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ABSTRACT 

Ramey and Ramey (1995) introduced a non-linear model relating volatility to growth.  The solution of 

this model by generalised computer algorithms for non-linear maximum likelihood estimation 

encounters the usual difficulties and is, at best, tedious.  We propose an algebraic solution for the 

model that provides fully efficient estimators and is elementary to implement as a standard ordinary 

least squares procedure.  This eliminates issues such as the ‘guesstimation’ of initial values and 

multiple runs.  Our approach also facilitates testing the validity of the Ramey and Ramey (1995) 

model.  We illustrate our approach by reanalysing the R&R data, demonstrating virtually identical 

results.                 

 

JEL: C51, E32, O40 
Keywords: Econometrics, Macroeconomics, Growth, Volatility      
                                          

                                                       

                                            I    INTRODUCTION 

 

Ramey and Ramey (1995) proposed and implemented a non-linear model to  
 
analyse the relationship between volatility and growth when utilising cross-country  
 
data.  The model is  
 
                    1 1 2 2 . .ij i i m mi i ijy a x x x eβ β β λσ= + + + + + + ,                       (1) 
 
with  assumed  , The dependent variable is growth rate of output per  ije ),0( 2

iN σ ijy
 
capita in country i in year j.  The m explanatory variables are constant over years  kix
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and differ only between countries,  Variances differ between countries and the non- 
 
linear nature of the model arises from assuming the standard deviation of growth  
 
occurs in the model for the mean as well as in that for the variance.  Ramey and  
 
Ramey had m = 4, However the many subsequent authors who have employed the  
 
model sometimes added other variables.  These authors include Van der Ploeg and 

Poelhekke (2007), Aizenman & Marion (1998), Barlevy (2002), and Akai et al 

(2007).  

           Ramey and Ramey and the other authors used econometric package software  
 
for maximising  likelihood functions from non-linear models to obtain the MLE  
 
estimates for the coefficients of model (1).  As with most non-linear maximisation,  
 
obtaining solutions identifiable with global optima can be very tedious, requiring  
 
experimentation with guesstimated  values, repetitive checking for local rather than  
 
global optima and constant adjustment of convergence criteria.  Greene, (2008,  

p.1061) who reviews the complications and difficulties, says it can require a 

“balanced mix of art and science”. Some authors, for  example, Kroft and Lloyd-Ellis 

(2002) choose to view model (1) as a special case of ARCH in the mean models, 

currently popular in financial econometrics1, and employ the corresponding package 

routines. However, these ARCH-M routines employ the same software, with the same 

difficulties, as described above2.   

Since model (1) is not terribly complicated as non-linear models go, it is worth 

looking for a semi-analytic solution to it and we will derive one that is simpler and 

computationally faster than general non-linear optimisation or ARCH-M.  So one 

                                                           
1ARCH-M is hardly a natural generalisation of model (1).  It also requires variation in standard 
deviation to identify a coefficient in the mean equation, but obtains that by presuming autoregressive 
evolution of in a time series, while model (1) uses cross-country variation in .   Developments 

of model (1) might consider factors affecting , but not analogously to Arch-M.  
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dimension of the “efficient” in our title refers to computational efficiency.  However, 

this is achieved without losing any of the asymptotically optimal properties attached 

to ML estimation, justifying the usual interpretation of “efficient” as attaining 

minimum (asymptotic) variance.  In addition we will show that our approach lends 

itself to easy assessment of the validity of model (1) itself. 

 
        The log likelihood function corresponding to model (1) is  
 

∑ ∑∑ −−−−
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where there are r countries and n years of data per country.  Note again that is kix
 
constant within country i.  So model (1) is nested within the family of models 
 
                                          ijiij ey += α .                                                   (3) 
 
 Model (1) makes the r country means iα equal 1 1 2 2 . .i i m mia x x x iβ β β λσ+ + + + + ,  
 
so depending on  parameters in addition to the 2+m iσ  parameters. An unrestricted  
 
model (3) would allow each country its mean and variance with a total of 2r  
 
parameters.      
    
 
                                            II.   THE UNRESTRICTED MODEL 
 
 
Model (3) is always ‘correct’ as a fit to the data, although it is over parameterised if   
 
(1) is the true model.  The ML estimators of iα  and  are, of course,  2

iσ
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respectively and the estimated log likelihood is then 
 

                   
2

~log
2

2log
2 1

2 rnnrn r

i
i −−− ∑
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σπ .                                           (4) 

 
                                                                                                                                                                      
2 Indeed, we failed to get a solution from the ARCH-M routine in our particular econometric package. 
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If (1) is the true model 2~
iσ ,while still a consistent estimator, may not be the efficient 

estimator obtainable under the model. But comparison of the two, remembering the 

variance of the difference between an efficient estimator and an inefficient one is the 

difference of the variances can provides a Hausman (1978) type test of the validity of 

model (1)  and we will return to this theme later.                              

 
                    III  ML ESTIMATORS OF THE NON-LINEAR MODEL 
 
 
Differentiating the log likelihood (2) with respect to a and equating to zero gives 
 

       0/)..( 2
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Similarly, differentiating with respect to kβ  gives m equations k=1, 2, .., m  
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While differentiating with respect to λ  gives 
 

      λ
σ

β
σ

β
σσ

r
xx

a
y

i

mi
m

i

i

ii

i +++= ∑∑∑∑ ..1 1
1                              (7) 

        
Now treating the iσ  just for the present as known parameters, equations (5), (6)  
 
and (7) are the same as the OLS equations that would result from regressing iiy σ/   
 
on ikix σ/  and the iσ/1  variable and including an intercept term3.  Furthermore, as  
 
taking second derivatives of (2) to obtain the Hessian matrix shows, the OLS variance  
 
formulae from such a regression match the asymptotic ML variances as given by  
 

                                                           
3 There are evident resemblances to the weighted regression procedure except that the 
constant is not suppressed.  
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where ),..,,(' 1 amββλθ = .   
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         Of course, the iσ are actually unknown parameters. If we possessed the ML  
 
estimates 2

iσ(  of  they could be inserted into  (5), (6) and (7) giving ML estimates  2
iσ

 
am
((((

 and ..,, 1 ββλ .  They could also be inserted into (8), but when the have to be  2
iσ

 
estimated the variance matrix of θ is no longer exactly (8) unless parameter  
 
orthogonality holds between θ  and the vector of variances, Σ  say.  If  
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then the variance matrix of θ  is [ ] 11' −− ΓΩΓ−Θ .  Differentiating (2) with respect 
to gives 2

iσ
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And differentiating this with respect to the elements of θ  and Σ  and taking  
 
expectations shows  
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and Ω  to be a diagonal matrix with terms  
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Then the variance matrix of  the estimates of θ  proves to be  
 

                                      )
2

1(
2

1 λ
+Θ−  .                                                       (11) 

 
So standard errors of coefficients from the OLS solutions ought to be multiplied by  
 

2/1 2λ+  , although it may make little difference.   
 
     We have estimators 2~

iσ of the nuisance parameters  and can insert these into 

(5), (6) and (7) giving estimates .  Are these efficient estimators, that 

is, asymptotically equivalent to 

2
iσ

am ˆ and ˆ..,ˆ,ˆ 1 ββλ

am
((((

 and ..,, 1 ββλ so that variance formula  (11) 

applies?   

Before demonstrating they are, it is worth showing that 2~
iσ is not an efficient 

estimator  
 
of under  model (1) and observing how dependent an efficient estimator is on the  2

iσ
 
exact truth of that model.  The estimator 2~

iσ  does extract all the information about  
 

2
iσ from within country i, but if (1) is true  

  
                         λββσ /)..( 11 mimiii xxay −+−−=+  
 
also estimates iσ  once estimates of ma ββ ..,, 1  are available. Asymptotically,  +

iσ
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 has variance and so  has variance  while )/( 22 λσ ni
2)( +

iσ )/(4 24 λσ ni
2~
iσ has variance  

 
ni /2 4σ .  Combining inversely by variances  
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is efficient.  Its variance is easily seen to be  
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which of course is the reciprocal of (10).  But unlike 2~

iσ the consistency of (12) is  
 
totally dependent on the truth of model (1). 
 
    Returning to whether the  are efficient estimators, the fact that  )'ˆ ,ˆ..,ˆ,ˆ(ˆ

1 amββλθ =
 

2~
iσ  is not efficient does not preclude  from being so.  Discussion of asymptotic  θ̂

 
properties clearly supposes the number of observations becoming large and we will  
 
presume that r and n increase in proportion.  This is convenient since is  )( s

p nO
 
then also , but it is probably the most sensible approach anyway.  Assuming n  )( s

p rO
 
increases much faster than r would imply that when r is large enough to apply  
 
asymptotic arguments 2~

iσ has become , 2
iσ θ is estimated accordingly and (8) is its  

 
variance. Assuming r increases much faster than n could perhaps invalidate  
 
assumptions underlying likelihood inference given that there are r of the  

parameters, so that the number of  nuisance parameters increases indefinitely

2
iσ

4.   

A standard result in asymptotic inference is that is an estimator which differs 

from the maximum likelihood estimator only by a term of where t is the )/1( tOp

                                                           
4 The  Neyman and Scott (1948) example of inconsistent estimation arose in such a situation. 
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sample size has the same asymptotic properties and is efficient.  However, the 

parameter vector θ is estimated only from the r cross country values of iy and the 

explanatory variables.  

So we need to show that the coefficients obtained by regression of iiy σ~/ on the  
 

ikix σ~/  and iσ~/1  will differ from the coefficients obtained by regression of iiy σ(/ on   
 

ikix σ(/  and 1/ iσ%  only by terms of .  Of course the actual variances of  )/1( rOp

 
coefficient are also inversely proportional to n through the variance of iy . 
 
      Equating (9) to zero and substituting ML estimates of  parameters gives 
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and since iy and 2~
iσ are independent iwΣ is also )1(pO 5.  The term on the left hand 

side of (14) and the first on the right hand side are .  Similarly we can show )(rO p
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5 Because each )..( 11 imimii xxay λσββ ++++− has mean zero, their sum over 

countries is not )/( nrOp but )1()/( pp OnrO =  and since an ML estimator 
minus true value is the sum over countries is . )/1( rOp )1(pO
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while the covariance of iy and an ML estimator is .  The same result follows 

for the left hand sides of (6) and (7).  So the equations (5), (6) and (7) with 
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In which all terms are ,giving an vector, and the vector of terms by 

the same inverse giving an  vector.  So the coefficients obtained using 

)(rO p )1(pO )1(pO

)/1( rOp iσ~  

rather than iσ( differ only by terms of  and are asymptotically equivalent.   )/1( rOp

                     IV  The Ramey and Ramey 1995 data analysis 

Ramey and Ramey (1995) are interested in developing the hypothesis that growth is 

negatively related to volatility.  The explanatory variables included in their analysis 

are the average investment fraction of GDP, initial log GDP per capita, initial human 

capital and the average growth rate of  population.  They use a panel structure and 

measure volatility as the standard deviation of the residuals in the growth regression 

to find a negative relationship between volatility and growth.  Ramey and Ramey 
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(1995) use a sample of ninety-two countries from 1960-19856.  The results of the 

Ramey and Ramey (1995) analysis is presented below alongside the results of the 

Byrne and Coniffe (2009) analysis7.  Using maximum likelihood, they find a 

significant, negative effect of volatility on growth for the ninety-two country sample.  

.   

Table 1 
Results of Ramey and Ramey (1995) analysis and Byrne and Coniffe (2009) 

Analysis 
Independent variable Ramey and Ramey 

92-country sample 
(2,208 observations) 

Byrne and Coniffe 
92-country sample 

(2,208 observations) 
Constant 0.077 

(3.72) 
0.076 
(3.18) 

Volatility (σ) -0.211 
(-2.61) 

-0.217 
(-2.21) 

Average investment share 
of GDP 

0.127 
(7.63) 

0.124 
(5.98) 

Average population 
growth rate 

-0.058 
(-0.38) 

-0.062 
(-0.32) 

Initial human capital 0.0008 
(1.18) 

0.0009 
(1.17) 

Initial per capita GDP -0.0088 
(-3.61) 

-0.0093 
(-3.10) 

Numbers in parentheses are t statistics. 

It is clear from the results that the estimates of coefficients are effectively identical, as 

are the standard errors. 

 

 

 

There have been differing opinions among economists on whether volatility is 

harmful or beneficial to growth although it is now generally accepted that volatility 

has a negative effect (Aghion and Banerjee (2005), Pritchett (2000), Jerzmanowski 

                                                           
6 Ramey and Ramey also analysed a sub-sample of OECD countries. 
7 Our computations were carried out using the Shazam package.  The program is available from the 
authors. 
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(2005)).  Since the introduction of the Ramey and Ramey (1995) analysis, many 

subsequent authors have used and adapted the model to further analyse the link 

between growth and volatility.  Barlevy (2004) follows the R&R model but adds the 

standard deviation of the log of  the investment output ratio as an explanatory variable 

in an attempt to capture the non-linearities of the investment function while Van der 

Ploeg & Poelhekke (2009) use the R&R framework to examine the natural resource 

curse.  The R&R methodogoly is also followed by Akai et al (2007) to examine the 

impact of fiscal decentralisation on the fifty US states.  Kroft & Llyod-Ellis (2002) 

adapt the R&R framework by decomposing volatility into two components; within 

regime volatility and between regime volatility.  Using this methodology, they find 

that the source of volatility matters.  Examining developing countries, Aizenman & 

Marion (1998) use the R&R method and find a significant negative relationship 

between innovation volatility and private investment in developing countries.   

 

                                V     Concluding remarks 

   Having estimated the θ  parameters using 2~
iσ  for  it would be easy to calculate  2

iσ
 
(12) and  repeat the estimation process with (12) replacing in (5), (6) and (7).  But  2

iσ
 
it hardly seems worthwhile in view of the efficiency of .  Not only have they equal  θ̂
 
asymptotic variances, but the variance of the difference between two efficient  
 
estimators is of second order.  So with large samples the actual estimates will be very  
 
close as the analysis of Ramey and Ramey in section IV showed. 
 
Also, should model (1) be at all inaccurate (12), unlike 2~

iσ , is not a consistent  
 
estimator, so the iteration could make matters worse.  Indeed, observed differences  
 
between (12) and 2~

iσ  can be used to test the validity of model (1) through a Hausman  
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type test. The difference is 
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is asymptotically  if model (1) is correct.   2

rχ
 
   No model is ever exactly the correct one and alternatives to model one are certainly 

conceivable.  However, it is not our purpose in this paper to test or criticise the 

Ramey and Ramey model.  We have developed an algebraic approach to estimation of 

the model that  provides efficient estimators and is far less computationally 

demanding than econometric package algorithms for maximising  likelihood functions 

from non-linear models.   

 
      
                                                          References 
 
Aghion, Philippe and Banerjee, Abhijit (2005), “Volatility and Growth”. Oxford 

University Press. 

Aizenman, Joshua and Marion, Nancy (2000). “Volatility and the Investment 

Response”, NBER Working Paper No. W5841.  Available at 

SSRN:http//ssrn.com/abstract =225627. 

Akai, Nobuo, Hosoi, Masayo and Nishimura, Yukihiro (2009) “Fiscal 

Decentralization and Economic Volatility: Evidence from State-Level-Cross-Section 

Data of the USA”, Japenese Economic Review, Volume 60, Issue 2, pp. 223-225.  



 14

Barlevy, Gadi (2004).  “The Cost of Business Cycle Under Endogenous Growth”.  

American Economic Review, 94, (4), 964-990. 

Greene, William H. (2008): Econometric Analysis 6th Edition, Pearson, New Jersey. 
 
Hausman, Jerry A. (1978) ‘Specification tests in econometrics’, Econometrica  
    46, 1251-1271. 
 Jerzmanowski, Michal (2006). “Empirics of Hills, Plateaus, Mountains and Plains: A 

Markov-Switching Approach to Growth”.  Journal of Development Economics, 

Volume 81, Issue 2, pp. 357-385. 

Kroft, Kory and Lloyd Ellis, Huw (2002). “Further Evidence on the link between 

Growth, Volatility, and Business Cycles”, Queens University Working Paper. 

Neyman, Jerzy and Elizabeth Scott (1948) Consistent estimates based on partially 
consistent  
   Observations Econometrica 16 375-389 
Pritchett, Lant (2000), “Understanding Patterns of Economic Growth: Searching for 

Hills among Plateaus, Mountains, and Plains”, World Bank Economic review, Volume 

14(2), pp 221-250. 

Ramey Gary and Valerie Ramey (1995) ‘Cross-country evidence on the link between  

   volatility and growth’ The American Economic Review 85, 1138-1151. 

 
SHAZAM User’s Reference Manual Version 9.0, Northwest Econometrics, 2001. 

ISBN 0-9687709-0-8. 

Van Der Ploeg , Frederick and Poelhekke, Steven (2009).  “Volatility and the Natural 

Resource Curse”, Oxford Economic Papers Advance Access. 

 

 

                           
 
 
                    
 
 
 



 15

 
                                           
 
 
 
  
 
 


	August 2009 
	                                V     Concluding remarks 

