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Abstract—Quantum computing has the power to break current
cryptographic systems, disrupting online banking, shopping, data
storage and communications. Quantum computing also has the
power to support stronger more resistant technologies. In this
paper, we describe a digital cash scheme created by Dmitry
Gavinsky, which utilises the capability of quantum computing.
We contribute by setting out the methods for implementing this
scheme. For both the creation and verification of quantum coins
we convert the algebraic steps into computing steps. As part of
this, we describe the methods used to convert information stored
on classical bits to information stored on quantum bits.

Index Terms—quantum, coins, banking, gates, qubits

I. INTRODUCTION

Quantum mechanics is the study of the smallest things in
nature. At the 1927 Solvay Conference, 29 prominent physi-
cists met to discuss the foundation of today’s quantum theory.
Amongst the participants were Albert Einstein, Marie Curie,
Max Planck, Niels Bohr and Erwin Schrödinger. With their
help, an understanding of quantum mechanics has allowed us
to develop many modern technologies including MRI scanners,
nuclear power, lasers, transistors and semiconductors [1].

Many years later, in 1980, computation using the principles
of quantum mechanics was conceived. Benioff [2] showed
that a computer could operate under the laws of quantum
mechanics by providing a Schrödinger equation description of
Turing machines. In 1988, Yamamoto and Igeta proposed the
first physical realization of a quantum computer, it included the
quantum equivalent of classical gates [3]. In 1991, Artur Ekert
invented entanglement-based secure communication [4]. In
1998, a working 2-qubit quantum computer was built by Jones
and Mosca at Oxford University [5]. This was the first exper-
imental demonstration of a quantum algorithm. Since then,
quantum devices have come a long way. In 2007, Switzerland
used quantum technology to secure their voting systems [6]. In
Japan, in 2010, a TV conference was secured using quantum
key cryptography [7]. China installed a 2000km optical fibre
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capable of quantum communication, which is being tested for
use in banking and communications [8]. In 2015, a small
quantum network was demonstrated by Delft University with
plans to build a larger advanced quantum network across the
Netherlands [9]. There are over forty multinational companies
investing in quantum computing/communication [10]. These
include IBM, Google, Microsoft and Intel.

Quantum computing has the theoretical power to break
certain modern cryptography [11]. In 1994, Peter Shor de-
veloped a quantum algorithm that has the power to break
some public key cryptographic systems [12], such as RSA. In
1996, Grover’s algorithm was developed, which reduced the
effectiveness of symmetric key cryptographic systems [13].
Without cryptography, much of our online banking, shopping
and data storage technology would no longer be usable.

Though quantum computing has the power to break some
of our current systems, it also holds the key to unlock-
ing solutions that exceed the bounds of our current com-
putational capabilities. Quantum technology has particularly
useful qualities for applications to communication systems,
privacy and security. In 2019, RIPE NCC [14] ran the
first Pan-European Quantum Internet Hackathon. This event
connected experts from six different locations and tasked
them with solving open problems and developing technical
infrastructure to allow the evolution of the Quantum Internet.
Among other developments, teams successfully worked on
Device-Independent Quantum Key Distribution, a Quantum
version of Byzantine Agreement, Quantum Key Distribution in
OpenSSL, Quantum-Cheque Protocol, Quantum Anonymous
Transmission, Entanglement Routing and Quantum VPN. For
more details on these projects see the Github repository [15].

This paper arose from work completed at the Irish node
of the Pan-European Quantum Internet Hackathon [16]. Our
goal was to develop the implementation steps necessary for a
digital cash protocol based on quantum technologies; denoted
a Quantum Coin Scheme. In this paper, we introduce quantum
mechanics and describe its relevance to applications in banking
and communication systems. We describe the mechanisms
involved in creating and manipulating quantum bits. Finally,
we describe contributions that allow for the implementation of
Gavinsky’s [17] theoretical quantum coin protocol.
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In Sec. II-A, we explain the underlying properties of quan-
tum mechanics that make it valuable for communication and
computation technologies. In Sec. II-B, we describe related
work and the development of quantum money. Sec. II-C
introduces the notation and terminology used in this paper. In
Sec. III, we describe one definition of a quantum coin (denoted
a Q-coin) and demonstrate the steps necessary for creating it.
This involves the creation of a method for converting classical
bits to quantum information. This is used to show how to
create quantum coins for use in quantum money transactions.
Sec. IV details the processes necessary for using these Q-coins
in the implementing of Gavinsky’s quantum coin validation.
Sec. V summarises some feastures of the scheme.

II. BACKGROUND

A. The Power Of Quantum Computing

Quantum mechanics is interesting because it contains prop-
erties that are at odds with our general understanding of
classical physics. Here we will give a brief overview of the
properties we utilise. Many more detailed descriptions are
available (e.g. [1]).

Used for information storage, a classical bit can take the
value 0 or 1. A qubit is the quantum equivalent to a classical
bit. Qubits have three important properties that makes them
fascinating as an alternative to our classical view of informa-
tion: superposition, measurement and entanglement.

The first property, superposition, describes the fact that a
qubit can take the value of both 0 and 1 at the same time!
Imagine we have two classical bits, these can represent 4
states: either both bits are zero: 00, one bit is zero and the
other is one: 01 or 10, or both bits are one: 11. If we have 2
qubits, we can still represent these 4 states: 00, 01, 10 and 11.
However, because of superposition, the 2 qubits can represent
a mix of all 4 states at the same time. This gives quantum
computers the capacity to complete computations in parallel
and where n classical bits allow n computations, n qubits can
allow 2n computations.

The second property is measurement. In classical mechan-
ics, looking at something does not change its state. In quantum
mechanics, a qubit can be in a superposition of both 0 and 1
at the same time and when measured it must collapse to either
0 or 1. The state of a quantum bit is represented by a wave
function, where |0〉 is the 0 wave function, |1〉 is the 1 wave
function, and α |0〉+β |1〉 is a superposition. A wave function
that is composed of only |0〉 or |1〉 is called an eigenstate. If
we measure a wave function to see if it is a 0 or a 1, then there
is a probability |α|2 of measuring 0 and |β|2 of 1. Naturally,
we need to normalise so that |α|2 + |β|2 = 1. Each qubit
can be represented as a wave function and on measurement of
the wave function as 0 or 1 it collapses and becomes |0〉 or
|1〉. This has implications for security. If we send classical
bits from one place to another, we have no way to know
whether they were observed by a malicious user. However, if
we communicate using qubits, a malicious user who observes
the qubits will collapse the wave function and we will know
that the message was intercepted.

One interesting thing to note, is that we are collapsing the
wave function for the property we are measuring, this is called
the basis that we are measuring with respect to. Imagine there
are two measurements on a qubit, say its position can be A or
B and its momentum can be 0 or 1. We measure its position
and the wave function collapses to |A〉. If we continue to
consecutively measure with respect to the position basis then
we will continue to get A. If we then measure using the
momentum basis, the momentum wave function collapses to
|1〉, and the position variable is again probabilistic. So if we
remeasure the position it will return either A or B with some
probability. It is true for any measurable qubit attributes. This
is an example of the famous Heisenberg Uncertainty Principle
[18].

The third and, according the Einstein, the ‘spooky’ property
of quantum mechanics is entanglement. Take two qubits that
are entangled and let us move them to opposite ends of the
globe. If we measure one of the qubits then we know that
we will get the same measurement for the second, entangled,
qubit. Imagine we take the first qubit and measure it using
a momentum basis and get 1. Then the other qubit will also
measure as 1. This is remarkable since each returned result
is a function of probabilities |α|2 and |β|2. This relationship
gives us the ability to send information via these two entangled
qubits (but not faster-than-light, as we might be tempted to
attempt [19]).

These properties have applications in our computing and
communications infrastructure. We are going to look at the
applications of qubits to our online representation of coins
that are used to transfer funds between bank accounts.

B. Quantum Money

In classical cryptography the concept of digital cash has
been well-explored [20]. Let us briefly describe a classical
digital cash scheme.

Every coin issued by the bank is represented by a secret
string s. These strings are known to the bank and to the current
coin holder (Alice). Suppose Alice wishes to pay Bob, she will
want to pass her coin to Bob:

• Alice sends her string s to the Bank and tells the bank
she wants to send the coin to Bob,

• The bank checks if the string sent by Alice is valid. If so,
the bank erases the string s from the list of valid strings
and adds a newly generated secret string s′ to the list.

• The bank sends s′ to Bob; henceforth, Bob holds the coin.

For classical digital cash schemes, the main concern is the
double-spending problem, where a user spends the same digital
coin multiple times. One solution, as above, is to include a
verification of each token with a bank. However, an intruder
who pretends to be the bank can steal a valid coin from its
fair holder who wants it to be verified.

Definition 1 (Coin): A coin is a unique object that can be
created by a trusted mint (or bank) and then circulated among
untrusted holders.

Authorized licensed use limited to: Maynooth University Library. Downloaded on February 01,2022 at 10:14:18 UTC from IEEE Xplore.  Restrictions apply. 



For quantum money we will also need our coins to be non-
counterfeitable. Conveniently, qubits have a property described
as the no-cloning theorem [21] that makes them perfect to
be applied to quantum money. The no cloning theorem tells
us that it is impossible to create an identical copy of a
quantum state. Wiesner argued that this property allows us
to create quantum coins that are unforgeable, something that
is impossible with our classical physical money. In 1983,
Wiesner [22] and Bennett, Brassard, Breidbard, and Wiesner
[23] conceived the first quantum money schemes.

In 2003, Tokunaga, Okamoto, and Imoto give a scheme for
non-transferable anonymous quantum cash with online verifi-
cation [24]. In 2010, Mosca and Stebila present a new type
of quantum money which they call quantum coins [25]. These
coins are transferable, locally verifiable, and unforgeable, and
have some anonymity properties. However both these schemes
require quantum communication with a bank and are also both
susceptible to an adaptive attack conceived by Lutomirski [26].

In 2012, Gavinsky proposed a new quantum coin scheme
that allows classical verification of coins. In the version of a
quantum internet where quantum and classical computers will
work in synchrony this is an ideal scheme. We can leverage the
power of quantum bits without the requirement for every user
to possess quantum communication technology. Gavinsky’s
scheme is secure against adaptive adversaries, the coins are
exponentially hard to counterfeit, verification can be conducted
via insecure communication lines, the bank’s database is static
and can therefore be decentralized, and the scheme protects
against a malicious user masquerading as a bank. The coins
are limited to a certain number of verifications, which trade
off against the size of the coin (number qubits). However,
Gavinsky shows that this dependency is optimal.

In this paper we outline the methods necessary for imple-
menting Gavinsky’s quantum coin scheme. We specifically
describe the physical gates necessary for the creation and
verification of the quantum coins.

C. Notation

This section introduces the notation used in the paper.
1) Matrix representation of qubits: In Sec. II-A, we ex-

plained that a qubit can be in a superposition of both 0 and 1
and is represented as the vector:

q = α |0〉+ β |1〉 ,

where states |0〉 and |1〉 form a basis for the vector space and
α and β are complex numbers that indicate the amplitude of
the state. The amplitude squared tells us the probability of
the state occurring. The above vector describes one qubit that
can be in a superposition of two states. In this paper we are
generally working with 2 qubits, which have 4 possible states.
We call these states |00〉, |01〉, |10〉, |11〉. These states can
also be descibed in matrix form as:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 and |11〉 =


0
0
0
1

 .

TABLE I
OVERVIEW OF SIX QUANTUM GATES

Name Gate Matrix Description

Hadamard H
1√
2

[
1 1
1 −1

]
Maps |0〉 to |0〉+|1〉√

2

and |1〉 to |0〉−|1〉√
2

. It
sends a qubit into a
superposition.

Pauli-X X

[
0 1
1 0

]
Maps |0〉 to |1〉 and
vice versa. Equivalent
of the classical NOT
gate.

Pauli-Z Z

[
1 0
0 −1

]
It leaves the basis
state |0〉 unchanged
and maps |1〉 to -|1〉.
It is sometimes called
phase-flip.

CNOT •

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 Flips the second qubit
(the target qubit) if
and only if the first
qubit is |1〉. The
CNOT gate allows us
to entangle two input
qubits.

SWAP ×
×

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 The swap gate swaps
two qubits.

Identity I

[
1 0
0 1

]
Leaves the basis
states |0〉 and |1〉
unchanged. It can be
used to expand gates
so that they can work
on multiple qubits.

The four states together form the basis. Each state has a
certain probability of occurring, determined by the amplitudes
α, β, γ and δ of the wave function. The basis matrix times
the amplitude vector gives us the wave function for our two
qubits:

[
|00〉 |01〉 |10〉 |11〉

] 
α
β
γ
δ

 = α |00〉+β |01〉+γ |10〉+δ |11〉 .

For simplicity, given the context of the basis, we can just
report the amplitude matrix when describing the qubit pair.
We use the subscript A to denote an amplitude matrix:[
α β γ δ

]
A

.
2) Quantum gates: Both classical and quantum logic gates

take binary inputs and produce a single binary output. Quan-
tum gates, like classical gates, can be combined into a circuit.
One benefit of quantum gates is that, unlike classical gates,
they are always reversible. This means that no information is
lost when qubits travel through quantum gates.

In this paper we will use six quantum gates. In Tab. I, we
define each gate by stating the gate’s function, symbol and
matrix representation. To learn more about quantum gates see
[27].
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III. CREATION OF Q COINS

Let us describe Gavinsky’s definition of a coin, named Q-
coin, then we will describe how it is created.

Definition 2 (Q-coins): For each coin, a bank holds a secret
record consisting of k entries x1, . . . , xk s.t. xi ∈ {0, 1}4 (i.e.,
the secret record contains k strings of 4 classical bits).

A “fresh” Q-coin is then created corresponding to this record
(x1, . . . , xk). The coin consists of:
• k quantum registers consisting of 2 qubits each, where the
i’th register contains a specific state |α(xi)〉;

• a k-bit classical register P . This consists of k binary
markers that indicate whether the i’th quantum register
has been used in previous validation processes. The values
of P are initially set to 0k;

• a unique identification number.

Creation of the coins requires the conversion of the four
classical bits to two quantum bits. Algebraically, we use
the formula below for conversion. Because this conversion
satisfies the 4-bit version of the Hidden Matching Problem
(HMP) [28], Gavinsky calls these quantum registers HMP4-
states.

Definition 3 (HMP4-states): Let x ∈ {0, 1}4. The corre-
sponding HMP4-state is

|α(x)〉 def
=

1√
4

∑
1≤i≤4

(−1)xi |(i− 1)2〉 ,

where (·)2 denotes writing a number in base 2.

For example, the 4 classical bits x = 0110 are converted to
the state |α(0110)〉, which is

1√
4

((−1)0 |00〉+ (−1)1 |01〉+ (−1)1 |10〉+ (−1)0 |11〉)

=
1

2
(|00〉 − |01〉 − |10〉+ |11〉).

Up to normalisation, this can be represented by the following
amplitude matrix

[
1 −1 −1 1

]
A

.

A. Implementation

Q-coins require a quantum representation of 4 bit classical
strings. There are 16 possible combinations of 4 bits. Each of
these needs to be uniquely represented by a quantum register
according to the conversion specified in Def. 3. In this section,
we show how to prepare these 16 HMP4-states.

1) No entanglement: Given any two quantum bits. Let q1 =
α |0〉1 + β |1〉1 and q2 = γ |0〉2 + δ |1〉2, where the subscript
denotes the qubit the state belongs to. The state space of a
composite systems is the tensor product of the state spaces of
the components, so for our two qubits

q1 ⊗ q2 = (α |0〉1 + β |1〉1)(γ |0〉2 + δ |1〉2)

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉
≡
[
αγ αδ βγ βδ

]
A

For simple input states, α, β, γ and δ can each take either -1
or +1. Thus, by manipulating the state of the initial qubits, q1
and q2, we can create the following state spaces:

α = −1 β, γ, δ = 1 →
[
−1 −1 1 1

]
A

def
= |Q1〉

β = −1 α, γ, δ = 1 →
[

1 1 −1 −1
]
A

def
= |Q2〉

γ = −1 α, β, δ = 1 →
[
−1 1 −1 1

]
A

def
= |Q3〉

δ = −1 α, β, γ = 1 →
[

1 −1 1 −1
]
A

def
= |Q4〉

α, β = −1 γ, δ = 1 →
[
−1 −1 −1 −1

]
A

def
= |Q5〉

α, γ = −1 β, δ = 1 →
[

1 −1 −1 1
]
A

def
= |Q6〉

α, δ = −1 β, γ = 1 →
[
−1 1 1 −1

]
A

def
= |Q7〉

α, β, γ, δ = −1 →
[

1 1 1 1
]
A

def
= |Q8〉 .

All other combinations give repetitions of these 8 HMP4-
states, so we use entanglement to create the other states.

2) With entanglement: To convert the remaining 8 classical
strings, we begin by entangling the 2 input qubits, q1 and
q2. We then send these entangled qubits through gates to
manipulate them to create the 8 required quantum registers.

We create entangled states by taking simple inputs and
putting them through a Hadamard and a CNOT gate. The
Hadamard gate is applied to the first qubit and sends it into a
superposition. Then the CNOT gate is applied to both qubits.
This conditional gate creates an entanglement between the two
qubits. See Tab. I for the matrix description of both gates.

By specifying four different initial states of the qubits, q1
and q2, we can create four different entangled states. These
are called Bell states.

As an example, by starting both qubits in the eigenstate |0〉
we create the first Bell state, called |Φ+〉:

|0〉

|0〉

H

= |00〉+|11〉√
2
≡
[
1 0 0 1

]T def
=
∣∣Φ+

〉

Definition 4 (Bell States): The Bell states are four specific
maximally entangled quantum states of two qubits given by:∣∣Φ+〉 =

1√
2

(|00〉+ |11〉) ≡
[
1 0 0 1

]T
∣∣Φ−〉 =

1√
2

(|00〉 − |11〉) ≡
[
1 0 0 −1

]T
∣∣Ψ+〉 =

1√
2

(|01〉+ |10〉) ≡
[
0 1 1 0

]T
∣∣Ψ−〉 =

1√
2

(|01〉 − |10〉) ≡
[
0 1 −1 0

]T
Using the Bell states we can generate the required remaining

8 combinations by using a sequence of quantum gates.
For example, if we create the Bell state |Φ+〉 and pass it

through an extended Hadamard gate, (H ⊗ I), we can create
a ninth HMP4-state;

[
1 1 1 −1

]
A

:

|0〉

|0〉

H H

I

=
|00〉+|01〉+|10〉−|11〉

2
=
[
1 1 1 −1

]
A

Below we describe the input Bell state and the combination
of gates used to create the last 8 linear combinations. I denotes

Authorized licensed use limited to: Maynooth University Library. Downloaded on February 01,2022 at 10:14:18 UTC from IEEE Xplore.  Restrictions apply. 



the identity matrix, H denotes the Hadamard gate, ⊗ denotes
the tensor product (gates wired in parallel) and × denotes the
ordinary matrix cross product (serially wired gates).

(H ⊗ I)× |Φ+〉 → 1
2

[
1 1 1 −1

]
A

def
= |Q9〉

(H ⊗ I)× |Ψ+〉 → 1
2

[
1 1 −1 1

]
A

def
= |Q10〉

(H ⊗ I)× |Φ−〉 → 1
2

[
1 −1 1 1

]
A

def
= |Q11〉

(X ⊗ I)× |Q10〉 → 1
2

[
−1 1 1 1

]
A

def
= |Q12〉

(Z ⊗ I)× |Q11〉 → 1
2

[
1 −1 −1 −1

]
A

def
= |Q13〉

(Z ⊗ I)× |Q12〉 → 1
2

[
−1 1 −1 −1

]
A

def
= |Q14〉

(I ⊗ Z)× |Q12〉 → 1
2

[
−1 −1 1 −1

]
A

def
= |Q15〉

(X ⊗ I)× |Q14〉 → 1
2

[
−1 −1 −1 1

]
A

def
= |Q16〉

We have shown how to create 16 quantum registers which
uniquely represent the 16 classical combinations of 4 bits.
For creation of the quantum coin, the mapping of classical
bits to quantum bits can be hard-coded and only needs to be
completed once. As described in [29], there will be alternative
circuit configurations that will produce equivalent results.

IV. VERIFICATION

Let us now introduce Gavinsky’s coin verification protocol.
The protocol involves the key holder proving that they hold
the coin, without needing to reveal its full details to the bank.
It is a version of a zero knowledge protocol.

As described in Def. 2, coins with unique identification
numbers have been created by the bank. The bank holds a
secret record (x1, . . . xk) associated with the identification
number for each one of its created coins. A coin holder Bob
has one suchQ-coin which contains the following information:

Identification number
P1 |α(x1)〉
P2 |α(x2)〉
...

...
Pk |α(xk)〉

Pi marks whether the quantum register, |α(xi)〉, at position
i has previously been used for verification. The coin holder,
Bob, wishes to verify the coin’s authenticity.

The verification is based on the communication complexity
problem called the Hidden Matching Problem introduced by
Bar-Yossef et al. [28]. The Hidden Matching Problem (HMP)
is defined as follows:

Definition 5 (HMP4 condition): For x ∈ {0, 1}4 and
m,a, b ∈ {0, 1}, we say that (x,m, a, b) ∈ HMP4 if

b =

{
x1 ⊗ x2+m if a = 0

x3−m ⊗ x4 if a = 1

In the below protocol, Bob will provide values (ai, bi) to the
bank. The bank holds the values xi (the classical bit strings)
and mi. If ∀i (xi,mi, ai, bi) ∈ HMP4, then the bank can
verify that Bob does in fact hold the Q-coin corresponding
to the classical values xi. We will now describe the specific
steps involved and the methods for implementation.

A. Steps in Gavinsky’s protocol
Coin Holder Bank
Step 1: The holder sends the identification number on the coin
they hold to the bank.
ID number −→
Step 2: The bank uses the identification number to look up the
secret record of k classical strings, (x1, . . . , xk), which were
created for this coin.
The bank chooses t indexes (s.t. 3|t & t ≤ k) at random
between 1 and k and sends them to the coin holder:

Lbank ⊂ [k],
s.t. |Lbank| = t and 3|t

←− Lbank

Step 3: The holder randomly selects 2t/3 of the values sent
by the bank that have not been used for validation before, i.e.
Pi = 0:
Lholder ⊂ Lbank,
s.t. ∀i ∈ Lholder Pi = 0
and |Lholder| = 2t/3.
The holder sends Lholder to the bank and marks those elements
as used in the register P:
Pi = 1 ∀i ∈ Lholder

Lholder −→
Step 4: For each index in Lholder , the bank randomly chooses
an m equal to 0 or 1 and sends these back to the coin holder:

∀i ∈ Lholder

mi ∈ {0, 1}
←− mi

Step 5: The holder measures the quantum registers,
|α(xi)〉 ,∀i ∈ Lholder . The basis used for the measurement
is determined by the value m sent by the bank:
∀i ∈ Lholder

measure |α(xi)〉 ⇒ (ai, bi).
The coin holder sends the output values (ai, bi) corresponding
to each i ∈ Lholder to the bank:
(ai, bi)−→
Step 6: The bank checks whether (xi,mi, ai, bi) ∈ HMP4 for
all i ∈ Lholder (by Def. 5):

if (xi,mi, ai, bi) ∈ HMP4

∀i ∈ Lholder

←−Coin is Valid

Note that a bank produces fresh Q-coins but as a Q-
coin goes through more and more verification protocols, its
quantum registers lose their original content; when a quantum
state/register is measured it collapses. For each quantum
verification we measure 2t/3 quantum registers. Hence, we
collapse 2t/3 registers every time we verify the coin’s identity.
Depending on the level of trust we require and how long we
want the coin to last we can choose the value t.

We will expand on the steps in the above protocol and
translate them into computational steps. We begin by describ-
ing the implementation of Steps 1 to 4 in Sec. IV-B, the
implementation of Step 5 in Sec. IV-C, and finally we describe
Step 6 in Sec. IV-D.

B. Implementation of Steps 1–4

Steps 1–4 are classical steps. They involve classical corre-
spondence between Bob and the bank. Below we include the
code for both parties. The code is written for SimulaQron [30].
SimulaQron is a free quantum internet simulator. It allows
users to program their your own quantum internet applications.
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Code for bank — Alice
def verify_coin(register,t):

#Step 2
register_c = list(register)
m_s = []
list_of_random_indexes =

random.sample(register_c, t)
with CQCConnection("Alice") as bank:

# Step 2 cont; send the list of indexes
to the coin holder

bank.sendClassical("Bob",
list_of_random_indexes)

# Wait for receiver to send back subset
of list

#Receive output from step 3
index_list = bank.recvClassical()
rlist = list(index_list)
# Step 4; send randomly either 0 or 1

to correspond to each index in
Bob’s list.

for c,i in enumerate(rlist):
register_c.remove(i)
m_s.append(random.randint(0,1))

bank.sendClassical("Bob", m_s)

Code for coin holder — Bob
def verify_coin():

print("Verify Coin ID 1")
with CQCConnection("Bob") as Bob:

register_c = list(range(8))
#Receive output from step 2
list_of_random_indexes =

Bob.recvClassical()
#Step 3; chooses a subset of the index

list received of size 2t/3
t = len(list_of_random_indexes)
local_selection =

random.sample(list_of_random_indexes,
2*t/3)

#Step 3 cont; send subset to bank and
mark those indexes as used.

Bob.sendClassical("Alice",
local_selection)

for c,i in enumerate(local_selection):
register_c.remove(i)

#Receive output from step 4
m_s = Bob.recvClassical()

Additional code for our SimulaQron programs can be found
on Github in files bank.py and bob.py [31].

C. Step 5

The holder receives the values m corresponding to each
element of Lholder. The value m is used to specify the basis,
{v1, v2, v3, v4}, which each quantum register (with indexes
i ∈ Lholder) will be measured with respect to.

1) Method: Formally m is defined as an HMP4-query. The
bank queries Bob for the measurements of the i quantum
registers with respect to specific m values. The outputted
values will satisfy the HMP4 condition.

It is known that (x,m, a, b) ∈ HMP4 always [28].

Definition 6 (HMP4-queries): If m = 0, let

v1
def
=
|00〉 + |01〉
√
2

, v2
def
=
|00〉 − |01〉
√
2

, v3
def
=
|10〉 + |11〉
√
2

, v4
def
=
|10〉 − |11〉
√
2

otherwise if m = 1, let

v1
def
=
|00〉 + |10〉
√
2

, v2
def
=
|00〉 − |10〉
√
2

, v3
def
=
|01〉 + |11〉
√
2

, v4
def
=
|01〉 − |11〉
√
2

Measure |α(x)〉 in the basis {v1, v2, v3, v4}. Let

(a, b) =


(0, 0), if v1
(0, 1), if v2
(1, 0), if v3
(1, 1), if v4.

2) Implementation: Step 5 involves generating an output
(a, b) determined by the outcome of measuring with the basis
determined by m. As per Sec. II-A, the basis describes what
property of the qubit we are measuring and specifically what
gates the qubits are passed through. The values {v1, v2, v3, v4}
specify the column vectors that make up our basis matrix.

For example, if m = 0 then Bob is told to use the following
vectors to form the basis matrix:

v1 =


1
1
0
0

 , v2 =


1
−1
0
0

 , v3 =


0
0
1
1

 , v4 =


0
0
1
−1


The matrix formed by these vectors is equivalent to an

expanded Hadamard gate:

I ⊗H =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


If m = 1, the basis is an expanded Hadamard gate and a

SWAP gate:

SWAP× (I ⊗H) =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 .
Therefore, given each value of m Bob can send each

quantum register |α(xi)〉 through the appropriate sequence of
gates. The output will be either v1, v2, v3 or v4 and Bob will
return an (a, b) corresponding to the v each register returns.

This has shown how to construct the measurement vectors
for implementation using standard quantum gates.

D. Step 6
In the final step the bank receives a value (a, b) correspond-

ing to each index in Lholder. The bank knows the classical
value x ∈ {0, 1}4 corresponding to each index position and the
given m ∈ {0, 1}. So the bank uses Def. 5 to verify whether
∀i ∈ Lholder (xi,mi, ai, bi) ∈ HMP4 and thus verify the
coin. This is a classical step and involves checking whether
each value a sent by Bob gives the specified b output and thus
Bob’s provided (a, b) pairs satisfy the HMP4 condition.
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V. SUMMARY REMARKS

We briefly review properties of the quantum coin scheme.
Many of these arise from its basic design, rather than our
implementation.

a) Security: To compromise a coin an adversary must
supply the correct pair (ai, bi) corresponding to the m = 0
or 1 chosen by the bank for each register i. Gavinsky shows
that makes the coins exponentially hard to counterfeit [17].
In addition, the coins cannot be directly cloned due to the
quantum no-cloning theorem and can not be eavesdropped
without collapsing the wave functions. Furthermore, unlike
classical digital cash schemes, an intruder who pretends to
be the bank cannot steal a valid coin from the holder. In fact,
Gavinsky proves that this scheme is unconditionally secure
even against adaptive multi-round attackers [17].

b) Efficiency: The number of verifications that a Q-coin
can go through is limited and there is a trade off between the
size of the coin and the security of that coin. Gavinsky [17]
shows that this dependence is optimal up to a polynomial.

The database of the bank is static, and therefore decen-
tralised branches can exist which can perform verification. In
addition the classical communication channel with the bank
can remain unencrypted.

Our implementation uses common quantum gates. Other
pairings or other gates could prove more efficient as the
technology progresses. An integrated circuit of the gates could
be used to improve the efficiency of the system.

c) Limitation: One current limitation with quantum coins
is the need for the quantum entanglement to persist for the
lifetime of the coin. However, quantum entanglement is highly
susceptible to decoherence, even tiny changes in its environ-
ment, such as atomic motion, can cause the entanglement
to collapse. Most quantum entanglement technologies protect
against decoherence from tens of µs (micro-seconds) to tens
of seconds. However Ion Traps show promise with ~12 days
of entanglement lifetime. Unless a very high rate of coin
turnover is envisaged then quantum memories will be required.
Quantum memories are being developed [32], but still have
short-lifetimes, ~70µs, as to not be practical at present.

VI. CONCLUSION

In this paper, we have shown how to convert information
stored on classical bits to information stored on quantum
bits. We have demonstrated a quantum gate configuration
that allows the implementation of Gavinsky’s quantum coin
scheme [17]. We have provided a brief outline of the code
necessary for its deployment in SimulaQron [30]. We have
also provided additional descriptions for various aspects of the
protocol, building on the descriptions provided by Gavinsky.
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