
Anytime Whole-Body Planning/Replanning for Humanoid Robots

Paolo Ferrari1, Marco Cognetti2, Giuseppe Oriolo1

Abstract— In this paper we propose an anytime plan-
ning/replanning algorithm aimed at generating motions al-
lowing a humanoid to fulfill an assigned task that implicitly
requires stepping. The algorithm interleaves planning and
execution intervals: a previously planned whole-body motion
is executed while simultaneously planning a new solution for
the subsequent execution interval. At each planning interval, a
specifically designed randomized local planner builds a tree in
configuration-time space by concatenating successions of CoM
movement primitives. Such a planner works in two stages. A
first lazy stage quickly expands the tree, testing only vertexes
for collisions; then, a second validation stage searches the
tree for feasible, collision-free whole-body motions realizing a
solution to be executed during the next planning interval. We
discuss how the proposed planner can avoid deadlock and we
propose how it can be extended to a sensor-based planner.
The proposed method has been implemented in V-REP for the
NAO humanoid and successfully tested in various scenarios of
increasing complexity.

I. INTRODUCTION

The long-term challenge for humanoid robots is to substi-
tute humans in repetitive and dangerous tasks. While in the
past the researchers focused on obtaining robust and efficient
locomotion, the real challenge nowadays is to generate
whole-body motions aimed at fulfilling complex tasks.

Motion planning for humanoids is very challenging due
to their characteristics: they have many degrees of freedom,
resulting in a high-dimensional planning space; they are
not free-flying systems, then several kinematic/dynamic con-
straints must be taken into account while generating feasible
motions; finally, they must maintain equilibrium at all times.
To make tractable the planning problem, many methods that
rely on simplifying assumptions on either the environment or
the robot geometry have been proposed (e.g., [1], [2], [3]).

The difficulties further increase when planning motions
for a humanoid that is assigned a task, as discussed in
[4], [5], [6]. Differently from these works, in [7], we in-
troduced an approach that solves the task-oriented planning
problem without separating locomotion from task execution.
This planner is hinged on the concept of CoM movement
primitives, defined as precomputed trajectories of the CoM
that are associated to specific actions. We also used a similar
approach in [8] for dealing with deformable tasks and in [9]
for achieving natural reaching motions.

For complex planning problems, computing a complete
solution (possibly considering its optimality), may be com-

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy. E-mail:
{ferrari, oriolo}@diag.uniroma1.it.

2 CNRS, Univ Rennes, Inria, IRISA, Rennes, France, E-mail:
marco.cognetti@irisa.fr.

This work is supported by the EU H2020 COMANOID project.

putationally expensive, or even impossible when planning
under time limitations. To address such situation, many
proposed methods rely on the idea of quickly computing
an initial sub-optimal solution, which is improved until the
available planning time runs out. Such methods are known
as anytime algorithms. Firstly, the focus was to develop
anytime versions of heuristic-based searches, like the ARA*
algorithm [10]. Such method has been extended to dynamic
contexts [11] and used within a footstep planning framework
[12]. Although the latter finds efficient footstep plans in short
planning times, it does not aim at computing feasible whole-
body motions allowing the robot to achieve an assigned
task. Other works ([13], [14]) propose anytime versions of
sampling-based algorithms, particularly suited for planning
in high-dimensional, non-uniform cost spaces. So far, their
effectiveness has been shown only for wheeled vehicles.

In this work, we propose an anytime planning/replanning
algorithm aimed at generating motions allowing a humanoid
to fulfill an assigned task that implicitly requires stepping.
Our algorithm interleaves planning and execution intervals:
a previously planned whole-body motion is executed while
simultaneously planning a new solution for the subsequent
execution interval. At each planning interval, differently from
the classical anytime paradigm, our algorithm focuses on
obtaining the best solution, guaranteed to be valid in the next
execution interval, among those that the planner has been
able to produce within the deliberation time, without relying
on continuous refinements of the initial solution. The overall
humanoid motion results to be constituted by a sequence of
on-line computed short horizon solutions.

Typically, motion planners running time is mostly spent
in collision checking. On the basis of such observation,
many methods have been proposed that postpone collision
checks until they are strictly required. Such methods are
known as lazy algorithms. In [15], a probabilistic roadmap
is initially constructed assuming that all nodes and edges
are collision-free, and then repeatedly searched for shortest
paths, checking collisions along them. A bi-directional PRM
using lazy collision checking is introduced in [16], where the
method is successfully applied for a team of manipulators
working in an automotive body shop. The lazy approach
has been also involved in asymptotically-optimal planners
[17], while applications to humanoids are so far limited to
situations in which the robot does not need to take steps [18].

Here, we present an anytime framework that makes use
of a specifically designed randomized planner, invoked at
each replanning interval, that builds a tree in configuration-
time space by concatenating successions of CoM movement
primitives. Such planner a works in two stages. A first lazy

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7283-9/18/$31.00 ©2018 IEEE 209

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

stage quickly expands the tree, testing only vertexes for
collisions; then, a second validation stage searches the tree
for feasible, collision-free whole-body motions realizing a
solution to be executed during the next planning interval.

The rest of the paper is organized as follows. We intro-
duce the planning problem in Sect. II. The anytime plan-
ning/replanning scheme is introduced in Sect. III, hinged on
a local motion planner discussed in Sect. IV. V-REP planning
experiments for the NAO humanoid robot are illustrated
in Sect. V. Finally, Sect. VI describes an extension of the
proposed algorithm for managing planning deadlocks, while
Sect. VII gives some insights for the sensor-based extension
of the algorithm. Conclusions end the paper in Sect. VIII.

II. PROBLEM FORMULATION

Before formulating our motion planning problem, we
recall the humanoid motion model introduced in [7], [8].

We define the configuration of the humanoid as

q =

(
qCoM

qjnt

)
,

where qCoM ∈ SE(3) is the world pose (position and
orientation) of a reference frame attached to the Center of
Mass (CoM) and qjnt ∈ Cjnt is the n-vector of joint angles.

Within our planner, the CoM movements will be gener-
ated by patching subtrajectories extracted by a precomputed
catalogue of CoM movement primitives. These primitives
represent elementary humanoid motions, such as crouching,
stepping, and so on. Each primitive has a given duration
and may specify trajectories for other points of the robot in
addition to the CoM: for example, a stepping primitive will
include a swing foot trajectory.

This planning approach is reflected in the hybrid (partly
algebraic, partly differential) motion model

qCoM(t) = qCoM(tk) + A(qCoM(tk))uCoM(t) (1)
q̇jnt(t) = vjnt(t), (2)

where t ∈ [tk, tk + Tk], with Tk the duration of the
current CoM primitive. In this model, A(qCoM(tk)) is the
transformation matrix between the CoM frame at tk and the
world frame, uCoM(t) is the CoM pose displacement at t
relative to tk (as specified by the primitive), and vjnt(t) is
the vector of joint velocity commands (which must obviously
be compatible with the primitive itself).

In the situation of interest, the humanoid is assigned a
loco-manipulation task, i.e., a manipulation task that implic-
itly requires locomotion. In particular, the robot must bring
a specified hand (hence, the end-effector) to a desired set-
point, e.g., for grasping an object that is in general outside
the workspace of the humanoid at its initial configuration.
Composite tasks, like mobile manipulation, are also admis-
sible, since they can be simply specified through a sequence
of desired set-points (e.g., for picking an object and moving
it to another location), simply by iteratively applying the
proposed method over the set-points sequence. Furthermore,
we assume that the robot lies in an environment populated
by fixed obstacles, whose geometry is known.

Computing a complete plan for such problems requires
high planning times, and the robot is forced to wait for the
solution before being able to start moving. In this work, we
propose an anytime motion planner that allows the robot to
start moving even if a complete plan is not yet retrieved, as
future motions can be planned while moving.

Let yM = f(q) be the position variables of the chosen
end-effector, and y∗M the desired set-point. A solution to our
motion planning problem consists of a whole-body motion
q(t), t ∈ [tini, tfin], constituted by a sequence of on-line
computed partial solutions, that satisfies four requirements:
R1 The assigned set-point is reached at a finite time tfin

1.
R2 Collisions with workspace obstacles and self-collisions

are avoided.
R3 Position and velocity limits on the joints are respected.
R4 The robot is in equilibrium at all times.

In the following, we will call feasible the motions that
satisfy requirements R2-R4.

III. ANYTIME PLANNER/REPLANNER

To address the described problem, we propose an anytime
planning/replanning algorithm that interleaves planning and
execution intervals: a previously planned whole-body motion
is executed while simultaneously planning a new solution for
the subsequent execution interval.

During the i-th planning interval, the aim is to produce a
whole-body motion that starts at the configuration q̄i+1 that
the robot will reach at the end of the simultaneously executed
whole-body motion, and is guaranteed to be feasible within a
limited region of the task space S(q̄i+1) (henceforth referred
to as the planning zone), whose location and geometry
depend on the configuration q̄i+1. To illustrate the proposed
method, we assume that the planning zone consists of a
sphere of a given radius r (as depicted in Fig. 1) centered
at the CoM position p̄CoM,i+1 of the humanoid at the
configuration q̄i+1.

Hereafter, we will refer to the whole-body motion pro-
duced during a certain planning interval as local plan, as its
feasibility is guaranteed only within a fixed planning zone.

The i-th planning interval consists in an invocation of a
specifically designed local motion planner (LMP), described
in the next section, that is allowed to run for a given time
budget. While such time budget determines the duration of
the i-th planning interval, the duration of the local plan to
be computed is not specified, as it can be autonomously
determined by the LMP. Consequently, the duration of the
i+1-th execution interval is equal to the duration of the local
plan found in the i-th planning interval. In the following, we
denote the duration of, respectively, the i-th planning and
execution intervals by ∆TP,i and ∆TE,i.

The anytime planning/replanning algorithm is shown in
Algorithm 1. It starts by invoking the LMP that is in charge
of producing, within a given time budget ∆TP , the first
local plan, i.e., a whole-body motion q(t), t ∈ [t1, t2 =
t1 + ∆TE,1], with ∆TE,1 its duration, to be performed

1In our formulation tfin is not assigned but determined by the planner.

210

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An example of planning zone used in our framework.

Algorithm 1: Anytime Planner/Replanner
1 ∆TP,0 ← ∆TP ;
2 q(t), t ∈ [t1, t2]←LMP(qini, ∆TP,0);
3 compute time budget ∆TP,1 according to (3);
4 extract q̄2 from q(t);
5 i← 1;
6 while f(q̄i+1) 6=y∗M do
7 simultaneously do (1) and (2):

8 (1) execute whole-body motion q(t) for t ∈ [ti, ti+1];
9 (2) q(t), t ∈ [ti+1, ti+2]←LMP(q̄i+1, ∆TP,i);

10 compute time budget ∆TP,i+1 according to (3);
11 i← i + 1;
12 extract q̄i+1 from q(t);
13 end
14 execute whole-body motion q(t) for t ∈ [ti, ti+1];

within S(qini), with qini the initial robot configuration. Once
such local plan is computed, our algorithm begins to perform
execution and planning in parallel.

At the i-th generic iteration, the algorithm simultaneously:
• executes the current local plan, i.e., the whole-body

motion q(t) valid in the time interval [ti, ti+1] of
duration ∆TE,i;

• plans a novel local plan within a given time budget
∆TP,i (defined below in eq. (3)). This local plan starts at
q̄i+1 = q(ti+1), i.e., the configuration that the robot will
reach at the end of the current execution, and defines
the motion within the next time interval [ti+1, ti+2 =
ti+1 +∆TE,i+1], where ∆TE,i+1 is the duration of the
novel local plan.

When both procedures complete, the planning time budget
∆TP,i+1 for the next invocation of the LMP is assigned as

∆TP,i+1 = ∆TE,i+1 . (3)

where ∆TE,i+1 is the duration of the next execution interval.
This interleaved procedure terminates when the planner

computes a local plan such that the desired set-point is
definitely reached, i.e., f(q̄i+1) = y∗M with f(q̄i+1) the
end-effector position at the last configuration q̄i+1 of the
new local plan. In this case, the latter represents the last
whole-body motion to be executed.

IV. LOCAL MOTION PLANNER (LMP)

In our anytime framework, whole-body motions to be
executed in the subsequent time interval (at the beginning
of which the robot will be in the configuration q̄) are
generated by means of a CoM movement primitives-based

local motion planner (LMP). This computes a local plan such
that the robot is completely included in the current planning
zone S(q̄) while executing it. Building on ideas introduced
in [7], [8], [9], the planner expands a tree T = (V, E) in
configuration-time space, where V and E are, respectively,
sets of vertexes and edges. To this end, it uses a catalogue
U of N CoM movement primitives. A typical U will in-
clude various stepping motions and possibly more complex
movements, such as crouching, crawling, and so on. A
fundamental element of U is free CoM, a pure manipulation
primitive. Except for the latter, all the primitives satisfy
the R4 requirement (humanoid equilibrium) by construction.
Static equilibrium is not guaranteed in free CoM and must
be explicitly checked.

A vertex v = (q,uCoM,w) consists of a configura-
tion q, with an associated time instant (not explicitly dis-
played), a CoM primitive uCoM, and a set of weights w =
{w1, . . . , wN}. An edge represents a feasible whole-body
motion that connects two adjacent vertexes.

The set w is used to assign a weight to each primitive in
the catalogue, and acts as a probability distribution over the
different possibilities of expanding the respective vertex. For
each vertex, the weights w are initialized at predefined values
winit at the time of the vertex creation, and updated (see
Sect. IV-A) each time the vertex is attempted to be expanded,
for avoiding to generate in T already existing vertexes.

The planner makes use of a compatibility metric d(q, ȳ)
that measures the compatibility of a configuration q with
respect to a point ȳ in the task space. In particular, d
is defined as the Euclidean distance between the ground
projections of the robot CoM position at q and ȳ.

The LMP works in two stages (see Procedure 1). The
first stage implements a RRT-like strategy aimed at quickly
expanding T . To this end, it works in a lazy fashion, checking
collisions with obstacles inside the zone S(q̄) only at the
vertexes level by means of a simplified robot model. At the
end of this stage, a set of candidate local plans results from
T . In particular, a branch of the tree provides a candidate
local plan if its ending vertex (i.e., the leaf) contains a
configuration q such that one of the these conditions holds:
• The simplified robot model at the configuration q does

not completely lie within the current planning zone.
• The configuration q is closer than a predefined threshold
d̄ (in terms of the described compatibility metric) to
the desired set-point y∗M , i.e., d(q,y∗M) < d̄, as it
potentially allows for completing the assigned task
(through a free CoM motion, see Sect. IV-B for details).

In the first case, the candidate local plan consists of the
portion of the branch ending at the last vertex containing a
configuration such that the simplified robot model completely
lies within the planning zone. Instead, in the second case the
candidate local plan consists of the entire branch.

The second stage is aimed at validating a candidate
local plan resulting from the lazy stage, by generating the
corresponding whole-body motions and checking collisions
by means of the exact robot model, that allows either to
safely proceed towards the destination or to fulfill the task.

211

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

Procedure 1: LMP(q̄, ∆TP)
1 split the time budget ∆TP in two intervals ∆TL

P and ∆TV
P ;

2 T ← LazyStage(q̄, ∆TL
P);

3 q(t) ← ValidationStage(T , ∆TV
P);

4 return q(t);

The two planning stages are described in details in the
following subsections. The LMP is allowed to run for a
given time budget ∆TP . Such time budget is split into two
intervals, each one dedicated, respectively, to the lazy and the
validation stages. When the deliberation time assigned to the
lazy phase ∆TL

P runs out, expansion of the tree is stopped.
While, if the deliberation time assigned to the validation
phase ∆TV

P runs out before it returns a valid plan, a failure
is reported. For sake of illustration, in the following we do
not explicitly describe the interruption mechanism.

A. The Lazy Stage

The lazy stage (see Procedure 2) starts by rooting the tree
T at vroot = (q̄, ūCoM,wroot), where q̄ is the configuration
that the robot will reach at the end of the current execution
interval, ūCoM is the CoM primitive through which it had
been produced (such information may be extracted from T
before re-rooting it), and wroot is set to winit. Initially the
set of vertexes that can be selected for attempting to expand
the tree T contains only the root vertex vroot. Denote by V ′
such set, which consists in a subset of V .

A generic iteration of the lazy stage begins by select-
ing a sample y∗rand in the task space with an explo-
ration/exploitation strategy aimed at balancing tree expan-
sions toward unvisited regions and the desired set-point y∗M .
The vertex vnear, that is the nearest in V ′ to the point y∗rand in
terms of the above-mentioned metric d(·,y∗rand), is selected,
and an attempt of expanding the tree from vnear is made.

The configuration qnear and the weights wnear are ex-
tracted from vnear; call tk the time instant associated to
vnear. A random primitive is selected from U using the
weights in wnear as probabilities 2. Let uk

CoM be the CoM
displacement associated to this primitive, and Tk its dura-
tion. Using eq. (1), the reference pose of the CoM frame
qCoM(tk+1), with tk+1 = tk+Tk, is computed. The obtained
reference pose of the CoM frame qnew

CoM = qCoM(tk+1) is
checked for collisions with workspace obstacles (or portions
of them) contained in the planning zone S(qroot) using the
simplified robot model B(qnew). In general, different choices
of such simplified model are possible. For example, bounding
volumes of either the whole robot or parts of it (e.g., its
upper-part) are suitable options. Another possibility is to
check collisions only at footstep level 3. In our experiments
we used a cylindrical bounding box (see Sect. V for details).

2We carefully avoid the selection of the free CoM primitive at this stage,
since it does not include any predefined trajectory of the CoM. This can be
done simply by setting to zero the associated weight.

3This is admissible within our framework since, at each tree expansion,
footstep placement automatically emerges from the swing foot trajectory
specified by the selected primitive (see Sect. II).

Procedure 2: LazyStage(q̄, ∆TL
P)

1 root the tree T at vroot = (q̄, ūCoM,wroot);
2 V ′ ← {vroot};
3 elapsed time ← 0;
4 repeat
5 select a random sample y∗rand in the task space;
6 select the nearest vertex vnear in V ′ to y∗rand according to

d(·,y∗rand);
7 extract qnear and wnear from vnear, and retrieve the

associated time instant tk;
8 select from U a CoM primitive uk

CoM with probability
wnear, and retrieve the associated duration Tk;

9 compute qnew
CoM according to qnear

CoM and uk
CoM;

10 if collision free then
11 vnew ← ((qnew

CoM, ∅)T , uk
CoM, wnew);

12 add vertex vnew in T as a child of vnear;
13 end
14 update the weights in vnear as in (4-5);
15 extract a set V ′ ⊆ V of vertexes admissible for expansion;
16 elapsed time ← get the elapsed time;
17 until V ′ = ∅ or elapsed time > ∆TL

P ;
18 return T ;

If qnew
CoM results to be collision-free, a new vertex vnew

is constructed as (qnew,u
k
CoM,wnew), where the sub-vector

qnew
jnt of qnew is left undefined and wnew is set to winit, and

it is added to T as a child of vnear (such information may be
stored with the vertex at the time of its creation), otherwise
no vertex is added to T .

Assume that the h-th primitive had been selected for
lazy expansion, in either succeeded or failed attempt, the
weights associated to vnear are updated by zeroing wh

near

and accordingly compensating the others (in such a way to
avoid the choice of the corresponding primitive in a future
expansion attempt, in favor of unselected primitives4) as

wh
near = 0 (4)

wi
near = wi

near +
wh

near

M − 1
, i 6= h, wi

near > 0, (5)

where M ≤ N is the number of positive weights in wnear

before the update.
Before starting a new iteration, the set of vertexes ad-

missible for the next expansion attempt is constructed. At
each iteration of the lazy stage, a set (possibly empty) of
branches in T provides a set of corresponding local plans,
in the sense described above. The respective ending vertexes
of such branches are not allowed to be selected for expan-
sion attempts, as expanding one of them provides no new
local plan. Furthermore, also vertexes that had been already
expanded through all the available primitives, i.e., vertexes
in which w = {0, . . . , 0}, are not allowed to be selected for
expansion attempts. Consequently, all the vertexes in V , but
those that either conclude a branch providing a local plan or
contain only zero weights, are added to V ′.

4Note that the scope of such update is only local, since the same primitive
can be still chosen to expand a different vertex.

212

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

B. The Validation Stage

The validation stage (see Procedure 3) starts by selecting
the best local plan in the tree T . The aim is to find a solution
that allows the humanoid to approach the goal as much as
possible, and possibly complete the task. The best local plan
p∗ is then selected as the one in T whose ending vertex is
the nearest to the point y∗M in terms of the compatibility
metric d(·,y∗M) described above.

Let K be the number of vertexes in p∗. The validation
stage proceeds by verifying the feasibility of each vertex vk
in the selected local plan (except for the root vertex vroot that
is guaranteed to be feasible by construction) by scanning it
from the root to the ending vertex vK .

The n-vector of joint angles qk
jnt is extracted from vk. If

this is defined, the vertex had already been validated, together
with the edge joining vk to vk−1, and the process proceeds
by considering the next vertex along the plan. If qk

jnt is yet
undefined, the motion generator is invoked.

The motion generator (see Procedure 4) extracts the con-
figuration qk−1 from the last validated vertex vk−1 along
the plan (that coincides with the parent vertex of vk in T),
and retrieves the CoM primitive uk−1

CoM that has produced
vk as a child of vk−1 during the lazy stage. Let tk−1 the
time instant associated to vk−1 and Tk−1 the duration of
the primitive uk−1

CoM. Using eq. (1), the reference pose of
the CoM frame qCoM(t) is computed, for t ∈ [tk−1, tk],
with tk = tk−1 + Tk−1. This, together with the associated
reference motion of the swinging foot (included in the
primitive), defines the current locomotion task.

At this point, a whole-body motion is computed such that
the robot starts from qk−1, executes the current locomotion
task, eventually reaches the desired set-point y∗M and com-
plies with requirements R2-R4. To this end, we have used a
task-priority approach:

vjnt = J†Lẏ
′
L+PL(JMPL)†(ẏ′M−JMJ†Lẏ

′
L)+PLM v0.

(6)
Here, yL is the (primary) locomotion task, JL its Jacobian
and PL = I − J†LJL; yM is the (secondary) manipulation
task, JM its Jacobian and PLM =PL−(JMPL)†(JMPL).
Also, we set ẏ′L = ẏ∗L + KLeL and ẏ′M = KMeM , where
eL = y∗L − yL, with y∗L the reference value of yL, and
eM = y∗M −yM . Finally, KL and KM are positive definite
gain matrices and the null-space vector v0 in (6) is set to

v0 = −η∇qjnt
H(qjnt), (7)

where η is a positive stepsize and H(qjnt) is a cost function
chosen so as to maximize the available joint range.

The joint trajectories generated by the kinematic con-
trol law (6) are continuously checked for collisions with
workspace obstacles (or portions of them) included in the
zone S(qroot) and self-collisions (requirement R2) using
the exact robot model R(q), and for violation of posi-
tion/velocity joint limits (requirement R3).

If a violation occurs, motion generation is interrupted, the
subtree T k rooted at vk is removed from T , and the best
local plan resulting from the updated tree is selected for a

Procedure 3: ValidationStage(T , ∆TV
P)

1 select the best local plan p∗ in T ;
2 elapsed time ← 0;
3 while p∗ 6= ∅ and elapsed time ≤ ∆TV

P do
4 k ← 0;
5 repeat
6 k ← k + 1;
7 extract qk

jnt from vk;
8 if qk

jnt = ∅ then
9 [qk, qk−1qk] ← MotionGeneration(vk−1, vk);

10 if qk 6= (∅, ∅)T then
11 update vertex vk with qk and add edge

qk−1qk to T ;
12 else
13 remove subtree T k rooted at vk from T ;
14 end
15 end
16 until k = K or qk = (∅, ∅)T ;
17 if k = K and qk 6= (∅, ∅)T then
18 retrieve whole-body motion q(t) joining vroot to vK ;
19 return q(t);
20 end
21 select the best local plan p∗ in T ;
22 elapsed time ← get the elapsed time;
23 end
24 return ∅;

new validation attempt. In case no plan is available or the
time budget ∆TV

P is exceeded, the validation stage stops and
a failure is returned to the main planner.

If no violation occurs, the integration reaches tk, i.e., the
time instant associated to vk, and the vertex is updated with
the full configuration qk, where both the world pose qk

CoM of
the frame attached to the CoM and the n-vector qk

jnt of joint
angles are defined; the edge, i.e., the whole-body motion,
joining vk−1 to vk is also added to the tree T , and the process
proceeds by considering the next vertex along the plan.

If the ending vertex vK contains a configuration qK that
is closer than the threshold d̄ to the desired set-point y∗M ,
i.e., d(qK ,y

∗
M) < d̄, and the desired set-point is not yet

achieved, i.e., f(qK) 6= y∗M , the validation stage performs
a last operation (not explicitly indicated in Procedure 3
for sake of illustration), otherwise the whole-body motion
joining vroot to vK is returned. Such operation consists in
trying to conclude the local plan with the free CoM primitive
for allowing the robot to complete the assigned task. This
primitive leaves the CoM free to move, constrains the feet
to remain fixed and its duration is determined by the time
needed to reach the desired set-point. In order to generate the
motion, kinematic control law (6) is still used, starting the
integration at qK and explicitly checking static equilibrium.
In case of failure, the search of a valid plan continues as
mentioned above, otherwise the whole-body motion q(t)
starting from vroot and allowing the robot to achieve the
desired set-point is returned.

V. PLANNING EXPERIMENTS

The proposed anytime framework has been implemented
in V-REP on an Intel Core i7 running at 2.70 GHz. The

213

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

Procedure 4: MotionGeneration(vk−1, vk)
1 extract qk−1 from vk−1, and retrieve the associated time

instant tk−1;
2 extract uk−1

CoM from vk, and retrieve the associated duration
Tk−1;

3 compute current locomotion and manipulation tasks;
4 repeat
5 generate motion by integrating joint velocities (6);
6 if collision or joint position/velocity limit violation then
7 return [∅, ∅];
8 end
9 until t = tk−1 + Tk−1;

10 return [qk, qk−1qk];

chosen robotic platform is the NAO small humanoid, with
the right hand as end-effector. The planning zone consists
of a sphere with radius equal to 1.25 m. The predefined
time budget ∆TP has been set to 5 s, and we split the time
budget ∆TP between the two stages as ∆TL

P = 3.5 s and
∆TV

P = ∆TP −∆TL
P . The threshold d̄ used in the lazy stage

has been set to 0.15 m, while the initial weights are simply
set to winit = { 1

N , . . . ,
1
N }. Finally, for the simplified robot

model B(·), we have used a fixed size cylindrical bounding
box (with radius and height, respectively, equal to 0.16 m
and 0.56 m) that completely includes the humanoid at its
initial configuration. Note that such choice is particularly
suited for tackling scenarios (as those considered in the
following) where the robot moves on a flat ground. However,
considering situations where the robot needs to step over and
onto low objects is also possible with our planner simply by
performing collision checking at footsteps level during the
lazy stage, instead of using bounding volumes.

The set of CoM primitives is defined as U = {free CoM∪
UD

CoM}. Here, free CoM is a non-stepping primitive that
allows the CoM to move freely, as long as both feet remain
fixed; UD

CoM is a subset of dynamic steps extracted from
various types of gaits precomputed by the intrinsically stable
MPC framework presented in [19]. In particular, UD

CoM

includes forward, backward, curved and diagonal steps.
In order to avoid unnatural motions, we have decided to

not constrain the hand motion during the early stages of the
planning. This is obtained by activating the manipulation task
only when the hand is within a certain sphere centered at the
desired set-point y∗M . In such case, the motion is generated
according to eq. (6). In the other case, the secondary task
is removed from eq. (6). Note that, even in this condition,
the planning process is biased towards the desired set-point
thanks to the use of our compatibility metric for both the
selection of vertexes to be expanded and local plans to be
validated in, respectively, the lazy and the validation stages.

We consider two planning scenarios of increasing com-
plexity. In both of them, the robot is assigned the task of
grasping a ball placed on a table that is outside its workspace
at the initial configuration.

In the first scenario (Fig. 2), a wall is obstructing the path
from the robot to the destination. For the first 5 s, the robot is
allowed to plan without moving. In this phase, large portion

Fig. 2. Planning scenario 1: snapshots from a solution. q̄i: configuration
assumed by the robot at the beginning of the i-th planning interval.

Fig. 3. Planning scenario 2: snapshots from a solution. q̄i: configuration
assumed by the robot at the beginning of the i-th planning interval.

of the wall is contained within the initial planning zone, and
consequently the planner generates a sequence of dynamic
steps in the forward direction followed by curved steps in
the left direction allowing the robot to avoid the wall. Then,
while the robot executes these steps, it plans its future motion
that will start at q̄2. This process is repeated and the result
is a sequence of steps that allows the robot to approach the
desired set-point, correctly completing the task.

The second scenario (Fig. 3) constrains the robot to move
only within a corridor in which two walls create two con-
secutive narrow passages. At the beginning, the robot plans
a solution allowing it to manage the first narrow passage.
During the execution of such plan, the robot plans a new
solution for managing the second narrow passage. The task
is then successfully completed.

Table I collects some data related to the planner perfor-
mance in the two scenarios. Both experiments have required
three planning intervals. The table reports: the time budget
for each invocation of the LMP, the time needed for planning
a solution within each invocation, the number of lazy plans
and the duration of the generated motion. Note that our LMP
always produces a solution before the deliberation time runs
out (i.e., the planning time is smaller than the time budget). In
general, when the LMP is not able to solve the local planning
problem within the time budget, the robot performs a safe
stopping motion5 at the end of the current plan and then
invokes again the LMP with the initial time budget ∆TP .

We encourage the reader to see the accompanying video to
better appreciate the effectiveness of the generated motions.

We do not perform any explicit comparison with other
methods in the literature because they either propose off-line

5The generation of the stopping motion is out of the scope of the paper
and its description is omitted for this reason.

214

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

i
time

budget (s)
planning
time (s)

lazy
plans

motion
duration (s)

Experiment 1
0 5 4.95 28 26.9
1 26.9 7.04 36 26.4
2 26.4 6.07 51 15.1

Experiment 2
0 5 4.85 3 29.1
1 29.1 6.94 10 27.4
2 27.4 5.43 31 22.6

TABLE I
PLANNER PERFORMANCE DATA.

i
time

budget (s)
planning
time (s)

lazy
plans

motion
duration (s)

0 5 4.17 41 26.9
1 26.9 4.71 3 28.8
2 28.8 6.52 9 20.7
3 20.7 10.25 2 75.0
4 75.0 6.49 17 21.0
5 21.0 7.26 18 31.5
6 31.5 7.07 17 26.4
7 26.4 7.95 12 28.3

TABLE II
PLANNER PERFORMANCE DATA FOR THE DEADLOCK SCENARIO.

approaches (e.g., [9]) or they are not easily implementable
for generating humanoid whole-body motions (e.g., [10],
[14]). Just as example, the planner in [9] needs 104 s for
computing a plan in the first scenario, forcing the robot to
wait for more than one minute before starting moving (as
opposed to the 4.95 s of this approach). Similar results were
obtained for the other scenarios. This confirms the validity
of the proposed approach.

VI. DEADLOCK MANAGEMENT

As in Sect. III, the LMP, at each invocation, provides a
local plan that is guaranteed to be feasible within a limited
task space area, i.e., the planning zone, and allows the robot
to approach as much as possible the desired set-point y∗M .

Until now, we have considered that the planning zone has
always a fixed geometry (e.g., a sphere of a given radius),
while its location is determined by the last configuration that
the humanoid will assume at the end of the simultaneously
executed local plan. Such strategy provides the planner
only with very local information about the environment. In
principle, consecutive invocations of the LMP might generate
movements that enforce the robot to repeatedly navigate
among same regions of the task space. This behavior causes
full-fledged deadlock situations.

Such problem can be easily eliminated by allowing the
planner to keep memory of previously considered planning
zones. In fact, this can be done by appropriately instantiating
the planning zone as the union of the local one, described in
Sect. III, and all the previously considered (see Fig. 4).

To exhibit how deadlocks can be avoided by keeping
memory of previously considered planning zones, we com-
pared the two versions of our algorithm (without memory and
with memory) in a deadlock-prone scenario where a concave
obstacle, constituted by three walls, creates a local minima.
Note that, in the considered scenario, the concave obstacle
is not entirely contained in the initial planning zone.

Fig. 4. Planning with memory: at the i-th planning interval, the planning
zone is defined as the union of the local sphere-shaped planning zone,
centered at the position of the CoM p̄CoM,i+1 (shown in green) that the
robot will have at the time instant ti+1, and all the previous ones.

Using the version without memory, the robot moves to-
ward the desired set-point until it reaches the proximity of
the corner formed by two walls; at this point the LMP, due to
collisions with the walls, can generate only curved steps in
the left direction. Then, backward movements are generated,
since they represent the plan allowing the robot to approach
the goal as much as possible. Such movements bring the
robot in already visited zones of the workspace, from which
the LMP generates forward movements to approach the
boundary of the current planning zone. As before, backward
movements are generated, bringing again the robot in the
closed corner; this loop continues, trapping the robot within
the concave obstacle, and precluding it to fulfill the task.

The version with memory results effective. A solution to
the planning problem is shown in Fig. 5, while the same
performance indexes of Table I are reported in Table II for
this scenario. The robot proceeds toward the goal until it
reaches the proximity of the wall obstructing the passage.
At the third invocation, the LMP, taking into account the
planning zone consisting in the union of the local one and the
two previous ones, produces a solution that moves the robot
outside the concave obstacle. It is important to emphasize
that this behavior results automatically from the candidate
local plan chosen in the validation stage. Sequences of
dynamic steps are then produced, allowing the robot to
approach the goal and finally to complete the task.

We encourage the reader to watch the accompanying video
to better appreciate the comparison of the two versions.

VII. TOWARDS A SENSOR-BASED PLANNER

The proposed framework assumes that, at each replanning
step, only a limited portion of the environment is available

215

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Planning scenario 3: snapshots from a solution. The first four
planning zones are the ones shown in Fig. 4. Already at the third planning
interval, the robot is able to plan a motion that gets itself out from the
concave obstacle, allowing the robot to fulfill the assigned task.

to the planner. This allows to avoid the off-line computation
of a complete solution that, being in general expensive, may
enforce the robot to wait for a long time before start moving.

The structure of our framework makes it particularly suited
for a sensor-based extension. In fact, a sensor typically
provides local information about the environment and this
particularly fits with the definition of the planning zone given
in Sect. III, since it acts as a map provided by an ideal
sensor, that can be easily replaced by a map incrementally
constructed by the robot according to information gathered
by an on-board sensor (e.g., a camera on the robot head).

The interleaved procedure can be appropriately modified
such that the LMP is invoked after a given portion of the
current local plan is executed, then using the updated map for
computing a solution for the next execution interval, while
simultaneously executing the remaining part of the current
local plan. A sensor-based extension of the planner can
identify candidate local plans as branches of the constructed
tree that bring the robot outside the frontiers of the current
map, as analogously done by the presented anytime planner
with the planning zone. The planner extension to the sensor-
based case is the subject of our current work.

VIII. CONCLUSIONS

We have described an anytime planning/replanning
scheme that allows a humanoid to accomplish an assigned
task that implicitly requires stepping. The algorithm inter-
leaves planning and execution: a previously planned whole-
body motion is executed while a new solution for the
subsequent execution is simultaneously planned by means
of a randomized local planner. Such a planner works in
two stages: a first stage quickly expands a tree in the
configuration-time space, performing lazy collision checks;
then, a second stage searches the tree for a feasible, collision-
free whole-body motion providing a solution for the local
planning problem. Finally, we discussed how the planner can

avoid deadlock situations and sketched a possible extension
to the sensor-based case. The proposed method has been
implemented in V-REP for the NAO robot and successfully
tested in increasing complexity scenarios.

In the future, we will investigate the discussed sensor-
based extension, to perform real-robot experiments. More-
over, future works will focus on adding novel CoM move-
ments, in order to allow the planner to fulfill tasks that
require more complex motions (e.g., crouching). Finally,
it would be interesting to include a second-order motion
generator, that allows to take into account torque bounds.

REFERENCES

[1] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” Robotics Research, pp. 365–374, 2005.

[2] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
2005 IEEE Int. Conf. on Robotics and Automation, 2005, pp. 629–
634.

[3] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid
motion planning for dynamic tasks,” in 2005 IEEE-RAS Int. Conf. on
Humanoid Robots, 2005, pp. 1–6.

[4] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[5] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[6] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

[7] M. Cognetti, P. Mohammadi, and G. Oriolo, “Whole-body motion
planning for humanoids based on com movement primitives,” in 2015
IEEE-RAS Int. Conf. on Humanoid Robots, 2015, pp. 1090–1095.

[8] M. Cognetti, V. Fioretti, and G. Oriolo, “Whole-body planning for
humanoids along deformable tasks,” in 2016 IEEE Int. Conf. on
Robotics and Automation, 2016, pp. 1615–1620.

[9] P. Ferrari, M. Cognetti, and G. Oriolo, “Humanoid whole-body plan-
ning for loco-manipulation tasks,” in 2017 IEEE Int. Conf. on Robotics
and Automation, 2017, pp. 4741–4746.

[10] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2004, pp. 767–774.

[11] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in ICAPS,
2005, pp. 262–271.

[12] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Any-
time search-based footstep planning with suboptimality bounds,” in
2012 IEEE-RAS Int. Conf. on Humanoid Robots, 2012, pp. 674–679.

[13] D. Ferguson and A. Stentz, “Anytime rrts,” in 2006 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2006, pp. 5369–5375.

[14] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt*,” in 2011 IEEE Int. Conf.
on Robotics and Automation, 2011, pp. 1478–1483.

[15] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in 2000
IEEE Int. Conf. on Robotics and Automation, vol. 1, 2000, pp. 521–
528.

[16] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” The Interna-
tional Journal of Robotics Research, pp. 403–417, 2003.

[17] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE Int. Conf. on Robotics and Automation, 2015,
pp. 2951–2957.

[18] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient motion plan-
ning for humanoid robots using lazy collision checking and enlarged
robot models,” in 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2007, pp. 3062–3067.

[19] N. Scianca, M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo,
“Intrinsically stable MPC for humanoid gait generation,” in 16th IEEE-
RAS Int. Conf. on Humanoid Robots, 2016, pp. 101–108.

216

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 24,2022 at 16:46:25 UTC from IEEE Xplore. Restrictions apply.

