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Abstract. This paper is concerned with potential recall in multimodal
information retrieval in graph-based models. We provide a framework to
leverage individuality and combination of features of different modalities
through our formulation of faceted search. We employ a potential recall
analysis on a test collection to gain insight on the corpus and further
highlight the role of multiple facets, relations between the objects, and
semantic links in recall improvement. We conduct the experiments on
a multimodal dataset containing approximately 400,000 documents and
images. We demonstrate that leveraging multiple facets increases most
notably the recall for very hard topics by up to 316%.

1 Introduction

There is rapid growth of online multimodal content as well as personal data
generation in our daily life. This trend creates severe challenges in multimodal
information retrieval. Multimodal retrieval is defined as searching for the relevant
modality with textual queries (keywords, phrases, or sentences) and/or image
examples, music files or video clips. Many approaches have been tested in recent
years, ranging from associating image with text search scores to sophisticated
fusion of multiple modalities [7,5,12].

In addition to the observation that data consumption today is highly multi-
modal, it is also clear that data is now heavily semantically interlinked. This can
be through social networks (text, images, videos of users on LinkedIn, Facebook
or the like), or through the nature of the data itself (e.g. patent documents con-
nected by their metadata - inventors, companies). Structured data is naturally
represented by a graph, where nodes denote entities and directed/indirected
edges represent the relations between them. Such graphs are heterogeneous, de-
scribing different types of objects and links. Connected data poses structured IR
as an option for retrieving more relevant data objects.

Previous works [9,4,6] introduced models to leverage both structured and un-
structured IR. There, a question arises: Is the graph model conducive to retrieval
performance? In this work, we propose an analysis on reachability of relevant
objects in a graph modelled data. In our previous works [15,16], we introduced
a model that enriches the available data by extracting inherent information of
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objects in the form of facets. This has support in the principles of Information
Retrieval, most notably in the theory of poly-representation [10]. The aim is
to leverage cognitive and functional representations of information objects to
improve IR results, but there is currently no understanding of how using dif-
ferent representations of the same objects (what we call here facets) affects the
reachability of relevant items.

We showed previously that our model matches the efficiency of non-graph
based indexes, while having the potential to exploit different facets for better
retrieval [16]. In this work, we illustrate the effect of multiple facets on reach-
ability of relevant nodes in a collection. Further, we enrich the relations in the
collection by adding corresponding semantic links from DBpedia. We demon-
strate how it helps improving recall for hard and very hard topics. We provide
extensive experimental evidence for our conclusions, based on the ImageCLEF
2011 Wikipedia dataset [19].

The paper is structured as follows: in the next section, we address the related
work, followed in Section 3 by the basic definition of our model, graph traversal
and weighting. The experiment design is shown in Section 4. Results are dis-
cussed in Section 5, and finally, conclusions and future work are presented in
Section 6.

2 Related Work

2.1 Content-Based Retrieval

There are many efforts in multimodal retrieval, e.g. by mining the visual infor-
mation of images to improve text-based search. Martinent et al. [12] propose
to generate automatic document annotations from inter-modal analysis. They
consider visual feature vectors and annotation keywords as binary random vari-
ables. In combination of text and images, given the massive web data, relevant
web images can be readily obtained by using keyword based search [7,5].

I-Search, as a multimodal search engine [11], defines relations between differ-
ent modalities of an information object, e.g. a lion’s image, its sound and its
3D representation. They define neighbourhood relation between two multimodal
objects which are similar in at least one of their modalities. However, in I-Search,
the semantic relation between objects (e.g. a dog and a cat object) is not con-
sidered. They do not consider explicit links between information objects. We
take advantage of the context through links in the context graph whose nodes
represent different modalities in the search set.

2.2 Graph-Based Retrieval

Srinivasan and Slaney [18] add content based information to image characteris-
tics as visual information to improve their performance. Their model is based on
random walks on bipartite graphs of joint model of images and textual content.
Jing et al. [8] employ the PageRank to rerank image search. The hyperlinks
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between images are based on visual similarity of search results. Yao et al. [20]
make a similarity graph of images and aim to find authority nodes as result for
image queries. Through this model, both visual content and textual information
of the images is explored. The structured search engine NAGA [9], provides the
results of a structured (not keyword) query by using subgraph pattern on an
Entity-Relationship graph. Rocha et al. [13] use spreading activation for rele-
vance propagation applied to a semantic model of a given domain. select sub-
graphs to match the query and do the ranking by means of statistical language
models. We build upon these works and complement them with the concept of
faceted search.

In our model, in addition to similarity links between facets of the same type,
we have other types of links like semantic or part-of, which enables the framework
to model a collection with diverse relation types between information objects.
Further, by extracting inherent information of objects in the form of facets, we
provide a framework with higher flexibility to prioritize a specific feature. We
will show that our model can effectively integrate multiple facets of different
modalities to improve performance.

3 Model Representation

We define a model to represent information objects and their relationships, to-
gether with a general framework for computing similarity. We see the information
objects as a graph G = (V| E), in which V is the set of vertices (including data
objects and their facets) and E is the set of edges. By facet we mean inherent
information of an object, otherwise referred to as a representation of the object.
For instance, an image object may have several facets (e.g. color histogram, tex-
ture representation). Each of these is a node linked to the original image object.
Each object in this graph may have a number of facets. We define four types of
relations between the objects in the graph. The relations and their characteris-
tics and weightings are discussed in detail in [14]. We briefly repeat them here
for completeness of the presentation:

— Semantic (a): any semantic relation between two objects in the collection
(e.g. the link between lyrics and a music file). The edge weight w,, is in-
versely proportional the number of outgoing « links from u.

— Part-of (f): a specific type of semantic relation, indicating an object as
part of another object, e.g. an image in a document. This is a containment
relation, and therefore has default weight to 1.

— Similarity (v): relation between objects with the same modality, e.g. be-
tween the same facets of two objects. The weight is the similarity value.

— Facet (9): linking an object to its representation(s). It is a directed edge

from facet to the object.
Weights are given by perceived information content of features, with respect
to the query type. For instance, with a query like ”blue flowers”, the color his-
togram is a determining facet that should be weighted higher. These weights
should be learned for a specific domain, and even for a specific query if we
were to consider relevance feedback.
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3.1 Traversal Method - Spreading Activation

There are different methods to traverse a graph of which random walks and
spreading activation are two well-known methods. We proved that these two
methods are principally the same [17]. However, spreading activation provides
more options to customize the graph traversal. The SA procedure, always starts
with an initial set of activated nodes, usually the result of a first stage pro-
cessing of the query. During propagation, surrounding nodes are activated and
ultimately, a set of nodes with respective activation are obtained. After ¢ steps,
we use the method provided by Berthold et al. [2], to compute the nodes’ ac-
tivation value: a(® = a(® . W where a(?) is the initial activation vector, W is
the weight matrix —containing different edge type weights—, and a(*) is the final
nodes’ activation value used for ranking.

Memory Spreading Activation algorithm. In this variation of spreading ac-
tivation, we propose an input function on received energy to manage the amount
of energy spreading in the network. The amount of energy a node receives in each
step t, is the sum of the energy of its neighbours. Part of this received energy has
been sent two steps before from the same node to its neighbours. We subtract
this part from the whole received energy to prevent energy bias near activated
nodes. We define the energy capacity of nodes as vector sm, which contains the
sum of the edge weights for each node. We define the energy capacity of node i
as sm; = Z?Zl Wi;; where j goes over the columns for row i. This is the energy
it is able to carry to its neighbours. It may be less or more than the energy it
has at any point in time, as a function of the weights of its outgoing edges. We
denote M = diag(sm) which converts vector sm to the diagonal matrix with
the vector values on the diagonal. Here, we define the energy received in each
step of t as: a® = a@ W?* — a(*=2) M. In each step, we deduct the self-energy
received by subtracting the multiplication of activation value of two steps before
to the energy capacity of this node (a(*=2).M). In the expanded form it is:

o~

—1
al = a® Y “(—1)F. w2k Mk (1)
k=0

3.2 Hybrid Search

We proposed to leverage the combination of faceted search with graph search to
find relevant objects [15]. The use of results from independent modality indexing
neglect a) that data objects are interlinked through different relations and b) that
many relevant images can be retrieved from a given node by following semantic
or 'part-of’ relations. Our hybrid ranking method consists of two steps: 1) In the
first step, we perform an initial search with Lucene and/or LIRE to obtain a set
of activation nodes, which is based on specific facet indexed results. . 2) In the
second step, using the initial result set of data objects (with normalized scores)
as seeds, we exploit the graph structure and traverse it.
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The number of transitions is determined by imposing different stop rules: dis-
tance constraint [3], fan-out constraint [3] or type constraint[13]. In this version
of our model, we use the distance constraint to stop the traversal.

4 Experiment Design

4.1 Data Collection

We applied the ImageCLEF 2011 test collection as a benchmark. ImageCLEF
2011 is based on Wikipedia pages and their associated images. It is a multi-
modal collection (consisting of 125,828 documents and 237,434 images), and an
appropriate choice for testing the rich and diverse set of relations in our model.

Each image in this collection has metadata providing name, location, one
or more associated parent documents in up to three languages (English, Ger-
man and French), and textual image annotations (i.e. caption, description and
comment). We parsed the image metadata and created nodes for all parent doc-
uments, images and corresponding facets. We created different relation types:
the 8 relation between parent documents and images (as part of the document),
0 relation between information objects and their facets.

4.2 Adding Semantic links

We connect the ImageCLEF 2011 Wikipedia collection to DBPedia through the
equivalent pages in DBpedia for each wiki page in the collection. The Image-
Clef2011 Wikipedia collection uses the ImageCLEF 2010 Wikipedia collection,
which is based on the September 2009 Wikipedia dumps. Therefore we down-
loaded DBPedia version 3.4 which is based on Wiki dump September 2009.

Among all DBPedia RDF, we only consider those linking two existing docu-
ments in our collection. We add « relations between semantically related docu-
ments. The result is a more connected, large scale graph. This way, after visiting
a document, we follow its neighbours that may be images or other documents
connected through semantic links. For instance, document named Battle of Leyte
Gulf, contained 6 images as neighbours. After adding semantic links, this doc-
ument connects to 13 other documents in the collection (e.g. Pacific War and
World War II).

In total 55,544 links are added, which is considerable with respect to the
number of documents in the collection (125,828). These links are valuable in the
sense that they provide a more connected graph of objects.

4.3 Standard Text and Image Search

In the indexed search approach, as first phase of our hybrid search, we use
standard indexing results both for documents and images. The computed scores
in both modalities are normalized per topic between (0,1). Different indexings
based on different facets are:
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— Text tf.idf facet: We utilize default Lucene indexer, based on tf.idf, as text
facet. We refer the result set of this facet as R1.

— CEDD facet: For image facets, we selected the Color and Edge Directivity
Descriptor (CEDD) feature since it is considered the best method to extract
purely visual results [1]. We refer to the image results of this facet as R2.

— Image textual annotation tf.idf facet (Tags): We use metadata infor-
mation of the images (provided by the collection), as image textual facets
(Tags). Meta-data XML files of ImageCLEf 2011, includes textual informa-
tion (caption, comment and description) of images. Using Lucene we can
index them as separate fields, and search based on a multi-field indexing.
Tags search result make R3 result set.

In the second phase, starting from standard indexed results, we conduct the
graph search based on spreading activation to the number of t steps.

4.4 Evaluation Method

The aim of these experiments is to obtain an understanding of the collection of
how the relevant images are distributed in the graph. We conduct experiments
starting from different indexed facets (Text, CEDD, and Tags).

Through these investigations, we want to see how far and up to how much
recall we are able to reach in the graph. There are 50 topics in ImageCLEF 2011
Wikipedia collection. We conduct the traversal up to 50 steps for each of these
topics. In each step, we check if we visit new related images for that specific
topic. Different topics show different recall behaviour as we go further in the
graph. In order to interpret these behaviours, we partitioned the results based
on the topic categorization done by Tsikrika et .al [19]. They divide the topics
to four categories of easy (17 topics), medium (10 topics), hard (16 topics) and
very hard (7 topics). They show 10 topics in easy and hard categories in their
report which we use in this work.

5 Results and Discussion

In the first part of the experiments we provide an exploratory data analysis over
the collection. In the second part we show the effectiveness of our graph model,
leveraging different facets on the collection. In the last part, we perform the
same experiments on the semantic enhanced collection.

5.1 Relevant Objects Distribution

Figure 1 shows the distribution of relevant nodes in the collection as we start
from all three facets (R1,R2 and R3). The x axis is the number of steps we
traverse the graph, and y axis is the Id of the query topics we have. In each
step we count the number of new related images we visit. Existence of a shape
(circle/square/star/triangle) indicates visiting at least a true positive. The size
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of a shape is the ratio of number-of-related-seen-nodes-in-this-step /number-of-
total-related-ones for the specific query topic Id.

We observe the large number of large shapes, in the first steps. It indicates
visiting more related images initiating from different facet results.
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Fig. 1. Relevant node distribution for different categories of topics: easy, medium, hard
and very hard

Distribution Per Topic Categories. The distribution of relevant objects for
different categories of topics is shown by different shapes in Figure 1. We observe
that easy topics points (circles) are mostly at the very beginning steps. For hard
and very hard topics (squares and triangles) there are more distributed related
nodes as we continue the traversal. They show almost constant increase as we tra-
verse the graph. This observation demonstrates that the distribution of related
results for hard and very hard topics is in about 30 steps from the beginning.

5.2 Potential Recall

Here we observe the behaviour of potential recall leveraging different facets.

Different Facet Combinations. We performed the experiment for different
combination of facets: R1, R1-R2, R1-R3, and R1-R2-R3 (Figure 2). We observe
the changes in the recall values using each combination. The diagram demon-
strates that when adding more text (R1-R3) or more image features (R1-R2)
we are visiting different objects. In fact R1-R3 results are near to those of R1,
while R1-R2 obtains higher recall values, closer to those obtained when using all
features (R1-R2-R3). This highlights the importance of different, diverse repre-
sentations to the data in order to cover all aspects of the relevant objects. The
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Fig. 2. Average recall for different facets

addition of more textual features, as represented by the meta-data fields (Tags),
has produced a lower increase in recall than the addition of CEDD.

We investigate the effect of R1 and R1-R2-R3 facets individually on recall for
different categories of topics in next experiments.

Text Facet. In this experiment, we include only R1 results to start search in
the graph. Figure 3a shows the average recall for different categories. We observe
that easy topics meet 0.66 recall after 27 steps and keeps this value to the 50th
step. For medium topics is the same after 25th step with maximum value of 0.51.
Hard and very hard topics continue increasing the recall value until 30th step
and up to the values of 0.37 and 0.43 respectively. An interesting observation
is the behaviour of very hard topics after 3rd step which outpaces hard topics.
This demonstrates that as we go farther in the graph we cover higher percentage
of recall for very hard topics rather than hard topics. Although we used only
Text facet, with the graph modelled collection, we can reach these recall values.

Another observation is the increase rate of average recall in each category.
Easy topics show the increase rate of 37.5% (from 0.48 to 0.66), where it is
18.6% for medium topics (from 0.43 to 0.51), 131% for hard topics (from 0.16
to 0.37) and 258% for very hard topics (from 0.12 to 0.43). The values show
that hard and very hard topics benefit more than easy topics from the graph
structure. While easy and medium topics are apparently answerable by direct
query, it is in the hard and very hard topics that the graph model shows most
promise.

Further, we observe that recall is increasing up to 30th step and then goes
to a plateau for all categories. Two results are obtained from this observation:
first is that by conducting the traversal, we can expect increase in recall in the
graph to about 30 steps. Because we are still visiting related nodes as we go
farther every one or two steps. Second is that after the 30th step we are not
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visiting relevant images any more, and recall is still less than 0.7 even for easy
topics. This shows the disconnectivity of the graph. Our log files show no more
node after 40th step for all topics. Therefore, the probability of continuing the
traversal and seeing relevant node is zero.

All Facets. We use the R1, R2 and R3 results to start the propagation (Fig-
ure 3b). We observe the effect of multiple facets in the beginning steps (1st
to 5th) with higher recall values. In addition, the potential recall level can be
reached earlier with all facets. We have the same values between 5th and 15th
steps here, compared to 15th to 25th step with only Text facet. Further, the
average recall has increased to 0.5 for very hard topics (increase rate of 316%).

Still Limited View to the Collection. The ImageCLEF 2011 has 363,262
nodes. We counted the number of all seen nodes for different topics. We obtained
the average of 93,232 nodes seen starting from all three facets. This illustrates
our limited view to this particular collection, by traversing one fourth of the
collection size. In addition, the convergence of traversal performance at about
25th-30th step for all topic categories (despite of their different magnitude) is
another confirmation to this limited perspective. To tackle this challenge we
added semantic links to the collection towards more connectivity.

5.3 Potential Recall - Semantically Enhanced Collection

We perform the same experiments for the collection enhanced with semantic
links.

Text Facet. In this experiment, we conduct the test on the enhanced version
of the collection including semantic links. It is apparent that we obtain a more
connected graph and consequently expect higher recall. We show the reachabil-
ity result starting from Text facet in Figure 3c. We observe that recall in all
categories reaches a plateau in 11th step compared to the graph version without
semantic links which was 30 steps. Further, the diagram shows that all categories
have a shift in their final value of average recall in comparison to the collection
without semantic links: easy topics from %66 to %88, medium from %51 to %75,
hard from %37 to %64, and very hard from %43 to %73. In this experiment,
hard and very hard topics with 300% and 508%, outpaced other categories.

All Facets. By starting from R1,R2 and R3 results, we reach approximately
the same with R1 experiment for different categories (Figure 3d) after 11 steps.
The reason is that we have a highly connected graph, of which where to start to
search through does not differ after many steps. However, starting from different
facets, affects in the initiating steps (1st to 5th step) leading to steeper slope at
the beginning. It is considerable since in steps 6, 7 and 8, we are visiting about
30,000 new node in each step. Therefore, for few steps it is worth leveraging
different facets, even in highly connected collection.
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Fig. 3. 3a, 3b, 3c, and 3d show recall under different conditions. 3e and 3f show the
number of new nodes visited in each step of traversal.
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Number of Nodes Seen in Steps. Figure 3e shows the average number of
new seen nodes for all topics in each step. We observe that it starts to increase
after 11th step up to 30th step to the total size of 93,330 nodes (about 25% of
the collection size). The oscillation of the seen nodes in even steps is because of
seeing documents in even steps and seeing images in odd steps. The number of
images are more than twice of documents in the collection.

The same analysis on the collection containing semantic links demonstrates
that the number of nodes are mainly increasing in the first steps up to 11th
steps (Figure 3f), to the total size of 188,830 node (about 50% of the collection
size). This observation indicates lower number of steps needed to traverse the
reachable nodes with semantic links. Further, we touch half of the collection due
to more connected collection, leading to visiting more relevant nodes. However,
it challenges the precision. Since we visit new nodes in the scale of thousands
including few related nodes about 0,001 of the nodes.

6 Conclusion

We presented experiments on the reachability of relevant objects in a graph
modelled collection. We compared a graph model where data objects had a set
of facets based on their inherent features with a graph model where data objects
are additionally connected by semantic links. The results are summarized as
below:

— Adding semantic links boosts the potential recall, especially for hard and
very hard topic by 300% and 508%.

— Leveraging multiple facets, we saved at least 10 steps to reach the same
potential recall compared to using only one facet. Further it increased recall
for very hard topics by up to 258%.

— Leveraging semantic links, potential recall reached a plateau in 11 steps. This
saved at least 19 steps compared to the traversal without semantic links.

— We demonstrated the effect of different facets leading to visiting different parts
of the collection. This reinforces the importance of the poly-representation
idea to touch the relevant objects.

Our future work will focus on the following: 1) Learning the weight of different
facets through supervised learning methods. 2) Further exploring the semantic
relations between the ImageCLEF 2011 Wikipedia collection and DBPedia. For
example, traversing the graph starting from the collection and spreading through
DBPedia until returning to the collection, considering the effect of semantic
links. 3) Using concept extraction to create additional, more meaningful semantic
links between query topics and image textual annotations(caption, comment and
description of the image)
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Main Core Retention on Graph-of-Words
for Single-Document Keyword Extraction
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Abstract. In this paper, we apply the concept of k-core on the graph-
of-words representation of text for single-document keyword extraction,
retaining only the nodes from the main core as representative terms. This
approach takes better into account proximity between keywords and vari-
ability in the number of extracted keywords through the selection of more
cohesive subsets of nodes than with existing graph-based approaches solely
based on centrality. Experiments on two standard datasets show statis-
tically significant improvements in F1-score and AUC of precision/recall
curve compared to baseline results, in particular when weighting the edges
of the graph with the number of co-occurrences. To the best of our knowl-
edge, this is the first application of graph degeneracy to natural language
processing and information retrieval.

Keywords: single-document keyword extraction, graph representation
of text, weighted graph-of-words, k-core decomposition, degeneracy.

1 Introduction

Keywords have become ubiquitous in our everyday life, from looking up infor-
mation on the Web via a search engine bar to online ads matching the content
we are currently browsing. Researchers use them when they write a paper for
better indexing as well as when they consult or review one to get a gist of its
content before reading it. Traditionally, keywords have been manually chosen by
the authors but the explosion of the number of available textual contents made
the process too time-consuming and costly. Keyword extraction as an automated
process then naturally emerged as a research issue to satisfy that need.

A graph-of-words is a syntactic graph that encodes co-occurrences of terms
as opposed to the traditional bag-of-words and state-of-the-art approaches in
keyword extraction proposed to apply PageRank and HITS on it to extract its
most salient nodes. In our work, we capitalize on the k-core concept to propose a
novel approach that takes better into account proximity between keywords and
variability in the number of extracted keywords through the selection of more
cohesive subsets of vertices. The proposed approach presents some significant
advantages: (1) it is totally unsupervised as it does not need any training corpus;
(2) it is corpus-independent as it does not rely on any collection-wide statistics
such as IDF and thus can be applied on any text out of the box; (3) it scales to
any document length since the algorithm is linearithmic in the number of unique
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