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Abstract—Maximum Likelihood (ML) decoding of forward
error correction codes is known to be optimally accurate, but
is not used in practice as it proves too challenging to efficiently
implement. Here we propose a development of a previously
described hard detection ML decoder called Guessing Random
Additive Noise Decoding (GRAND). We introduce Soft GRAND
(SGRAND), a ML decoder that fully avails of soft detection
information and is suitable for use with any arbitrary high-rate,
short-length block code. We assess SGRAND’s performance on
Cyclic Redundancy Check (CRC)-aided Polar (CA-Polar) codes,
which will be used for all control channel communication in
5G New Radio (NR), comparing its accuracy with CRC-Aided
Successive Cancellation List decoding (CA-SCL), a state-of-the-
art soft-information decoder specific to CA-Polar codes.

Index Terms—ML decoding, GRAND, 5G NR, CA-Polar

1. INTRODUCTION

Since the work of Shannon [1], Maximum likelihood (ML)
decoders have been sought. However, it was established in
the 1970s that ML decoding of arbitrary linear codes is an
NP-complete problem [2]. Consequently, either codes are co-
designed and developed with a specific decoder [3], [4], that is
often an approximation of a ML decoder [5], [6], or practical
universal decoding algorithms are designed to approximate a
ML decoder [7].

An exception to this paradigm is the recently introduced
Guessing Random Additive Noise Decoding (GRAND) [8].
In the hard detection setting with additive noise, GRAND has
been formally proven to be a ML decoder that works with
any block code construction. GRAND attempts to identify the
noise that corrupted the code word, rather than directly de-
termining the transmitted code word itself. A computationally
more efficient variant of GRAND is GRAND with ABandon-
ment (GRANDAB), which either finds a ML code word or
reports a failure after a pre-determined computational cut-off.
A failure report from GRANDAB is equivalent to reporting a
channel erasure, which is preferable as erasures require less
overhead when corrected by an outer code. Both GRAND
and GRANDAB have been mathematically established to be
capacity achieving when used with random codes [9].

Incorporating soft information into GRAND and
GRANDAB decoding would improve accuracy, but it is
unclear how to fully do so. An initial attempt that uses one
bit of quantized soft information per channel use, which
is similar in spirit to how soft information is generated
for use with Chase decoding [10], has been proposed [11].
That results in improved accuracy and reduced decoding
complexity, but falls short on fully making use of soft
information.
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Fig. 1: SGRANDAB and CA-SCL BLER comparison for a
[128,105] CA-Polar code. CA-SCL takes list size, L, as an
argument. While Matlab defaults to L = 8, better BLER
performance is seen for higher values and so results for I = 32
are presented. Also shown is SGRANDAB’s erasure rate with
abandonment threshold of b = 10% code book queries.

In this paper we introduce an advanced variant of GRAND
called Soft GRAND (SGRAND) that fully utilizes real-valued
channel outputs. We prove that SGRAND is a ML decoder
for arbitrary additive memoryless channels, and benchmark
its performance by comparison with the state-of-the-art soft
detection decoder of 5G New Radio (NR) Cyclic Redundancy
Check (CRC)-Aided Polar (CA-Polar) codes, CRC-Aided Suc-
cessive Cancellation List decoding (CA-SCL) [12], [13], as
implemented in the Matlab 5G toolbox. Fig. 1 provides a rep-
resentative performance evaluation for a [128,105] CA-Polar
code where it can be seen that SGRAND with ABandonment
(SGRANDAB) obtains better Block Error Rate (BLER), which
includes both erroneous decodings and erasures, than CA-
SCL. The gap between the two curves at a BLER of 1073
is ~ 0.5 dB.

The paper is structured as follows. In Section II we discuss
the communication model and review relevant background. In
Section III we present SGRAND. In Section IV we explain
how the simulation was conducted and show additional results.
We conclude the paper and discuss future work in Section V.

II. MODEL AND BACKGROUND
A. Definitions and Notation

Let z, ¥, X, X denote a scalar, vector, matrix, and a random
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vector respectively. All vectors are row vectors, and z; denotes
the i-th element of Z. A linear block code is characterized by
a code-length, n, and code-dimension, k, [n,k]. F, denotes
a Galois field with ¢ elements. Composition of functions is

denoted by o, i.e. fog(z)=f(g(x)).

B. System model

We consider the standard binary communication setting
where an information word @ € F% is encoded with an
error correcting code o : F5 — T3 into a code word
¢ € Fy. The code book is the set of all code words C =
{¢:@=a(@),u cF5}. For communication on an analog
medium, each set of m bits is modulated into a channel input
Zecn/m, using a modulation function F5 — C™/™ that is
in turn sent over a noisy channel, where, for convenience, we
assume that m divides n. The channel output is denoted by
Y = & + Z ecv ™ where 7 is random additive noise.
A soft decoder is a function C*/™ — C that outputs an
estimate of ¢ from 7. A soft detection ML decoder outputs
argmax p (¥ | ), where p(y|¢) is the likelihood of ¥

cec

assuming ¢ was transmitted [5, Chapter 1.4].

Each channel output governs the a posteriori probabilities
of m demodulated bits, which, as a result of interleaving, are
not necessarily sequential. As noise is assumed to impact each
transmitted symbol independently, the a posteriori probability
of each demodulated bit’s value depends on a single channel
output. We denote the index of the channel output that
determines the a posteriori probability of the i-th bit by ~ (7).

A demodulator is a function § : C"/™ — F% that returns the
most likely modulated version of the channel output, returning
0 (§) = arg max p (¥ | ). A hard decoder is a function F} —

weFY

2
C that receives 0 () € F3 and returns a code word.

C. GRAND

GRAND is a hard decoder that identifies the most likely
noise sequence, 2 € F5 as GRAND is a hard decoder, rather
than the most likely code word ¢. It was shown in [8], [9]
that these two problems are equivalent for not-necessarily-
memoryless discrete additive channels with uniformly likely
input. Identification is achieved by inverting, in order from
most likely to least likely based on a probabilistic noise model,
the effect of each putative noise sequence from the hard
demodulated sequence and querying whether what remains,
6 () — 7, is in the code book. GRAND only stops at the first
instance where the response is affirmative, while GRANDAB
additionally halts and reports an erasure if too many code book
queries have been made.

Linear codes are the most common forward error correction
codes [5], [6]. Testing for code book membership in a linear
code book is equivalent to determining if the syndrome of
0 () — 7 is the zero vector, that is if H - (6 (7) — 2)" = 07,
where H is a parity check matrix of the code [5], [6].
Pseudocode for GRANDAB and linear codes is given in
Algorithm 1.

Algorithm 1: GRANDAB for a linear code

Input: 0 (y), H,b
Output: C,

> b is max #queries, GRAND: b = oo

1. g0 > g counts queries performed
2: while ¢ < b do

3: Z < next most likely noise putative sequence

4: g—g+1

5: it H-(0(7)—2)" =0 then > Fy operations
6: G —0(y)— 72 > ML code word found
7: return

8: end if

9: end while
10: Cy +—L > Code word not found in b queries; erasure
11: return

Note that Algorithm 1 does not specify how to perform the
choice of the next putative noise sequence to be considered
in line 3. For a Binary Symmetric Channel (BSC), that
amounts to generating all sequences of Hamming weight 0,
followed by all sequences of Hamming weight 1 and so on,
which is a well-studied problem for which efficient recursive
algorithms are known [14], [15]. Modelling a well-interleaved
communication system, in this paper we establish how to
perform GRAND with per-bit soft information for an arbitrary
binary memoryless channel.

ITII. SGRAND

We capture the rank-ordering of demodulated symbols by
their reliability via an Ordered Error Indices (OEI) vec-
tor i = (iy,...,i,), which satisfies p (9 (&), \yw(ij)) <
p (0D, | Yyiy) for j < I, where 6 (7) is the most likely
demodulated version of ¢/, and the OEI vector depends on ¥,
the modulation and the channel statistics, but this dependency
is suppressed for notational simplicity. We assume that a priori
demodulated probabilities are equal, corresponding to uniform
input. The OEI vector is almost surely unique for a continuous
memoryless noise distribution.

Pseudocode for SGRANDAB is given in Algorithm 2,
which is most readily understood by the example that follows.
Suppose n = 3,m = 1, and the channel output realizations
satisfy: p (0(7), | y51)) = 0.6, p(0(Ds | yy2)) = 0.8,
p(0 D)5y, 3)) = 0.9, and the probability density function
values are p éyv(l)) = 0.5, p (yy(2)) = L p (yy(3)) = 4. The
unique OEI vector is (1,2,3). For the sake of the example,
we assume that H - (6 () —&)" = 07 is satisfied only at
the last query, identifying an element of the code book. The
workings of Algorithm 2 for this setting are given in Table L.
We have the following theorem on correctness and progress
for SGRAND.

A. Main Theorem

Theorem III.1. For an additive memoryless channel, Algo-
rithm 2 satisfies the following properties:
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Algorithm 2: SGRANDAB for a linear code

Input: i, H,b
Output: ¢,

> b is max #queries, SGRAND: b = oo

1. g« 0

2 S« {5}

3. i + OEI vector

4. while ¢ < b do

5: €< argmax p (¥ | 0 (¢) — 0)
TeS

6: S=8\{¢e}

7 g+—g+1

8 i H-(0(7f)—&" =07 then

9 e > ML code word found

> g counts queries performed
> S contains candidate error vectors

> Based on ¢/

: G —0()) —é
10: return

11: else > Update S for the next query
12: if €= 0 then
13: 7« <0
14: else
15: j*emax{j:eij#()} > j. >0
16: end if
17: if j, < n then
18: Ci(j.+1) < 1
19: S=8Su{e}
20: if j. > 0 then
21: €i;, < 0
22: S=8Su{e}
23: end if
24: end if
25: end if
26: end while
27: Cyp +—L > Code word not found in b queries; erasure
28: return
g € P Jx S
1| (0,0,0) || 0432 || 0 {(1,0,0)}
2 (1,0,0) 0.288 1 {(1,1,0),(0,1,0)}
3 || (0,1,0) || 0.108 || 2 {(1,1,0), (0,1,1), (0,0, 1)}
4 [ (1,1,0) [oom2 ] 2 | {(1,1),(0,0,1),(1,1,1),(1,0,1)}
5 || (0,0,1) || 0.048 || 3 {(0,1,1),(1,1,1), (1,0,1)}
6 || (1,0,1) || 0.032 || 3 {0,1,1), (1,1, 1)}
7 | (0,1,1) || 0.012 || 3 {1, 1,1}
8| (1,1,1) || 0.008 || 3 4

TABLE I: An example of the execution of Algorithm 2.
Column ¢ gives the last queried noise sequence. Column S is
the state of the set after each query has been made, at the end
of the while loop when all new putative error sequences have
been added. The column marked p reports p (¢ | 6 (3) — €).

1) Correctness: Error vectors are queried in non-
increasing order of likelihood, therefore a returned code
word is a ML code word.

2) Progress: Each error vector is queried at most once.

Proof. For an OEI vector i we define the parent of & £ 0,

denoted by  (€), as the following vector:

0, if j = j.,
(m(@), =4 1, ifj=j.—1
€i;s otherwise

where j, is defined as in Algorithm 2 and 7 (6) is not defined.

We say that € is a child of 7 (€). While a parent is unique,
most, but not all, vectors have two children. The only vectors
that do not have two children are: 6, which has a unique child,
the vector has 1 in e;, and zero elsewhere; and those where
7« = mn, which have no children. For instance, for an OEI
vector 7 = (1,2,3), (1,1,0) = 7 ((1,1,1)) = 7 ((1,0,1)). To
establish the theorem, first we prove the following lemma.

Lemma IIL2. The following are true for all € # 0 and an
arbitrary memoryless channel:

D (@) #e

2) p(10@H) —&)<p|0(H) —m(e)

3) mo...omw(€) =0 after j. compositions.

Proof. Let € # 6 i be an OEI vector, and j, (with respect to
€) be defined as in Algorithm 2.
1) For any such €, (€), =1,(w(€));, =0,s0¢&#m(€).

2) Let g;(x) P (yv(ij) 0@, — r) q(7) =
H;-I:l qj (J:ZJ) The existence of j such that j : g; (eiJ) =0
completes the proof. Otherwise assume ¢ (€) > 0. If j, =1
or e, , = 1 then q(€) = q;. (1)[[;, @ (ei,), and
q(m(€)) = g5, (0) 1,5, 4 (ei, ). which completes the proof,
asVj : g; (1) < g; (0). Otherwise assume that j, > 1,e;, 1 =
0. Then ¢(€) = gj.-1(0)qj. (1)1, 1 a5 (ei;), and
¢ (@) = a.1(1) - 5. (0) - TL,... @ (er,). Note that
q(m(€)/q(@) = gj.-1(1)g5. (0)/(gj.-1(0)g;. (1)) = 1
which completes the proof as j, comes from an OEI vector.
3) Let @ # 0, j. = max {j tei F 0}. By definition of 7 (€),
we get j. — 1 = maxqj: (7 (€));; # 0}. By iterating this
argument j, times, we get the zero vector. O

Note that after each query Algorithm 2 adds to S all the
children of the queried noise sequence €, after removing € from
S. We return to the proof Theorem III.1 using Lemma III.2.
Observe that in order to prove Property 2, it is sufficient to
prove that an error vector is added to S at most once.

We prove properties 1 and 2 by induction on the number of
queries g, evaluated at the end of the while loop. The case of
g = 1 follows immediately as S is initialized to contain only
& = 0, which is the most likely error. Then the newly added
vector is the unique child of 0, which is not 0, so Property 2 is
satisfied. We now assume that the properties are satisfied after
g’ queries, and establish that they are satisfied after ¢’ + 1
queries. For Property 2 suppose by contradiction that after
g’ + 1 queries, a vector ¥, that was previously added to S,
is added to S. A vector is added to S only when its parent
is queried, so U # 6 as 0 has no parent. We conclude that
at the ¢’ + 1 query, the unique parent € = 7 (¥) is queried,
which means that € has been added more than once within ¢’
queries, which contradicts the induction assumption.
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For Property 1 suppose by contradiction that it is not
satisfied, and the next most likely error vector v ¢ S
that has not been queried before is more likely than ¢, i.e.
p(y|0(y)—¢é) < p(y]|0(y)—v), and therefore ¥ should
have been queried at query number g’ + 1. We know that
7 # 0, as 0 is always the first queried error. (¥) € S cannot
hold, as 7 (¥) is at least as likely as ¥ due to Lemma III.2,
which would contradict p (¥ | 6 (y) —¢€) < p(y] 0 (y) — v).
Furthermore, if 7 (7) € S ever held, then ¢ would be
added to S, which contradicts the assumption that it was
never added to S. Since 7 (¥) ¢ S, and has never been,
it means that 7 (%) has not been previously queried. If
p(y|0(y)—7) < py]0(Y)—m(¥)), we contradict the
assumption that ¢’ should have been the next query. Other-
wise, assume p (¢ | 6 () — 0) = p (¢ | 0 () — 7 (¥)) and both
¥, 7 (¥) have not been previously queried. By repeating this
argument j, times, we get that 0 has not been queried (see
Lemma II1.2), which contradicts the fact that it is always the
first query of the algorithm. O

B. Complexity considerations

After each iteration of the algorithm, one vector is removed
from &, and at most two are added to it. Therefore S grows by
at most one after each query, so after g queries it contains at
most g + 1 elements. One efficient way of implementing S is
via a Max-Heap [16]. At each iteration Algorithm 2 performs
the following: extracts the most likely error vector of S,
performs matrix multiplication, and adds at most two elements
to S. The complexity of the matrix multiplication, denoted
f (n, k), differs across implementations, e.g. [17], [18]. Hence
the complexity of the algorithm after g queries, when S is
implemented with a Max-Heap, is O (g - f (n, k) -logg). As
a result, the worst-case complexity of SGRANDAB with an
abandonment threshold of b (as defined in Algorithm 2) is
O(- f(n,k)-logb). This is a worst-case analysis, and in
practice SGRANDAB often finds a code word much earlier
before reaching the abandonment threshold, as can be seen
in the simulated results. We also note that the algorithm can
be readily parallelized, reducing its time complexity. One
mechanism to do so would be to check membership of the
code book using different vectors in S concurrently, while
keeping track of each error vector’s respective likelihood.

C. SGRAND, no intra-symbol interleaving

In almost all communication systems, and at many layers,
bits are interleaved so that correlations in noise that cor-
rupts adjacent bits does not result in correlation at the level
of information bits. Interleaving is often performed on bits
within the same modulated symbol, as well as across bits
from different modulated symbols. While most decoders are
designed under assumptions of substantial interleaving, we
show how SGRAND can be altered to operate when bits within
a modulated symbol are not assumed to be independently
impacted by noise. These bits are treated as a symbol in F,
so that a demodulated symbol is a element of F,,q = 2™
and, with a mild abuse of notation, we say that a demodulated

vector is 0 () € Fi2/™, the most likely demodulated version
of if over F3/™.

In the proof of Theorem III.1 we argued that at each iteration
Algorithm 2 removes the queried error sequence € from S,
performs code book membership test, and adds all the children
of € to §. The proof relies on error sequences satisfying
Lemma III.2, and not on the specific definition of parents and
children. As a result, any definition of parents and children
that satisfies Lemma III.2 would result in an algorithm that
satisfies Theorem III.1.

For the i-th demodulated symbol, we define the ordered
symbol indices (OSI) vector 5° € ]Fg as a vector that sat-
isfies the following: 1) s{ = 0(9);, 2) p (4 | s5) >
P (Yy) | sj) = for j < I, 3) § contains each element of
I, once. An OSI vector depends on ¢/, the modulation and the
statistics of the channel, but this dependency is made implicit
for simplicity. We assume that a priori demodulated distribu-
tion is uniform over F,. An OSI vector of the i-th symbol
is a vector that rank orders all possible demodulated symbols
from most likely to least likely. For the i-th symbol we define
o (sz) = 53»_1, and ¢ (511) is not defined. For example, in the
binary case for every bit we have s} = 0 (9),,s5 = 1 -0 (¢),,
¢ (1 —0(y),;) =0 (Y),, where the subtraction is in Fy.

Lete e ]FZ/ "™ be a non-zero error vector, i be an OEI vector,
J« be defined as in Algorithm 2, and 57 be an OSI of the ij,-
th symbol. In this scenario we define the parent of €, denoted
by 7 (€), as the following vector:

(7 (€));, = { JCHE

€ijs

while maintaining the same notation of € being a child of 7 (€).
Note that by using this definition, each error has at most n/m
children. For example, when n/m = 4,¢q = 4, and assuming
the OSI vector of each symbol is (0,1, «, (), for an OEI
vector i = (1,2,3,4), we have (1,0,0,0) = 7 ((«, 0,0,0)) =
7 ((1,1,0,0)) = 7 ((1,0,1,0)) = 7 ((1,0,0,1)). Lemma IIL.2
still holds, with the exception of Property 3 requiring at most
(¢ — 1) j« compositions. The proof is similar to the proof given
in III-A, and is not given to avoid duplicity. Notice that if we
try to define a parent in a similar fashion to the definition of
the previous case, i.e. try to change the value of the (i;, _1)-th
symbol, we may violate Property 2 of Lemma II1.2.

SGRANDAB can be implemented using the new definition
of a parent and children, where at each iteration the algorithm
adds to S all the children of the queried error sequence.
Theorem III.1 holds in this case, and the proof is similar
to the original proof, since Lemma III.2 holds. For similar
reasons as before, the worst-case complexity in this scenario
is O(b- f(n,k)log(bn/m)), as at each iteration at most
n/m elements added S, while one is removed from S. Thus,
unlike most decoding algorithms, SGRAND can be adapted to
manage the joint corruption of bits within a symbol by noise.

if j = ju,
otherwise

IV. PERFORMANCE EVALUATION

Polar codes were the first provably capacity-achieving non-
random code construction [19], [20]. While they hold promise
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for reliable communication, poor BLER results were reported
based on their initial decoders [12], [13], [21]. Consequently,
for all 5G NR control channel communications, CRC is first
appended and the whole result Polar coded, resulting in CA-
Polar codes.

Existing competitive decoding algorithms use this concate-
nated structure by first generating a list of possible candidates
from the Polar code, and then selecting the best candidate that
satisfies the CRC. When combined with soft information, the
resulting CA-SCL decoders have shown considerable improve-
ment in BLER performance [12], [13], [22], [23]. As a state-
of-the-art implementation of the CA-SCL decoding technique
is available in Matlab’s 5G toolbox version R2019a [24], we
compared SGRANDAB’s BLER performance in that environ-
ment, relying mostly on Matlab’s own code, see Fig. 2.

Note that considered as a single code, CA-Polar codes are
themselves linear. They are first encoded with a CRC, inter-
leaved if Downlink, and then encoded with a Polar code. All
these operations are linear, hence the encoded message is the
result of a linear encoding, ¢ = 4 Gore Mint G polar Where
Geres Gpolar are the generator matrices of the CRC code
and the Polar code respectively, and M, is the interleaving
matrix, which is the identity for Uplink communications. Thus
from SGRANDAB’s point of view, this is a single linear code
and Algorithm 2 can be used for its direct decoding of the
concatenated code.

We compared SGRANDAB’s performance with Matlab’s
CA-SCL decoder. While Matlab’s default list size for CA-
SCL is L = 8 [24], also suggested in [25], [26], which is often
considered the baseline for 5G performance evaluations [27],
at the cost of increased decoding times, we observed enhanced
BLER performance with larger list sizes and so report results
with L = 32, as done for example in [12], [22], [28], [29].
The simulation was conducted on AWGN channel where
Gaussian noise with 0 mean and spectral density o2 = N /2 is
added independently to each modulated symbol. Here Signal to
Noise Ratio (SNR) is defined as SNR = —10log;, (0%) [dB],
and E,/Ny = SNR — 10log;, (k/n) — 10log;, (m) [dB],
though we note that in Matlab’s demo E,/Ny; = SNR —
10log, ((k + crcen)/n) — 10log;, (m), where crcje, is the
number of CRC bits, corresponding to the Polar code alone!.

Setting an abandonment threshold of b = 10° queries for
SGRANDAB, whereupon an erasure is reported, a BLER
comparison for the [128,105] Uplink code, subject to Binary
Phase Shift Keying (BPSK) modulation, is given in Fig. 1.
With the same abandonment threshold as well as with b = 10°,
an equivalent result for the [64,46] Uplink code, subject to
Quadrature Phase Shift Keying (QPSK) modulation, is shown
in Fig. 4a. For the longer code, SGRANDAB outperforms CA-
SCL by ~ 0.5[dB], and for the shorter code by ~ 1[dB],
indicating that further performance is available from these
codes. In Fig. 4a, for SGRANDAB with b = 105, errors
are not dominated by erasures, so the BLER curve is a good

'Matlab’s technical support indicates this is to be consistent with 3GPP
practice.

—u> Encoder ‘ Rate Mod x
Match i
Polar channel
—
Decoder Rate LLR Soft
Recover Demod. ¥
+— SGRANDAB

Fig. 2: Simulation overview. Blocks containing red text are
used as implemented in Matlab’s 5G toolbox.
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Fig. 3: Number of code book queries untii SGRANDAB
termination.

approximation of an unconstrained ML decoder’s BLER curve.
We see in that case that b = 10° and b = 10° have similar
BLER curves, indicating that increasing b from 10° to 10° has
little effect on BLER in this scenario.

As a proxy for computational complexity, Fig. 3 and Fig. 4b
report box plots for the number queries performed until a
decoding is found. In all cases, this is significantly lower than
the threshold b, which directly affects the complexity of the
decoder, as discussed in III-B. In particular, SGRANDAB'’s
complexity gets better as the SNR improves. For comparison,
a naive universal ML decoder that computes the likelihood of
each of the 2* possible code words would require ~ 103, and
~ 103! likelihood calculations for the [64,46] and [128,105]
codes, respectively. We also observe that in an AWGN channel,
assuming bits are well-interleaved and each bit is indepen-
dently impacted by a white Gaussian noise, the querying order
does not depend on the SNR. The reason for that is that SNR
affects the noise’s variance, that would result in multiplying
the log likelihood ratio of each bit by the same constant,
which does not affect the querying order. In other words,
assuming an AWGN channel corrupts transmitted code words,
SGRANDAB does not require knowledge of the SNR in order
to determine the querying order.

V. CONCLUSION AND DISCUSSION

In this paper we introduced SGRAND, a new soft detection
ML decoder that is suitable for use with any short-length high-
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[64,46] CA-Polar, QPSK
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(a) Block Error Rate.

[64,46] CA-Polar, b=10° guesses, QPSK
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Fig. 4: Block Error Rate (BLER) comparison of Soft Guess-
ing Random Additive Noise Decoder with Abandonment
(SGRANDAB) and Matlab’s implementation of [12], [13] in
an Additive White Gaussian Noise channel subject to QPSK
modulation. b is the abandonment threshold, as defined in
Algorithm 2. For further details, see Section IV.

rate block code. For well interleaved channels, we formally
proved that when SGRAND returns a code word, it is a ML
code word and hence no other decoder can be more accurate.
We investigated its performance on 5G NR CA-Polar codes,
which will be used for control channel communications in 5G
NR, and compared its performance with a state-of-the-art soft
CA-SCL decoder, establishing that an extra 0.5 — 1 [dB] gain
is possible through SGRANDAB'’s use.

While we have introduced SGRAND for memoryless chan-
nels, further generalisations of the approach are possible, but
are not included here due to space constraints. One variant
of SGRAND that can readily be developed is for use with a
Markovian channel model, assuming the state of the channel
is known.
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