 mm2 of active core
area. The chip supports all binary linear codes of length up
to 128 bits and rates from 0.66 to 1. The performance of
the GRAND chip is measured for different codebooks and
multiple rates at frequencies ranging from 10 MHz to 68 MHz
at a supply voltage of 1.1 V. Further, the chip supports voltage
scaling from 1.1 V down to 0.75 V.

A. Block Error Rate (BLER) Performance

The BLER performance of the GRAND decoder is mea-
sured for different codebooks with different rates to demon-
strate the universality of the chip. Figure 8(b) shows the BLER
performance of the GRAND chip for Reed Muller (RM) and
Bose-Chaudhuri-Hocquenghem (BCH) with a code rate of
0.77 and 0.89, and a code length of 128 and 127 bits, respec-
tively. The BLER performance of this decoder is compared
with the standard decoders for RM [4] and BCH [24] which
show that GRAND has competitive BLER performance. The
BLER performance of our GRAND chip is also measured

243

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

CI ON: Code interleaving enabled
CI OFF: Code interleaving disabled
CG: Clock Gating

Th
ro

ug
hp

ut
 (M

bp
s)

No
Pipelining

3-Stage
Pipelined

No
Pipelining

3-Stage
Pipelined

1.7x
8.6x

1.76x

1.16xEnergy/bit Advantage

1.60xThroughput Advantage

Area Cost

CI ON

(b) Pipeline throughput improvement(a) Pipelined stages CG power savings

Av
er

ag
e

Po
w

er
 (m

W
)

1.6x

Th
ro

ug
hp

ut
 (b

its
/c

yc
le

)

Correct H
CI OFF

Correct H
CI ON

415x

Incorrect
H-matrix

Correct H
CI OFF

Correct H
CI ON

La
te

nc
y

(#
 o

f c
yc

le
s)

(c) Throughput advantage of using CI (d) Latency for correct and incorrect H

Fig. 10. (a) Average power savings due to dynamic clock gating of pipelined stages according to channel noise statistics; (b) Throughput gain using the
three-stage pipelined architecture; (c) Throughput gain with CI ON versus CI OFF; and (d) Latency loss when incorrect H matrix is used.

using Random Linear Code (RLC), Cyclic Redundancy Check
(CRC), Polar and CRC-Aided Polar (CA-Polar) with code
length of 128 bits and a code rate of 0.90, 0.91, 0.84, and
0.84, respectively. In Fig. 8(c), we demonstrate: the first ML
decoding of RLCs; the first hard detection ML decoding of
CA-Polar codes; and the first universal error correction of up
to 3 bit flips for CRC codebooks. It has been already shown
that soft information decoding performance of Polar codes is
poor as compared to CA-Polar codes [9]. Here we find the
same effect in hard detection decoding, that the BLER of Polar
codes is significantly higher than the CA-Polar codes. For a
fixed BLER of 10−3, there is a performance improvement
of approximately 1 dB in Eb/N0 for CA-Polar (128,107) as
compared to Polar (128,107). Similarly, CRC performs slightly
better than the Polar code of the same length and rate.

71 1000 2000 3000 4000 5000 6000 7000 8000
Latency (cycles)

0.001

0.01

0.1

1

10

100

Pe
rc

en
ta

ge
 o

f c
od

ew
or

ds
 (%

)

OOO latency BCH (BER=10 -3)

0 2000 4000 6000 8000 10000 12000
Latency (cycles)

0.001

0.01

0.1

1

10

100

Pe
rc

en
ta

ge
 o

f c
od

ew
or

ds
 (%

)

IO latency BCH (BER=10 -3)

Fig. 11. Measured in-order and out-of-order latency for a BCH code with
k=113, n=127 at BER of 10-3. The histogram shows the percentage of
codewords vs. measured latency performance.

B. Energy, Latency, and Power Consumption

The decoder achieves 1.04 µs average latency with a
throughput of 122.6 Mb/s and consumes 30.6 pJ/decoded bit
from a 1.1V supply for a BER of 10-5 as shown in Fig.
9(a) and (b). For the same BER, the measured average power

101 102 103 104

Number of Cycles, c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Pr
ob

. N
um

be
r o

f C
yc

le
s

 c

IO latency BER=10 -3

OOO latency BER=10 -3

IO latency BER=10 -4

OOO latency BER=10 -4

IO latency BER=10 -5

OOO latency BER=10 -5

Fig. 12. Measured in-order and out-of-order latency in cycles vs. probability
that the number of cycles for a given codeword is less than c.

consumption is 3.75 mW from a 1.1 V supply at 68 MHz
of clock frequency. Figure 9(c) illustrates the performance
of the GRAND decoder as a function of the supply voltage,
demonstrating a maximum frequency of 68 MHz at 1.1 V
and 20 MHz at 0.75 V. The distribution of the decoder power
consumption including the leakage power is shown in Fig. 9(d)
for its nominal operating conditions at 68 MHz and 1.1 V
supply. As shown in Fig. 10(a), by leveraging dynamic clock
gating of the pipelined stages based on channel noise statistics,
the average power and energy consumption of the system
can be significantly lowered since the secondary EG, which
operates at higher power than the primary one, is only active
for 3.4× 10−8% of the decoding process for a BER of 10-5.
The three pipelined stages also provide improvement in the
throughput, which is 1.7× higher than a system with no
pipelining for a BER of 10-3 as shown in Fig. 10(b).

C. Code Interleaving

We assessed the CI architecture by dynamically re-
randomizing RLC codebooks. When the CI is enabled, both
SRAMs are used in a time-interleaved fashion to increase the
throughput by 1.6×, while consuming 14% lower energy per
decoded bit in contrast to when the CI is disabled as shown
by the measurement results in Fig. 10(c). However, this code

244

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

interleaving feature comes at the expense of an increased area
by a factor of 1.76.

The latency measurement results in Fig. 10(d) explore the
performance degradation when an incorrect H matrix is used
for RLC decoding. Using the incorrect matrix for decoding
leads to severe failures to decode. As a corollary, a non-
authentic decoder makes many guesses, yet is unsuccessful.
For a non-authentic decoder, these unsuccessful guesses de-
grade latency by a factor of 415, while increasing energy per
bit by a factor of 2920. Thus non-authentic decoder expends
energy and time, while still producing incorrect decodings.
This feature points to the possible use of RLCs to provide
an additional security layer via dynamic randomization of
the codebook, as any non-authentic decoder will encounter
performance degradation in latency and energy consumption
along with severe failures to decode.

D. In-Order and Out-Of-Order Latency Performance

The in-order (IO) and out-of-order (OOO) latency is mea-
sured using a BCH (127,113) code of rate 0.89. We demon-
strated the IO and OOO latency measurements as the his-
togram plots in Fig. 11 for the BER of 10-3. As shown in
Fig. 11, for a noisy channel, the IO latency is higher for a
higher percentage of codewords. The IO and OOO latency
is also measured across different channel conditions, BER,
and shown as empirical CDFs in Fig. 12. This measurement
demonstrates that as the channel condition improves, the IO
latency approaches OOO latency and the probability that
any given codeword will take only 71 cycles to decode ap-
proaches 1. This distinctive feature of GRAND’s noise-centric
approach means that as the channel improves, the decoder’s
latency performance automatically improves. As a result, the
GRAND decoder immediately and inherently gets the benefit
of improved channel conditions without the need for signalled
adaptation while providing the flexibility of switching to a new
rate or a new codebook in real-time due to the CI architecture.

V. PERFORMANCE SUMMARY AND COMPARISON

GRAND is the first universal decoding algorithm to be
implemented successfully in hardware, thus uniquely enables
this architecture to be compared with any hard decoder. The
performance comparison of our GRAND chip is shown in
Fig. 13 versus other fully integrated and post-layout code-
specific BCH hard decoders [13]–[15], and to a synthesized-
only alternative GRAND decoder [25]. Comparing [13]–[15],
our decoder has 1.57× lower, 4.37× higher and 1.02× lower
area, respectively. Given our singular architecture and foot-
print, our chip can successfully decode BCH and any other
binary linear code, contrasting code-specific decoders. Further,
our GRAND chip consumes 1.68× lower power and 2.08×
lower energy per bit relative to [14], and 4.42× lower power
but 6.22× higher energy per bit as compared to [15] under dif-
ferent designed operating frequency conditions. An alternative
GRAND architecture proposed in [25] is targeted towards high
throughput data storage systems achieving one cycle best-case
latency at 500 MHz frequency. Only synthesized results have

been reported without considering the performance changes
after place and route. The power consumption of this design
has been estimated by parallel register-file computation of
syndrome product in a single cycle at 500 MHz frequency. Our
GRAND decoder targeting low-power applications demon-
strates 200× lower measured power under latency trade-off
compared to [25]. Unlike [13]–[15], [25], our decoder supports
multiple communication standards simultaneously with no
dead zones for instantaneous switching, providing seamless
communication while reducing the footprint and the energy
costs associated with using separate code-specific decoders.

VI. CONCLUSIONS

We present the first integrated code-agnostic decoder imple-
mented in 40 nm CMOS technology that supports any code
family with a code length up to 128 bits and a flexible code
rate (0.66-1). The three staged pipelined architecture of the
decoder enables dynamic clock gating of stages according to
channel noise characteristics resulting in 8.6× energy savings
and 1.7× higher throughput. The 0.83 mm2 GRAND chip is
measured using BCH, RM, CRC, RLC, Polar, and CA-Polar
codebooks with rates of 0.89, 0.77, 0.91, 0.90, 0.91, and
0.84, respectively, and provides a good error correction perfor-
mance. The chip operates at 1.1 V supply voltage consuming
3.75 mW of power and 30.6 pJ/bit of energy at a frequency
of 68 MHz providing 1.04 µs of delay at BER of 10−5 with
a throughput of 122.6 Mb/s. This universal ML decoder also
enables switching codebooks in real time without dead zones
using CI architecture to provide simultaneous decoding of
multiple communication standards.

While the results presented here demonstrate GRAND’s
hardware performance on short, high-rate codes, such as
CRCs, it can also be used for precise, low-latency univer-
sal decoding of product codes, which are a class of long,
powerful codes that are used in storage and optical network
applications. Product codes are constructed by concatenating
short components codes and have a higher error correction
capability than the associated component codes [26]. They
inherently interleave, providing additional protection against
bursty noise. A single GRAND chip can efficiently decode
16,384-bit product code having a code rate between 0.43 and
1, composed of 128-bit component codes, with 56 pJ/b of
energy consumption. By using 16 GRAND chips in parallel,
at no extra cost of energy per bit, 8.4 µs delay with 1.95
Gb/s throughput can be achieved while consuming 60 mW of
power. The number of parallel decoder branches can be chosen
according to the application requirements and the system can
adapt to have a better performance by turning parallel branches
on or off if the requirement changes. This makes it particularly
suitable for low latency and high throughput hard-detection
applications.

VII. ACKNOWLEDGMENTS

This work was partially supported by the Battelle
grant Low-Probability-of-Detect/Intercept Communications
Employing Peaky Frequency-Shift-Key Modulation (PO

245

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

[a] Universal GRAND synthesized results shown only for CRC.
[b] BCH codeword length of 127 bits and RLC codeword length of 128 bits
are used for the measurements.
[c] Latency (# of cycles) for [13] is reported for a code length of 16460 in
[15].
[d] Code rate is reported for a code length of 32767 in [13]. Fixed rate.
[e] Measured energy, latency, and throughput is reported for R = 0.88.

N.R. = Not reported; N.A. = Not applicable.
[f] Rates available: 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10.
[g] Fixed rate.
[h] Measured performance at BER = 10-5 and 68MHz for a BCH code.
[i] Measured in-order latency at BER = 10-5 and 68MHz for a BCH code.
[j] Only worst-case latency is reported in [14].
[k] Estimated for parallel register file computation of syndrome in one cycle at
500 MHz.

 CRC (Universal)[a]

SiPS '20 [25]
65

0.90

128

128
0.75

500

No

N.R

0.25[p]

Synthesized Only

9000

N.R

751[k]

No Pipelining

Best case: 1.0
Average case: N.R
Worst case: 4098

Universal Noise-Centric
GRAND

TVLSI Systems '14 [15]
130

1.20
Overlapped Berlekamp-

Massey (oBM)

BCH

32

8640
0.948[g]

200

Best case: N.R.
Average case: 513
Worst case: N.R.

No

4.92

0.85[o]

Integrated Design

16.6

6400

2.565

N.R.

JSSC '10 [14]
90

1.00
Inversion-less

Berlekamp-Massey(iBM)+Chien

BCH

N.A.

32400
0.994[f]

200

Best case: N.R.
Average case: N.R.
Worst case: 64824

No

63.60

0.19[n]

Post Layout

6.32

99.3

324.12[j]

Single-Stage Pipeline

Text
ISSCC '06 [13]

90

N.R.
Berlekamp-Massey (BM)

+ Chien Search

BCH

8

16460[c], 32767[d]
0.997[d]

25

Best case: 150
Average case: 865
Worst case: 6250

No

N.R.

1.30[m]

Integrated Design

N.R.

N.R.

34.6

N.R.

[l] Active area for code-interleaving (CI) OFF GRAND
[m] ECC area overhead. Chip area is 140mm2
[n] Core area.
[o] BCH decoder area.
[p] Reported area estimate from synthesized design.

References
Technology (nm)

Voltage (V)

Decoding Algorithm

Supported Code Families

Parallelism

Code Length (n)
Code Rate (R)

Frequency (MHz)

Latency
 (# of cycles)

Security

Energy per Decoded Bit (pJ/bit)

Area (mm2)

Implementation

Average power (mW)

Throughput (Mbps)

Average Latency (µs)

Pipelining

Yes (Rapidly-Changing RLC Decoding)

1.04[i]

3.75[h]

BCH, RM, CRC, RLC, Polar,
CA-Polar (Universal)

This Work
40

1.10

16

127, 128[b]

0.656 - 1.000[e]

10-68

Best case: 71
Average case: 71.1[i]

Worst case: 29500

30.6[h]

0.83[l]

Integrated Design

122.6[h]

Three-Stage Pipeline

Universal Noise-Centric GRAND

Fig. 13. Performance comparison with prior hard decoders, note that code/rate-specific decoders’ total area increases proportionally with the number of
code-rate pairs supported, unlike our multi-code multi-rate decoder.

US0011-0000743557). This publication has emanated from
research supported in part by a grant from Science Foundation
Ireland under grant number 18/CRT/6049. The opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the Science Foundation Ireland. We thank
Alex Ji and Utsav Banerjee for tool-related discussions.

REFERENCES

[1] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in IEEE/IFIP DSN-C,
2004, pp. 145–154.

[2] P. Koopman, K. Driscoll, and B. Hall, “Selection of cyclic redun-
dancy code and checksum algorithms to ensure critical data integrity,”
DOT/FAA/TC-14/49, 2015.

[3] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IEEE Trans. Inf. Theory, vol. 4, no. 4, pp. 38–49, 1954.

[4] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,,” Trans. I.R.E. Prof. Group Elec. Comp., vol. 3,
no. 3, pp. 6–12, 1954.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[6] E. Berlekamp, Algebraic Coding Theory. World Scientific, 1968.
[7] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.

Inf Theory, vol. 15, no. 1, pp. 122–127, 1969.
[8] K. Niu and K. Chen, “CRC-aided decoding of Polar codes,” IEEE

Commun. Letters, vol. 16, no. 10, pp. 1668–1671, 2012.
[9] I. Tal and A. Vardy, “List decoding of Polar codes,” IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, 2015.
[10] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based

successive cancellation list decoding of Polar codes,” IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, 2015.

[11] S. Clerc, F. Abouzeid, V. Heinrich, A. Jain, A. M. Veggetti, D. Crippa,
P. Roche, and G. Sicard, “A 40nm CMOS, 1.27nJ, 330mV, 600kHz, Bose
Chaudhuri Hocquenghem 252 bits frame decoder,” in IEEE ICICDT,
2010, pp. 78–81.

[12] S. Scholl and N. Wehn, “Hardware implementation of a Reed-Solomon
soft decoder based on information set decoding,” in DATE, 2014.

[13] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino,
L. Crippa, E. Di Martino, L. D’Onofrio, A. Gambardella, E. Grillea,
G. Guerra, D. Kim, C. Missiroli, I. Motta, A. Prisco, G. Ragone,
M. Romano, M. Sangalli, P. Sauro, M. Scotti, and S. Won, “A 4Gb
2b/cell NAND flash memory with embedded 5b BCH ECC for 36MB/s
system read throughput,” in IEEE ISSCC, 2006, pp. 497–506.

[14] Y.-M. Lin, C.-L. Chen, H.-C. Chang, and C.-Y. Lee, “A 26.9 K 314.5
Mb/s soft (32400,32208) BCH decoder chip for DVB-S2 system,” IEEE
J Solid-State Circuits, vol. 45, no. 11, pp. 2330–2340, 2010.

[15] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park, “High-throughput and low-
complexity BCH decoding architecture for solid-state drives,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1183–
1187, 2014.

[16] C.-F. Teng, C.-H. Chen, and A.-Y. Wu, “An ultra-low latency 7.8–13.6
pJ/b reconfigurable neural network-assisted polar decoder with multi-
code length support,” in IEEE VLSIC, 2020, pp. 1–2.

[17] Y. Tao, S.-G. Cho, and Z. Zhang, “A configurable successive-
cancellation list Polar decoder using split-tree architecture,” IEEE J
Solid-State Circuits, vol. 56, no. 2, pp. 612–623, 2021.

[18] K. R. Duffy, J. Li, and M. Médard, “Capacity-achieving guessing random
additive noise decoding,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp.
4023–4040, 2019.

[19] K. R. Duffy and M. Médard, “Guessing random additive noise decoding
with soft detection symbol reliability information,” in IEEE ISIT, 2019.

[20] A. Solomon, K. R. Duffy, and M. Médard, “Soft maximum likelihood
decoding using GRAND,” in IEEE ICC, 2020.

[21] K. R. Duffy, “Ordered reliability bits guessing random additive noise
decoding,” in IEEE ICASSP, 2021.

[22] W. An, M. Médard, and K. R. Duffy, “CRC codes as error correcting
codes,” in IEEE ICC, 2021.

[23] C. Häger and H. D. Pfister, “Approaching miscorrection-free perfor-
mance of product codes With anchor decoding,” IEEE Trans. Commun.,
vol. 66, no. 7, pp. 2797–2808, 2018.

[24] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Inf. Control., vol. 3, no. 1, pp. 68–79, 1960.

[25] S. M. Abbas, T. Tonnellier, F. Ercan, and W. J. Gross, “High-throughput
VLSI architecture for GRAND,” in IEEE SiPS, 2020.

[26] P. Elias, “Error-free coding,” IEEE Trans. Inf. Theory, vol. 4, no. 4, pp.
29–37, 1954.

246

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 06,2022 at 15:01:20 UTC from IEEE Xplore. Restrictions apply.

		2021-10-22T14:43:42-0400
	Certified PDF 2 Signature

