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EXTREMAL MANIFOLDS AND HAUSDORFF
DIMENSION

H. DICKINSON axp M. M. DODSON

1. Introduction. The recent proof by D. Y. Kleinbock and G. A. Margulis [11]
of Sprindzuk’s conjecture for smooth nondegenerate manifildaeans that the set
¥, (M) of v-approximable points (this and other terminology is explained below) on
M is of zero induced Lebesgue measure. This raises the question of its Hausdorff
dimension. Bounds and indeed the exact dimension for manifolds satisfying a variety
of arithmetic, geometric, and analytic conditions are known (see [2], [3], [5], [7]). In
this paper ubiquity is used to obtain a lower bound for the Hausdorff dimension of a set
more general thaff, (M) for any extremal! manifold M. Hitherto volume estimates
that depend on curvature conditions were used to overcome a “small denominators”
problem. It turns out, however, that extremality, when combined with Fatou’s lemma,
is all that is needed. We begin with some notation.

Let |x| = maxX{|x1],..., |x,|} denote the supremum norm or height of the point
x = (x1,...,%,) In n-dimensional Euclidean spad®’, and denote its Euclidean
norm by|x|2 = (x2+---+x2)1/2. Throughoutq = (¢1, ..., g») is a vector inZ", and
g-x = q1x1+---+qnx, denotes the usual inner product. For positive numbebs
we use the Vinogradov notatian<« b andb > a if a = O(b). If a K b K a, we
write a < b. A pointx € R” that satisfies

1) lg-xIl <lqlI™

for infinitely many g € Z" is called v-approximable(||x| is the distance of the
real numberx from 7). Let M be anm-dimensional manifold inR”. The set of
v-approximable points in the manifol is denoted by#,(M). The manifoldM is
calledextremalif for any v > n, £,(M) has Lebesgue measure 0. Equivalently, by
Khintchine’s transference principld/ is extremal if the se¥,, (M) of pointsx € M
that are simultaneousky-approximable (i.e., for which

lgxll < 1g1™"

for infinitely manyqg € Z) is null (i.e., of measure zero) when > 1/n. Khintchine’s
theorem implies that the real line is extremal, and the terminology reflects the fact that
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the order of approximation given by Dirichlet’s theorem is unimprovable for almost
all points on an extremal manifold (see [12]).

Let U be an open set iR™, wherem < n. V. G. SprindZuk conjectured that if the
functionsf; : U — R, j =1,...,n are analytic and, together with 1, independent
over R, then the manifold

{(621(0),....6,(w)) :u e U} =6(U) C R"

is extremal (see Conjecture; th [19]). Manifolds satisfying a variety of additional
or different analytic, geometric, and number-theoretic conditions have been shown to
be extremal; references and further details can be found in [18], [19] (see also [4],
(71, [9], [11], [20]).

In the stronger Baker-SprindZuk conjecture, the hypotheses on the matfifatd
the same, but the approximation functilgii—" is replaced by a larger multiplicative
anisotropic function. When > n, if the set of pointsc € M for which

2) la-xl < [ (lg;1+2) ™"

j=1

for infinitely manyq € Z" is relatively null, thenM is said to be strongly extremal
(see Conjecture Hin [19]). Points satisfying (2) for infinitely mang € 7" are
called multiplicativelyv-approximable. Transference principles allow simultaneous
and multiplicative approximation forms of these conjectures (see [11], [18]). The
conjecture H was first proposed by A. Baker for the rational normal curve

V={(t,1%....1") ;.1 e R}

in [1] and proved for this case by V. I. Bernik [6].

J. Kubilius proved the parabola extremal in 1949 [13], and in 1964 W. M. Schmidt
established the remarkable result that @Wplanar curve with nonzero curvature
almost everywhere is extremal [16]. About the same time, Sprindzuk proved Mahler’s
conjecture, corresponding to the rational normal curve being extremal (see [17]).
Recently, in [11], Kleinbock and Margulis have proved a result that implies not only
SprindZuk’s conjecture H but also the Baker-SprindZuk conjecture. Hhey used
ideas from dynamical systems, namely, unipotent flows in homogeneous spaces of
lattices and the correspondence between multiplicativedypproximable points for
v > n and unbounded orbits in the space of lattices. Although at the moment their
techniques do not yield nontrivial upper bounds for the Hausdorff dimension, they do
give a partial Khintchine-type result and might open the way to further progress.

In [3], R. C. Baker refined Schmidt’s result [16] by showing that if the curvature of
aC? planar curve vanishes only on a set with Hausdorff dimension 0, thana?,

dim%, (M) =

v+1
Using the idea of regular systems, A. Baker and Schmidt [2] showed thaf diif) >
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(n+1)/(v+1) for v > n. The complementary upper inequality was established by
Bernik [5], giving

n+1

v+1
for v > n. For manifoldsM with dimensionn > 2 and satisfying a curvature condition
that reduces to nonvanishing Gaussian curvature for surfad®3 in

dim<, (V) =

dim®, (M) =m—1+ 2=
v

for v > n (see [7]). We use ubiquity (see [8]) to obtain the best possible lower bound
for the Hausdorff dimension of the more general set

F(M;) = {x e M:|q-x|| <¥(q|) for infinitely manyq € Z”}

whenM is aC! extremal manifold irR” and the functiony : N — R* decreases.
Note that wheny(q) = ¢V, we write £,(M) for £(M; yr). For more information
about Hausdorff dimension, see [10], [14].
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2. Ubiquitous systems. Let U be a nonempty open subsetRf. Let
R={RjcU:jel}

be a family of sets indexed hy; these sets are calledsonant Suppose further that
eachj € J has a weight j| > 0, and letp : N — R* be a function converging to
zero at infinity. Suppose that for each sufficiently large positive intdgehere exists
a setA(N) c U for which

() Nli_r)noo}U\A(N)| =0.
Let
(4) B(Rj;8) ={u € U : dist(u, R;) < 5},

where distu, R) = inf{|lu —r| : r € R}. Let H/2 denote the hypercub shrunk by
1/2 and with the same centre.
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Suppose that there exists a constdnt [0, m] such that given any hypercube
H c U with sidelength¢(H) = p(N) and H/2 meetingA(N), there exists g € J
with | j| < N such that for al € (0, p(N)],

(5) |HNB(Rj;8)| > 8™ 4e(H)".
Suppose further that given any other hypercéien U with ¢(H') < p(N),
(6) |H'NHNB(R;;8)| < 8™ Ye(H".

Then the pai@, |-]) is called aubiquitous system with respect to

In the one-dimensional case and when the resonant sets consist of points, ubiqui-
tous and regular systems are virtually equivalent and essentially differ only in their
formulation (see [15]).

3. Hausdorff dimension. The distribution of the resonant sets in ubiquitous sys-
tems allows the determination of a general lower bound for the lim-sup set

A@;¢) ={ue U :dist(u, R;) < w(Lj)) for infinitely many j € J},

wherey : N — R is a decreasing function (see [8]).

THEOREM 1. Suppos€®R, |-]) is ubiquitous with respect to: N — RT and that
¥ : N — RT is a decreasing function satisfying(N) < p(N) for N sufficiently
large. Then

dimA@®R;¢) > d+y(m—d)

wherey =limsupy_, ,,(Iogp(N))/(logy (N)) < 1.

The hypothesis that (N) < p(N) for N sufficiently large implies thay < 1. We
now apply Theorem 1 to Diophantine approximation on a manifold. The lower order
A(f) of the functionf : N — R is defined by

I N
ACS) = liminf 29/ ()
N—oo logN
THEOREM 2. Let M be anm-dimensionalC! extremal manifold embedded Rt
Lety : N — RT be decreasing with the lower order bfys denoted by.. Then for
AZ>n,
. n+1
dmEM: ) >m—1+——.
IMEM;¢) 2m—1+ 1
Since dimMEM N V; ) < dim&E(M; ), it suffices to consider the open subset
M NV of M, whereV is a suitable open set iR". We assume without loss of
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generality thaty NV c [—1, 1]" and thatV is sufficiently small. Let : U — M NV
be the local parametrisation where the doméins a sufficiently small hypercube
in [—1,1]". We write My = M NV = 6(U). Each pointx € My can be written
x =0(u) forsomeu € U.

Since the manifoldV is C*, by shrinking and closind/ if necessary, we can
assume that the geodesic distance between two pejntson My is comparable
with |x —x’| and tha® is bi-Lipschitz onU. Hence we can assume that the Hausdorff
dimension of£(My; ¢) and that of

L) ={ueU:|q-0@w]| <y(aq) for infinitely manyq € 7"}
are the same (see [10]). We writg for L(y) wheny (r) =r~"; thus
Ly={ueU:|q-0w)| <I|q/~" for infinitely manyq € Z2"}.

By the inverse function theorem, we can also assumeMhats the graph of &'t
(Monge) ordinate functiop : U — R¥, wherek = n —m, so that

My={0@w) :uecU}={(u.ow):ucU}

and® = 1y x ¢. The corresponding local chatit: My — U is the restriction to
My of the projectionR™ x R¥ — R™. Moreover, by shrinking and closing again
if necessary, we can assurtey;/du;| < K;j < oo for eachu e U,i =1,...,m,
Jj=1,...,k. Indeed givers > 0, we can choos¥ so that for any € U,

dpj(u)
au,‘

Kij—aé‘

< Kjj.

Thus we can assume that the change in the direction of a vector along any geodesic
in My is small.

It follows that M is not close to orthogonal tB” x {0}, 0= (0,...,0) € R, as
indicated in Figure 1. More precisely, for eagtu) in My, the angle?, say, between
any vector in the tangent spagg., My andR™ x {0}, satisfies co8 > ¢ for some
constantc > O (i.e., in the Vinogradov notation, cés> 1). Thus for anyd(«) in
My, the planeR™ x {0} is not close to being orthogonal %, My . In other words,
the normal spacé‘g(u)Mﬁ is not close to being parallel 8™ x {0}.

SinceM is extremal £, (My) = 6(L,) is null for v > n in the induced measure on
M and, sincé is bi-Lipschitz onU, the setL, is null in R™ whenv > n. To obtain a
lower bound for the Hausdorff dimension8f (M) or equivalently forL,, it suffices
to find a sequence of suitable sdt&V) C U that approximaté/ in measure and that
satisfy the intersection conditions (5) and (6) above. Using the geometry of numbers,
integer vectorg| are chosen so that the hyperplanes

Hp)qZ{XE[Rn:q'X:p}
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pq
{0} x RF
o MU
/// .o /q'
B o
Y R™ x {0}

Ficure 1. The manifoldMy and a resonant sét, q

associated with the resonant s&ttsq, defined below in (11), are not close to being
parallel or tangential td/;; (see Figure 1). This condition is stronger tHap q being
transversal toVfy;.

Let n > O be arbitrary and lelV € N be sufficiently large. By Minkowski’s lin-
ear forms theorem, given a pointe U, there existg = q(u) = (g1,...,q,) € Z"
satisfying 1< |g| < N, andp = p(u) € Z such that

9-0@u) — p| < N~"H1(log N)¥
(1) lgil <N, i=1,....m
gm+jl < NYTlogN) ™, j=1,... k.

Hence for eactv = 1,2, ..., the setU can be written
(8) U=AN)US(N)UE(N),
whereE(N) = {u € U : dist(u, dU) < 1/N} (dU is the boundary ot/),
S(N)={ueU:1< g < N7 for someq satisfying (7},
and
A(N)=U\ (E(N)US(N)),

so thatA (N) consists of pointa € U \ E(N) for which there existj € Z" andp € 7
satisfying (7) and

9) N < gl < N.
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Thus each: € A(N) is at least IN from U (in the supremum metric), and there
exists a large vectay € Z" and an integep satisfying (7).
The measure of: (N) converges to 0 a&§ — oo since

Ew)| =

{ U : dist( aU)<i” e(U)'"—(z(U)—i>m N1
uelU: u, S < N < .

The vectorg = q(u) € 7" can be written
q - (CIl,'--,vao,---,O)+(0’~--’Oan+1y‘-‘in) =q/+q//7
say, wherg’ € R™ x {(0,...,0)}andq” € {(0,...,0)} x R¥. SinceN is large enough,

for eachu € A(N), the vectorg is close to being parallel tq'. Indeed the angI@
thatg makes withR™ x {0} satisfies

/ 2 2 2
+---+qp 1
osp= 3. 9 o Gun q=1—o( )

T alz 19027 912 logN

by (7) and (9). Hence the hyperplanig 4, which is normal tay, meetsMy not close
to tangentially. This implies thall, ¢ N My is a connectedm — 1)-dimensional
submanifold ofMy.

On replacingN by NY=7 in (7), it can be seen that the s&(NY/1-) is
contained in the set of poinise U for which there exisp, q satisfying

|q-0@) — p| < N~ORD/A=D (log N)* (1—n)
with 1 < |q| < N. Moreover,S(NY/2-7) is also a subset of
T5(N)={ueU:|q-6(u)—p| <N " forsomeqeZ", peZ 1<|ql <N},

where 0< § < n(n—k)/(1—n).
LemmA 1. For any$ > 0,

[o.lNee)

limsupZs(N) = ﬂ U Ts(N) C Lpys.
N—o0 k=1N=k

Proof. Letu e N2, UY_, Ts(N). Thenu € Ts(N;) for an infinite subsequence
Nj, j =1,2,.... Hence for eacly there existg'/) € 7" with 1 < [qV)| < N; and
pY) e Z such that

’q(j).g(u)_p(j)‘ < Njfn*t?.
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Suppose there are only finitely many differepf’ for which the last displayed in-
equality holds and let

min{{q(j)ﬂ(u)—p(j)} 1j € N} =c,
say. Ifc > 0, then choosing so thatN]?”*‘S < ¢ gives a contradiction. If = 0, then
for eachr e N, r < [rq¥’| <rN; and
‘(rq(j)) O(u)— (rp(j))‘ =0< (rNj)_n_S.

Thus there are infinitely many solutions, contradicting the supposition that there exist
only a finite number of differeng’). But 1< |q/)| < N;, whence

’q(j) 0(u) _p(j)’ < ‘q(j)|_”—‘S
holds for infinitely many;. Thusu € L, 5. O

By Fatou’s lemma, for any > 0,

limsup|75(V)| < ‘IimsupTa(N) <|Lpysl =0
N—oo

N—oo

sinceM is extremal. Thus lirj— o |T5(N)| = 0. Butwhen 0< § < n(n—k)/(1—n),
Ts(N) 2 S(NY1-m) and so

lim [S(V)| = lim [s(v¥37)| =0,
N—o0 N—oo
Applying this and the estimate f¢E (N)| above to (8), it follows that
(10) |[UNAWN)| < |E(N)|+[S(N)| — 0
asN — oo and A(N) satisfies (3). The resonant setdinare now chosen to be
(11) Rpq={ueU:q-6(u)=p}=n(T,qNMy),

whereq and p are given by (7). Thud, the dimension o, g, ism —1.

For eachu € A(N), there exists a paifp, q) satisfying (7) andvi=" < |g| < N.
For N sufficiently large, the hyperplang, q is far from tangential ta//;;. Because
of this andd being bi-Lipschitz,

_ _ q-0u)—p
dist(u, Rj.q) = dist(0(u),0(Rp.q)) < W’

wherew is the angle between the tangent pldig, My andq. Sincell, q meets
My not close to tangentially, ces =< 1, and so for any. € U,

la-6@)—pl|

dist(u, Rp.q) < al
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It follows from this and (7) that there are positivg, ¢* such that
(12)  c]g-0@) - pllal~t < dist(u, Rpq) < *N "1 D (log N)*.
Let
(13) p(N) = 4c* N1+ E+D1 jog Ny,

We now show that the other ubiquity properties (5) and (6) hold for the fagily
of resonant set&R, q} where[(p, )] = gl andp : N — R™ is given by (13). Letd
be a hypercube with(H) = p(N). The choice ofy, which ensures thdll , g meets
My not close to tangentially, together with the choiceppimplies that if in addition
u € H/4, then by (12), there exigt, g such that dislu, R, q) < £(H)/4. Hence the
resonant sek, 4 meets the hypercub® substantially and

|HNB(Rp.q;8)| > ¢(H)™ 18,

whereB(R, q: 6) is given by (4), as required for (5) to hold.
It also follows thatl1, 4 meetsMy in a connectedm — 1)-dimensional submani-
fold, so that any hypercub®’ with £(H’) < p(N) satisfies

|H'NHNB(R,.q;8)| < ¢(H)Y"tmin|s, ¢(H")} < e(H" 18,

and (6) holds. Thus the famil = {R, q:q € Z"\{0}, p € Z} is u~biquitous inU
with respect tqo. Hence by Theorem 1, for any decreasing functjonN — R,

dimA(QR; @) >m—1+vy,
whereA (R; J) is the set of pointg in U satisfying
dist(u, R,.q) < ¥ (L(p» 1) = Fal)

for infinitely many p, g and wherey = lim supN_)oo(Iog,o(N))/gog{/7(N)).
Choosey/ (r) = c,r 1y (r). Then by (12), disw, Rq) < ¥ () implies that
|q-0(u) — p| < ¥(Iq]). Thereforeu € A(R; ) implies that for infinitely manyp, q,

-6 —p| < y(aD,
and soA (®; ¥) C L(¥). Thus
dimL(y) > dimA(R; ) > m—1+y,
where by (13)

. logo(N) n+l1—nk+1)
:I = S
Y og (e N Ty (V) P
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wherea is the lower order of Lyr. Sincen is an arbitrary positive number arid is
a parametrisation domain, it follows that

n+1

(14) dimL (M ;) > dimL(p) >m—14 5=

and Theorem 2 is proved.

By [11], aC" m-dimensional manifold embedded RI" and¢-nondegenerate for
somel < r almost everywhere is extremal({V) is £-nondegenerate R” is spanned
by the partial derivatives of up to order¢). Hence (14) holds for such manifolds
with r > 1 and so in particular for manifolds with at least one principal curvature
nonzero almost everywhere. M is not extremal, then dift,, (M) = m for some
w > n, and hence dirft, (M) =m for v < w.

Obtaining an upper bound for the Hausdorff dimensiot6#1; ) involves esti-
mating large contributions from near tangential resonant®gtsand is much more
difficult. The upper bound faf£(M; ¥) has been shownto be— 1+ (n+1)/(v+1)
for v > n whenM is C3, of dimensionn > 2, and has at least two principal curva-
tures nonzero everywhere except on a set of Hausdorff dimension armokt(see
[7]), so that the lower bound in Theorem 2 is best possible. It is likely that this is
the Hausdorff dimension when at least one principal curvature is nonzero everywhere
except on a set of Hausdorff dimension at mast 1. Determining the Hausdorff
dimension in the case of simultaneous Diophantine approximation seems harder and
much less is known.
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