
Evolving a Ms. PacMan Controller
Using Grammatical Evolution

Edgar Galván-López, John Mark Swafford,
Michael O’Neill, and Anthony Brabazon

Natural Computing Research & Applications Group,
University College Dublin, Ireland

{edgar.galvan,john-mark.swafford,m.oneill,anthony.brabazon}@ucd.ie

Abstract. In this paper we propose an evolutionary approach capable
of successfully combining rules to play the popular video game, Ms. Pac-
Man. In particular we focus our attention on the benefits of using Gram-
matical Evolution to combine rules in the form of “if <condition> then
perform <action>”. We defined a set of high-level functions that we think
are necessary to successfully maneuver Ms. Pac-Man through a maze
while trying to get the highest possible score. For comparison purposes,
we used four Ms. Pac-Man agents, including a hand-coded agent, and
tested them against three different ghosts teams. Our approach shows
that the evolved controller achieved the highest score among all the other
tested controllers, regardless of the ghost team used.

1 Introduction

Ms. Pac-Man, released in early 1980s, became one the most popular video games
of all time. This game, the sequel to Pac-Man, consists of guiding Ms. Pac-Man
through a maze, eating pills, power pills, and fruit. This task would be simple
enough if it was not for the presence of four ghosts that try to catch Ms. Pac-
Man. Each ghost has their own, well-defined, behaviour. These behaviors are the
largest difference between the Pac-Man and Ms. Pac-Man. In the original Pac-
Man, the ghosts are deterministic and players who understand their behavior
may always predict where the ghosts will move. In Ms. Pac-Man, the ghosts
have non-deterministic elements in their behavior and are not as predictable.

The gameplay mechanics of Ms. Pac-Man are also very easy to understand.
When Ms. Pac-Man eats a power pill, the ghosts change their status from inedible
to edible (only if they are outside their “nest”, located at the centre of the maze)
and remain edible for a few seconds. In the edible state they are defensive, and
if they are eaten, Ms. Pac-Man’s score is increased considerably (the first eaten
ghost gives 200 points, the second 400, the third 800, and 1,600 for the last).
When all the pills are eaten, Ms. Pac-Man is taken to the next level. Levels get
progressively harder by changing the maze, increasing the speed of the ghosts,
and decreasing the time to eat edible ghosts. The original version of Ms. Pac-
Man presents some very interesting features. For instance, Ms. Pac-Man moves
slightly slower than Ghosts when she’s eating pills, but she moves slightly faster

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 161–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 E. Galván-López et al.

when crossing tunnels. The most challenging element is the fact that the ghosts’
movements are non-deterministic. The goal of the ghosts is to catch Ms. Pac-
Man, so they are designed to attack her. Over the last few years, researchers
have tried to develop software agents able to successfully clear the levels and
simultaneously get the highest score possible (the world record for a human
player on the original game stands at 921,360 [4]). The highest score achieved by
a computer, developed by Matsumoto [5], based on a screen-capture system that
is supposed to be exactly the same as the arcade game, stands at 30,010 [4]. The
other top three scores achieved are 15640, 9000 and 8740 points, respectively [5].
It is worth pointing out that all of these methods used a hand-coded approach.

However, it is important to note that there has been work where researchers
have used a variety of artificial intelligence approaches to create Ms. Pac-Man
players. Some of these approaches state a goal of evolving the best Ms. Pac-Man
player possible. Others aim to study different characteristics of an algorithm
in the context of this non-deterministic game. Some previous approaches are
listed here, but will not be compared against each other due to differences in the
Ms. Pac-Man implementation and the goal of the approach.

One of the earliest, and most relevant, approaches comes from Koza [3]. He
used genetic programming to combine pre-defined actions and conditional state-
ments to evolve his own, simple Ms. Pac-Man game players. Koza’s primary
goal was to achieve the highest possible Ms. Pac-Man score using a fitness func-
tion that only accounts for the points earned per game. Work similar to [3] is
reported by Szita and Lõrincz [10]. Their approach used a combination of re-
inforcement learning and the cross-entropy method to assist the Ms. Pac-Man
agent in “learning” the appropriate decisions for different circumstances in the
game. More evolution of Ms. Pac-Man players was carried out by Gallagher [2].
He used a population-based incremental learning approach to help one Ms. Pac-
Man player “learn” how to improve its performance by modifying its different
parameters. Another, more recent, approach by Lucas [7] uses an evolutionary
strategy to train a neural network to play Ms. Pac-Man in hopes of creating the
best possible player.

The goal of our work is to successfully evolve rules in the form of “if
<condition> then perform <action>” to maneuver Ms. Pac-Man through the
maze, and at the same time, achieve the highest score possible. For this purpose
we are going to use Grammatical Evolution (GE) [8,1].

This paper is structured as follows. In the following section we describe how
GE works. In Sect. 3 we describe the high-level functions designed to evolve the
Ms. Pac-Man agent. In Sect. 4 we describe the experimental setup and Sect. 5
presents the results achieved by our approach, followed by a discussion. Finally,
Sect. 6 draws some conclusions.

2 Grammatical Evolution

In GE, rather than representing programs as parse trees, as in Genetic Pro-
gramming (GP) [3], a variable length linear genome representation is used.

Evolving a Ms. PacMan Controller Using Grammatical Evolution 163

This genome is an integer array with elements called codons. A genotype to
phenotype mapping process is employed on these integer arrays which uses a
user-specified grammar in Backus-Naur Form (BNF) to output the actual phe-
notype. A grammar can be represented by the tuple {N, T, P, S}, where N is
the set of non-terminals, T is the terminal set, P stands for a set of production
rules and, S is the start symbol which is also an element of N . It is important to
note that N may be mapped to other elements from N as well as elements from
T . The following is an example based on the grammar used in this work (Note:
the following is not the actual grammar, just a simplified version; see Fig. 2 for
the actual grammar):

Rule Productions Number
(a) <prog> ::= <ifs> | <ifs> <elses> (0), (1)

(b) <ifs> ::= if(<vars> <equals> <vars>){ <prog> } (0)
| if(<vars> <equals> <vars>){ <action> } (1)

(c) <elses> ::= else{ <action> } | else{ <prog> } (0), (1)

(d) <action> ::= goto(nearestPill) (0)
| goto(nearestPowerPill) (1)
| goto(nearestEdibleGhost) (2)

(e) <equals> ::= < | <= | > (0), (1), (2)
| >= | == (3), (4)

(f) <vars> ::= thresholdDistanceGhost (0)
| inedibleGhostDistance (1)
| avgDistBetGhosts | windowSize (2), (3)

To better understand how the genotype-phenotype mapping process works in
GE, here is a brief example. Suppose that we use the grammar defined previously.
It is easy to see that each rule has a number of different choices. That is, there
are 2, 2, 3, 5, and 4 choices for rules (a), (b), (c), (d), (e), and (f), respectively.
Given the following genome: 16 93 34 81 17 46, we need to define a mapping
function (i.e., genotype-phenotype mapping) to produce the phenotype. GE uses
the following function: Rule = c mod r, where c is the codon integer value and
r is the number of choices for the current symbol, to determine which produc-
tions are picked for the phenotype. Beginning with the start symbol, <prog> ,
and its definition, <prog> ::= <ifs> | <ifs> <elses> the mapping function is
performed: 16 mod 2 = 0. This means the left-most non-terminal, <prog> will be
replaced by its 0th production, <ifs> , leaving the current phenotype: <ifs> .

Because <ifs> has two productions and the next codon in the integer array
is, 93, <ifs> is replaced by: if(<vars> <equals> <var>){ <action> } . Follow-
ing the same idea, we take the next codon, 34, and left-most non-terminal,
<vars> and apply the mapping function. The results is 2, so the pheno-
type is now: if(avgDistBetGhosts <equals> <var>) { <action> }. Repeating
the same process for the remaining codons, we have the following expression:
if(avgDistBetGhosts <= inedibleGhostDistance){goto(nearestPowerPill) } .
It is worth mentioning that in this example, all the codons were used. How-
ever, cases may occur where some codons are not used or, during the genotype-
phenotype mapping, the end of the genome is reached and there are non-terminals

164 E. Galván-López et al.

remaining in the phenotype, causing it to be marked as invalid. If this is the case,
there are some options that one can use. For instance, the wrapping operator uses
the idea that if a phenotype is incomplete, then the process continues starting from
the first codon (from left to right) until a valid phenotype is built or the maximum
number of wraps has been reached. If the phenotype is still incomplete at the end
of this process, it will be necessary to assign the lowest possible fitness to the in-
dividual. As in GP, GE also uses crossover and mutation. The typical form of ap-
plying crossover in GE is selecting two genomes and randomly picking a crossover
point on each of them. All codons beyond these points are swapped between the
genomes. When applying a mutation, it is only necessary to select one genome
and then replace a codon at random. It is also possible to direct the search oper-
ators like crossover and mutation towards the derivation trees generated during
the genotype-phenotype mapping process, and thus operate as per standard GP.
In this study genetic operators are applied at the genome level.

3 Our GE Approach to Ms. Pac-Man

As highlighted by the literature there are many approaches one could take when
designing a controller for Ms. Pac-Man. We now describe the rule-based approach
we’ve taken. Broadly speaking, a rule is a sentence of the form “if <condition>
then perform <action>”. These rules are easy to read, understand, and more
importantly, they can be combined to represent complex behaviours.

A number of functions were implemented to be used as primitives in the
evolution of the Ms. Pac-Man controller (see Table 1). The aim of each of
these functions is to be sufficiently basic, allowing evolution to combine them
in a significant manner to produce the best possible behavior for the Ms. Pac-
Man controller. In other words, we provide hand-coded, high-level functions
and evolve the combination of these functions, pre-defined variables, and condi-
tional statements using GE. These functions were easy to implement, and can
be potentially very useful for our purposes. It is worth pointing out that we
do not consider these functions to be optimal. For instance, in the case of the
AvoidNearestGhost() function, we used a window that can provide some use-
ful information to Ms. Pac-Man regarding the location of a potential dangerous
ghost, but we could have also considered the idea of trying to guess the next
position of a ghost given its current location and direction, or keeping track of
all available paths in the entire maze given the location of the ghosts. It is also
important to mention that these functions are not exclusive. That is, suppose
when Ms. Pac-Man has eaten a power pill and is after a ghost, it may take a
path full of pills or it can take a path that contains power pills. The latter is not
an optimum scenario because it reduces significantly the chances of achieving
the highest score possible.

3.1 Hand-Coded Example

The code shown in Fig. 1 calls the functions described in Table 1. It is worth
mentioning that we tried different rule combinations with different values for the

Evolving a Ms. PacMan Controller Using Grammatical Evolution 165

Table 1. High-level functions used to control Ms. Pac-Man

Function Variable Description
NearestPill() npd In the original version of this function [4] the

agent finds the nearest food pill and heads
straight for it regardless of what ghosts are
in front of it. We modified it so that in the
event a power pill is found before the target
food pill, it waits next to the power pill until
a different condition is met.

NearestPowerPill() nppd The goal of this function is to go to the near-
est power pill.

EatNearestGhost() ngd When there is at least one edible ghost in the
maze, Ms. Pac-Man goes towards the nearest
edible ghost.

AvoidNearestGhost() ang Calculates the distance of the nearest inedi-
ble ghost in a “window” of size windowSize×
windowSize, given as a parameter set by
evolution, and returns the location of the far-
thest node from the ghost. This “window” is
a mask, where Ms. Pac-Man is at the center.

NearestInedibleGhost() nig Returns the distance from the agent to
the nearest inedible ghost. This func-
tion is used by the previously explained
AvoidNearestGhost().

variables (e.g., windowSize) and the code shown in Fig. 1 gave us the highest
score among all the combinations and different values assigned to the variable
that we tested. First, we count the number of edible ghosts. Based on this infor-
mation, Ms. Pac-Man has to decide if it goes to eat power pills, pills, or edible
ghosts. We will further explain this hand-coded agent in Sect. 5 where we will
compare it with the evolved controller. In the following section, the experimen-
tal setup is described to show how GE evolved the combination of the high-level
functions described in Table 1.

4 Experimental Setup

We use Lucas’ Ms. Pacman simulator [6]. It is important to mention that the
simulator only gives one life to Ms. Pac-Man and has only one level. The Ms. Pac-
Man implementation was tied into GE in Java (GEVA) [9]1. This involved cre-
ating a grammar that is able to represent what was considered the best possible
combination of the high level functions described in Table 1. This grammar can
be seen in Fig. 2. The fitness function is defined to reward higher scores. This is
done by adding the scores for each pill, power pill, and ghost eaten.

1 Available from http://ncra.ucd.ie/geva

166 E. Galván-López et al.

// edibleGhost counts for the number of edible ghosts.
windowSize = 13; avoidGhostDistance = 7; thresholdGhostDistanceGhosts = 10;
inedibleGhostDistance = Utilities.getClosest(current.adj, nig.closest, gs.getMaze());
switch(edibleGhosts){
case 0:{
if (inedibleGhostDistance < windowSize){

next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze());
} else if (numPowerPills > 0) {

if (avgDistBetGhosts < thresholdDistanceGhosts){
next = Utilities.getClosest(current.adj, nppd.closest, gs.getMaze());

} else {
next = Utilities.getClosest(current.adj, npd.closest, gs.getMaze());}

} else { next = Utilities.getClosest(current.adj, npd.closest, gs.getMaze());}
break;

}
case 1: case 2: case 3: case 4:{

if (inedibleGhostDistance < avoidGhostDistance) {
next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze());

}else {
next = Utilities.getClosest(current.adj, ngd.closest, gs.getMaze()); }

break;
}

}

Fig. 1. Hand-coded functions to maneuver Ms. Pac-Man

The experiments were conducted using a generational approach, a population
size of 100 individuals, the ramped half and half initialisation method, and the
maximum derivation tree depth, to control bloat, was set at 10. The rest of
the parameters are as follows: tournament selection of size 2, int-flip mutation
with probability 0.1, one-point crossover with probability 0.7, and 3 maximum
wraps were allowed to “fix” invalid individuals (in case they still are invalid
individuals, they were given low fitness values). To obtain meaningful results,
we performed 100 independent runs. Runs were stopped when the maximum
number of generations was reached.

5 Results and Discussion

5.1 The Best Evolved Controller

The best individual found by GE (Fig. 3) is quite different from the hand-coded
agent (Fig. 1). The first thing to notice are the differences in the values of the
variables used in the conditional statements. For instance, windowSize, which
is used by the function AvoidNearestGhost() has a different value. When we
hand-coded our functions, we set the value at 13, whereas the evolved code set
it at 19. Analysing these values, we can see that GE uses a wider window, so
Ms. Pac-Man can have more information about the location of ghosts.

Let us continue examining the evolved code. The first condition, if
(edibleGhosts == 0), asks if all the ghosts are in an inedible state (in this
state Ms. Pac-Man is unable to eat them) if so, it asks if there are power pills
available (numberPowerPills>0). If this condition holds true, then it executes

Evolving a Ms. PacMan Controller Using Grammatical Evolution 167

<prog> ::= <setup><main>
<setup> ::= thresholdDistanceGhosts = <ghostThreshold>; windowSize = <window>;

avoidGhostDistance = <avoidDistance>; avgDistBetGhosts = (int)adbg.score(gs);
ang.score(gs, current, windowSize);

<main> ::= if(edibleGhosts == 0){ <statements> } else{ <statements> }
<statements> ::= <ifs> | <ifs> <elses>
<ifs> ::= if(<condition>) { <action> } | if(<condition>) { <statements> }

| if(avgDistBetGhosts <lessX2> thresholdDistanceGhosts) { <actsOrStats> }
| if(inedibleGhostDistance <lessX2> windowSize) { <avoidOrPPill> }

<elses> ::= else { <action> } | else { <statements> }
<actsOrStats> ::= <action> | <statements>
<action> ::= next = getClosest(current.adj, <closest>, gs.getMaze());

| if (numPowerPills <more> 0){ <pPillAction> }
else{ next = getClosest(current.adj, npd.closest, gs.getMaze()); }

<closest> ::= npd.closest | ang.closest | ngd.closest
<avoidOrPPill> ::= <avoidAction> | <pPillAction>
<avoidAction> ::= next = getClosest(current.adj, <avoidClosest>, gs.getMaze());
<pPillAction> ::= next = getClosest(current.adj, <pPillClosest>, gs.getMaze());
<avoidClosest> ::= ang.closest
<pPillClosest> ::= nppd.closest
<condition> ::= <var> <comparison> <var>
<var> ::= thresholdDistanceGhosts | inedibleGhostDistance | avgDistBetGhosts

| avoidGhostDistance | windowSize
<ghostThreshold> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
<avoidDistance> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15
<window> ::= 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19
<comparison> ::= <less> | <more> | <lessE> | <moreE> | <equals>
<lessX2> ::= <less> | <lessE>
<less> ::= "<"
<more> ::= ">"
<lessE> ::= "<="
<moreE> ::= ">="
<equals> ::= "=="

Fig. 2. The grammar used in our experiments to evolve a Ms. Pac-Man controller using
the functions described in Table 1

the NearestPowerPill() method. This is quite an interesting sequence of con-
ditions/instructions because it tries to rapidly increase Ms. Pac-Man’s score by
eating a power pill and then heading to the nearest edible ghost (shown in the
second part of conditions/instruction). It is worth noting that this is very differ-
ent from the previously used, hand-coded approach (see Fig. 1), where it takes
a more conservative approach.

If we carefully analyse the last part of the evolved controller (see Fig. 3),
we can see that only the last instruction is executed (next=Utilities.
getClosest(current.adj, ngd.closest, gs.getMaze());). This is because
there is a condition that is never met: if (thresholdDistanceGhosts <=
windowSize). There is also another element worth mentioning. The function
NearestInedibleGhost() is never called by the evolved agent. These two ele-
ments are absent from the evolved controller indicating that evolution ignored
them for the purpose of maneuvering Ms. Pac-Man through the maze. The
evolved controller, however, achieved that highest score among all the Ms. Pac-
Man agents, as shown in Table 2.

168 E. Galván-López et al.

thresholdDistanceGhosts = 20; windowSize = 19; avoidGhostDistance = 14; avgDistBetGhosts =
(int) adbg.score(gs, thresholdDistanceGhosts);ang.score(gs, current, windowSize);
if (edibleGhosts == 0) { if (numPowerPills > 0) {

next = Utilities.getClosest(current.adj, nppd.closest, gs.getMaze()); }
}else { if (thresholdDistanceGhosts <= windowSize) {

next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze()); }
else {

next = Utilities.getClosest(current.adj, ngd.closest, gs.getMaze()); } }

Fig. 3. Evolved controller used to guide Ms. Pac-Man

5.2 Benchmarking Performance

In addition to the hand-coded agent and the evolved agent, we used three other
Ms. Pac-Man agents (implemented in the code developed by [6]) for comparison
purposes. The Random agent chooses one of five options (up, down, left, right,
and neutral) at every time step. This agent allows reversing at any time. The
second agent, called Random Non-Reverse, is the same as the random agent
except it does not allow Ms. Pac-Man to back-track her steps. Finally, the Simple
Pill Eater agent heads for the nearest pill, regardless of what is in front of it.

To compare all five different Ms. Pac-Man agents, three ghost teams already
implemented in [6] were used. The random ghost team chooses a random direc-
tion for each of the four ghosts every time the method is called. This method
does not allow the ghosts to reverse. The second team, Legacy, uses four different
methods, one per ghost. Three ghosts use the following distance metrics: Man-
hattan, Euclidean, and a shortest path distance. Each of these distance measures
returns the shortest distance to Ms. Pac-Man. The fourth ghost simply makes
random moves. Finally, the Pincer team aims to trap Ms. Pac-Man between
junctions in the maze paths. Each ghost attempts to pick the closest junction to
Ms. Pac-Man within a certain distance in order to trap her.

In Table 2, we show the results for the five different Ms. Pac-Man agents
vs. the three different ghost teams, described in the previous paragraph. As
expected, the results achieved by these agents versus ghosts are poor. This is
not surprising given their nature. It is very difficult to imagine how a controller
that does not take into account any valuable information in terms of both,
surviving and maximizing the score, can successfully navigate the maze. There
are, however, some differences worth mentioning. For instance, random agent
shows the poorest performance of all the agents explained previously. This is to
be expected mainly because of two reasons: it performs random movements and,
more importantly, it allows reversing at any time, so Ms. Pac-Man can easily
spend too much time going backwards and forwards in a small space. This is
different for the random non-reverse agent that does not allow reversing and as
a result of this achieves a higher score. The score achieved by the simple pill
eater is better compared with random and random non-reverse agents. This is
simply because there is a target of increasing the score by eating pills.

Now, let us take a look at the last two controllers: hand-coded and evolved.
The former was designed by the authors in order to achieve the highest score
possible. This was done by eating a power pill (if all the ghost are inedible)

Evolving a Ms. PacMan Controller Using Grammatical Evolution 169

Table 2. Results of the five different Ms. Pac-Man agents vs. three different ghost
teams over 100 independent runs. Highest scores are shown in boldface.

Ghost Team Minimum Maximum Standard Sum of
Score Score Deviation all Runs

Random Agent
Random Team 70 810 160.95 24,450
Legacy Team 40 200 31.75 8,670
Pincer Team 40 410 4.33 10,460

Random Non-Reverse Agent
Random Team 80 2,800 59.92 89,760
Legacy Team 80 5,310 74.40 69,950
Pincer Team 80 3,810 74.19 73,510

Simple Pill Eater Agent
Random Team 240 4,180 108.70 146,010
Legacy Team 250 5,380 107.04 154,720
Pincer Team 240 4,780 96.33 174,370

Hand-coded Agent
Random Team 180 11,220 242.68 579,590
Legacy Team 190 11,740 236.58 404,640
Pincer Team 790 12,820 327.10 409,040

Evolved Agent
Random Team 480 11,640 274.94 428,860
Legacy Team 470 12,350 311.60 394,560
Pincer Team 470 13,830 405.07 636,180

and then heading straight to the nearest edible ghosts while avoiding inedible
ghosts. Once a ghost has been eaten by Ms. Pac-Man, it returns to the ghost nest,
resets its status to inedible, and re-enters the maze. The big difference between
the hand-coded controller (depicted in Fig. 1) and the evolved controller (shown
in Fig. 3) is that the latter takes a more risk-based approach by heading for the
power pill (each of these awards 50 points) and then heading for edible ghosts
(without taking into account if there are inedible ghosts in the way of Ms. Pac-
Man), whereas the former takes a more conservative approach by taking into
account the positions of potential dangerous ghosts and if any of these are in the
path of Ms. Pac-Man, it tries to avoid the ghost(s). As can be seen in Table 2
the highest score, regardless of the ghost team used, was achieved by the evolved
controller.

6 Conclusions

This work proposes a method to evolve high-level functions, described in Table 1,
to maneuver Ms. Pac-Man through a maze where the goal is to achieve the
highest possible score while avoiding dangerous ghosts. To achieve this goal we
used GE for its flexibility in specifying rules in the form of “if <condition>

170 E. Galván-López et al.

then perform <action>”. These rules were combined by means of evolution and
the resulting evolved controller (Fig. 3) achieved the highest score (Table 2)
compared against four other controllers, including a hand-coded controller. All
competitors were played against three different ghost teams also described above.
As can be seen, the evolved controller is different from the hand-coded controller
(shown in Fig. 1) in the sense that the former takes a more risk-based approach
whereas the latter is more conservative by checking the positions of ghosts. It is
also important to note that the evolved controllers here did not match or exceed
the score of Matsumoto’s [5] (he used a hand-coded agent). However, this is not
discouraging due to the fact that our controller was only allowed one level and
one life where Matsumoto’s was given three initial lives, could earn more lives,
and had more than one level to play.

Acknowledgments

This research is based upon works supported by the Science Foundation Ireland
under Grant No. 08/IN.1/I1868.

References

1. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. Springer, Heidelberg (2009),
http://www.springer.com/engineering/book/978-3-642-00313-4

2. Gallagher, M.: Learning to play pac-man: An evolutionary, rule-based approach.
In: CEC 2003, The 2003 Congress on Evolutionary Computation, pp. 2462–2469.
IEEE, Los Alamitos (2003)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

4. Lucas, S.: Ms Pac-Man Competition (September 2009),
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html

5. Lucas, S.: Ms Pac-Man Competition - IEEE CIG 2009 (September 2009),
http://cswww.essex.ac.uk/staff/sml/pacman/CIG2009Results.html

6. Lucas, S.: Ms Pac-Man versus Ghost-Team Competition. (September 2009),
http://csee.essex.ac.uk/staff/sml/pacman/kit/AgentVersusGhosts.html

7. Lucas, S.: Evolving a neural network location evaluator to play ms. pac-man. In:
IEEE Symposium on Computational Intelligence and Games, pp. 203–210 (2005)

8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003),
http://www.wkap.nl/prod/b/1-4020-7444-1

9. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.:
GEVA - grammatical evolution in java (v 1.0). Tech. rep., UCD School of Computer
Science (2008)

10. Szita, I., Lõrincz, A.: Learning to play using low-complexity rule-based policies:
illustrations through ms. pac-man. J. Artif. Int. Res. 30(1), 659–684 (2007)

