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Abstract 
 

Analysis of the secondary structures of the standard proteins myoglobin, hemoglobin, 

lysozyme and α-chymotrypsin by CD spectroscopy resulted in excellent agreement of 

estimated fractional composition with that observed by x-ray crystallography. CD 

spectroscopy was found to be very accurate for estimating α-helix and random coil 

content, but considerably less so for estimating β-sheet. Conversely, FTIR 

spectroscopic analysis of the same proteins proved to be more accurate for β-sheet 

estimation than either α-helix or random coil. Overall, CD spectroscopy was found to 

be superior to FTIR spectroscopy for the quantitative analysis of protein secondary 

structure, however, the two techniques are highly complimentary for protein structural 

studies. Both CD and FTIR methods were found to be useful for protein stability 

studies, where CD is suited to analysing α-helix stability through CD222 protein melts, 

and FTIR is capable of investigating protein aggregation phenomenon  (together with 

2D correlation spectroscopy) and β-sheet stability.  

The anhydrobiotic AavLEA1 nematode protein was discovered to be a 

natively unfolded protein with an extended tertiary conformation. From FTIR melt 

experiments this protein was shown to resist temperature-induced aggregation and to 

act synergistically with the trehalose disaccharide in retarding the aggregation of 

cytochrome c. AavLEA1 was also shown to be capable of producing protein fibrils by 

adopting a completely helical structure in the presence of high concentrations of TFE. 

Additionally, titration with Ca2+ resulted in an increase of ordered secondary structure 

and demonstrated AavLEA1’s ability to sequester cations. 

A second nematode anhydrobiotic protein (P. sup DJ-1) was found to be 

structurally very similar to the human DJ-1 homolog and exist as an α/β-mixed β-

sandwich protein. Stability studies revealed that P. sup DJ-1 showed considerable 

temperature stability, both in terms of its helix domains and its resistance to 

aggregation. The structure of P. sup DJ-1 was found to be unaffected by high 

concentrations of H2O2, as was its temperature stability, leading to the conclusion that 

this protein functions as a molecular chaperone to relieve oxidative and/or heat stress, 

similar to current opinions on the functionality of the human homolog.[1] 



 ii

The Rab11-FIP3 homo-dimer predicted coiled coil protein fragment was 

confirmed by CD spectroscopy and TFE titration. For the Rab11-FIP2 homo-dimer, 

mutation of the valine residue 456 and the leucine residue 457 to glycine residues was 

found to destabilise the mutant relative to the wild-type. As such, these residues are 

concluded to be of central importance in the formation of the coiled-coil cap that 

protects the hydrophobic core from the aqueous environment.    

 

References: 

1 Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-

dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. 

Plos Biology 2(11):1764-1773, 2004. 
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Chapter I 

Introduction 

 

As a compliment to the discovery of new anhydrobiotic genes in nematodes it was 

desirable to develop a spectroscopic suite through which structural analysis of the 

proteins encoded by these genes could be performed. Because there was a need to 

examine the solution behaviour of protein structure, the spectroscopic techniques of 

circular dichroism (CD) and Fourier-transform infrared (FTIR) analyses were chosen 

as the most powerful methods available. In general, CD and FTIR spectroscopic 

protein structural analysis can be divided into those methods designed to study the 

secondary structures of proteins and those capable of investigating their tertiary 

structures. The spectrometer to be used for each type of analysis must be optimised 

for that particular spectroscopic technique and, therefore, it was decided to initially 

focus on designing a system capable of investigating the secondary structures of 

proteins. Therefore, far-UV CD and mid-IR FTIR spectrometers were selected as the 

primary tools for analysing protein secondary structure content. 

The study of protein structure by either CD or FTIR spectroscopy is a more 

global and less specific approach than the more involved and exhaustive methods of 

nuclear magnetic resonance (NMR) or x-ray crystallography spectroscopy. While 

both the latter techniques are capable of furnishing the precise molecular coordinates 

of a protein molecule (and, hence, a detailed description of both its secondary and 

tertiary structure), they nonetheless possess limitations that are important to the 

investigation of protein molecules. For example, neither technique is capable of 

studying a protein’s secondary structure as a dynamic system that responds to changes 

in its physical environment, but instead treat the protein as a static rigid structure. This 

is acceptable when only the absolute structure of a protein is required, but disqualifies 

both NMR and x-ray crystallography techniques from being able to examine proteins 

for structural variation. Because both CD and FTIR techniques can be rapidly 

performed on proteins in solution, they are ideal for studying their structural 

behaviour over a range of varying physiological conditions - a property that is of great 

interest to the biological characterisation of proteins in general.   
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The stringency of each spectroscopic technique in determining the conditions 

that the protein sample must fulfil, coupled with the difficulty for the biologist to 

achieve these conditions without compromising the protein’s structure, represents a 

considerable barrier to structural investigations. For x-ray crystallography the biggest 

challenge is to crystallise the protein and in proteins that contain significant random 

coil content this is very often impossible. Analysis of proteins by NMR requires very 

large amounts of protein in high concentration. In many cases it is difficult for the 

protein biologist to generate the amount of protein required and in such instances, 

analysis by NMR cannot be achieved. Where protein synthesis is difficult CD is of 

particular use, since the sensitivity of the CD technique is such that it requires only 

approximately 0.04 mg of protein to obtain its CD spectrum. CD analysis is somewhat 

restricted, however, in that it requires the protein sample to be free from 

contaminating detergents and other artefacts and is selective in terms of what buffer 

solutions may be used. Where such restrictions prevent analysis of a particular protein 

by CD, it is likely that the same protein sample may be analysed by FTIR – although 

FTIR analysis requires considerably more protein. In practical terms, therefore, 

protein CD and FTIR are highly complimentary techniques.  

 Biofluorescence is a phenomenon that can be used to measure distances 

between chromophores via the fluorescent resonance energy transfer technique 

(FRET) on a scale that is applicable to protein molecules. In the case of the AavLEA1 

protein, time-resolved biofluorescence was used to further investigate its solution-

phase protein structure, using a pulsed laser light source. Similar to CD and FTIR, 

FRET is a dynamic technique and it is most effective when used to investigate the 

binding of proteins to other molecules, insofar as energy transfer might occur upon 

protein-ligand association, but will be absent where no interaction is present. FRET 

may also be used to investigate the association of protein domains with one another as 

a function of the folding or unfolding of a protein or with the occurrence of a 

structural transition.  

Preparation of protein samples capable of being analysed by CD, FTIR or 

FRET within this work, involved considerable effort in the development of protein 

expression, purification and site-directed mutation (SDM) systems. Protein expression 

requires the identification of a specific protein gene from within the organism’s 

genome and the engineering of this gene into a vector plasmid. The plasmid is then 
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transformed into an E. coli cell and the cell’s mechanisms are used to express the 

protein from the introduced gene. Purification generally relies on a modification of 

the protein in question at the genetic level, such that it contains an additional amino-

acid sequence tag. An example of this is the introduction of a His-tag region, which is 

composed of repeated histidine residues, at one end of the resulting fusion protein. 

The His-tag can then be used to purify the protein by affinity chromatography. 

Investigation of the structural consequences of altering single residues within a 

protein’s primary sequence may be achieved using SDM. Considering that some 

genetic diseases are the result of a single point mutation within a gene, it is important 

to compare the structural profile of the native and mutated protein in such cases.  

Upon installation of the CD, FTIR and FRET instrumentation the immediate 

task of validating each technique was necessary to provide confidence in the accuracy 

of each system. For the CD and FTIR systems a comprehensive analysis of a number 

of standard commercial proteins was performed. This included a quantitative analysis 

of each protein’s secondary structure by both CD and FTIR methods and the results of 

these tests could be compared with the known crystal structure of each protein. 

Protein FTIR melt experiments were also performed for each standard protein in order 

to examine the protein unfolding process and two dimensional correlation 

spectroscopy was used to investigate the sequence of this process. The FRET 

experiment was validated using fluorescently-labelled BSA, whereby FRET was 

detected by both steady-state and time-resolved luminescence spectroscopy. 

An investigation of the secondary structure of the anhydrobiotic AavLEA1 

nematode protein from the nematode Aphelenchus avenae, which is up-regulated in 

response to desiccation, was performed using CD and FTIR spectroscopy. A 

subsequent examination of the possible functioning of AavLEA1 was carried out by 

monitoring its structural variation in response to a variety of physiological changes 

and the results of these tests were considered in the context of current models 

describing the possible roles of similar anhydrobiotic proteins. To this end the tertiary 

structure of AavLEA1 was also examined using the FRET technique by introducing a 

single cysteine residue at a specific location via SDM and labelling this cysteine with 

one of two different fluorophores. The occurrence of energy transfer between the lone 

tryptophan residue within AavLEA1 and the site-specifically incorporated 

fluorophore was used to determine their distance apart and from this the degree of 
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extendedness or compactness of the protein backbone was revealed. The role that 

AavLEA1 might play in stabilising the secondary structures of other proteins was 

investigated by FTIR melt experiments and the possible synergistic functioning with 

the disaccharide trehalose was considered in this regard. 

A DJ-1 homolog was discovered as a second anhydrobiotic protein that 

became up-regulated in response to desiccation of the panagolaimus superbus 

nematode. Deleterious mutations within an homologous human DJ-1 have been 

associated with the genetic condition of early-onset Parkinson’s disease. One of the 

primary functions of the DJ-1 family of proteins is to combat oxidative stress within 

cells by acting as a molecular chaperone to preserve the structures of complex protein 

molecules. The x-ray crystal structure of the human DJ-1 protein has been solved and, 

in an effort to understand possible structural and functional similarity of the novel 

nematode DJ-1, its secondary structure was examined by both CD and FTIR methods.  

The Rab11-FIP proteins are a group of Rab11 interacting proteins that 

complex with the Rab11 protein, via a Rab binding domain possessed by all Rab11-

FIP’s, to create a protein complex that functions in the trafficking of vesicles to 

different regions of the cell. The Rab11-FIP2 and Rab11-FIP3 proteins are understood 

to first self-associate and form homo-dimers before they interact with Rab11 proteins 

to generate the functional complex. X-ray crystallography has shown that the self-

association of the Rab11-FIP2 protein is by way of a coiled-coil interaction. As a 

confirmation to the nature of Rab11-FIP3 homo-dimer formation, the structure of the 

predicted coiled-coil homo-dimer protein fragment was examined using CD 

spectroscopy. For the Rab11-FIP2 protein, for which the coiled-coil interaction has 

been observed, the importance of the coiled-coil “cap” was examined by performing 

SDM on residues in this region and then analysing the structures and stabilities of the 

resulting mutants by both CD and FTIR spectroscopy. 
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Chapter II 

Far-UV Circular Dichroism and Fluorescent 

Resonance Energy Transfer Spectroscopy 
 

II.1 The Use of Polarised Light in Spectroscopy 

II.1.1 The Polarisation of Light 

Plane polarised light differs from normal non-polarised light in that the electric 

vectors of all photons, which describe both the phase and the polarity of the light, are 

confined to a single xy-plane, whereas for non-polarised light a photon’s electric 

vector may have a random direction. For circularly polarised light the electric vector 

rotates uniformly about the direction of propagation of the light by 2π during each 

cycle and, when observed opposite to the direction of light propagation, rotation is 

either clockwise or anticlockwise for right or left circularly polarised light, 

respectively. Therefore, the electric vector of circularly polarised light traces out 

either a right- or left-handed helix, depending on whether it is right or left circularly 

polarised. Figure II.1 illustrates a vector representation of the polarisation character of 

both plane polarised and circularly polarised light. Circular dichroism (CD) 

spectroscopy involves stimulating molecules to undergo electronic transitions from 

lower to higher energy levels using circularly polarised light. 

 

 

 

 

 

 

 

 

a

b

c

a

b

c

Figure II.1. Illustration of the polarisation of li ght.  a, b and c illustrate plane polarised, right 
circularly polarised and left circularly polarised light, respectively. The solid arrows show the 
instantaneous spatial direction of the electric vector, while the dashed arrows depict the propagation 
direction of the light. The variation in the polarity of the electric vector is shown to the right of each 
illustration. 
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II.1.2 Optical Retardation and the Generation of Circularly Polarised Light 

Figure II.2 shows that plane polarised light can be decomposed into left and right 

circularly polarised components that are in-phase and of equal magnitude. When 

incident at 45o to the optic axis of an optically active crystal plane polarised light can 

be resolved into two orthogonal components: the extraordinary wave and the ordinary 

wave. The extraordinary wave lies in the same plane as the original plane polarised 

light, the so-called optic axis, whereas the ordinary wave lies in a perpendicular plane. 

A retardation plate affects plane polarised light by selectively retarding the ordinary 

wave and the degree to which the ordinary wave is retarded depends upon the 

thickness of the retardation plate. Passing plane polarised light through a λ/2 

retardation plate causes a complete offset in the phases of the extraordinary and 

ordinary waves, with the result that the emerging plane polarised beam has its optic 

axis rotated by an angle of 90o. If, however, plane polarised light is passed through a 

λ/4 retardation plate the extraordinary and ordinary waves are offset so that the zero 

of one wave corresponds with the peak of the other. The result is that plane polarised 

light passing through a λ/4 retardation plate exits as circularly polarised light.  

In arriving at a classical expression for left and right circularly polarised light, 

one starts by considering the extraordinary and ordinary waves as x- and y-polarised 

electric vectors, Ex and Ey, which propagate along the z direction and are described by 

the equations 
















 −=
c

nz
tEx πν2cos0iE                                             (II.1) 

and 
















 −=
c

nz
tEy πν2cos0jE                                            (II.2) 

where i and j  are unit vectors along the x and y axes, respectively, ν is the radiation 

frequency, t is time, n is the refractive index of the medium and c is the velocity of 

light in vacuo. To simulate the condition for the relative phases of the extraordinary 

and ordinary waves for circularly polarised light a phase difference of π/2 is 

introduced to the y-polarised electric vector, leading to 
















 −±=
c

nz
tE πν2sin0jEy                                            (II.3) 
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The vector addition of Equations II.1 and II.3 gives the required expressions for left 

and right circularly polarised light, E+ and E-, respectively, where 
























 −+














 −=+

c

nz
t

c

nz
tE πνπν 2sin2cos0 jiE         (II.4)  

and 
























 −−














 −=−

c

nz
t

c

nz
tE πνπν 2sin2cos0 jiE         (II.5) 

 

II.1.3 Optical Rotatory Dispersion 

Plane polarised light exiting an optically active transparent medium has an optic axis 

that is non-parallel to the original plane polarised light. This ability of an optically 

active medium to rotate the plane of plane polarised light depends on it having an 

unequal refractive index for left and right circularly polarised light, i.e. nL≠ nR, where 

n refers to the refractive index. This phenomenon, measured over a range of 

wavelengths, is referred to as optical rotatory dispersion (ORD) and ORD is 

commonly used to study the optical activities of materials by characterising them in 

terms of the angle through which they rotate the optic axis of plane polarised light. 

The optical activity of a material is quantified by its specific rotation, [α], as  

[ ]
blld ′

== α
ρ

αα                                                                (II.6) 

where α is the observed rotation in degrees, l is the pathlength in decimetres, d is the 

material density in grams per cubic centimetre (gcm-3), ρ is the fraction per weight of 

the optically active substance and b′ is the concentration in gcm-3. Fresnel’s equation 

for α in radians per unit pathlength, as measured in the same units as λ, is given by 

( )
λ

πα RL nn −
=                                                                 (II.7) 

 The occurrence of a concentration parameter in Equation II.6 allows an 

expression for the molar rotation, [M], to be defined as  

[ ] [ ] ( ) lbbl

M
MM r

r

ααα 100

100
10 2 =

′
=×= −                             (II.8) 
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where Mr is the molecular weight of the optically active material, l is the pathlength in 

cm and b is the concentration in mol.L-1. The molar rotation is then expressed in units 

of degree square centimetres per decimole (deg cm2 dmol-1). Figure II.2a illustrates 

the resolution of the plane polarised resultant electric vector into its left and right 

circularly polarised components. Figure II.2b shows the rotation of the plane of 

resultant plane polarised light by an angle α when circularly polarised light is passed 

through a transparent dextrorotatory medium.  

 

 

 

 

 

 

 

 

 

 

II.1.4 Circular Dichroism and Elliptically Polarise d Light 

Since CD stimulates the upward transitions of electrons from lower to higher energy 

levels, an absorption process must be involved and, accordingly, circular dichroism is 

defined as the absorption differential of left versus right circularly polarised light, 

where dichroism refers to the differential absorption of light polarised in two 

directions as a function of frequency.  

An important correlation exists between an optically active material’s 

refractive index and its absorption extinction coefficient for circularly polarised light, 

such that performing a Kronig-Kramers transformation on the ORD spectrum of an 

optically active material returns its absorption spectrum and vice versa. The 

absorption indices kL and kR, for left and right circularly polarised light, respectively, 

are related to the refractive indices nL and nR such that, at wavelengths where an 

optically active material is transparent, if nL>nR then kL>kR at wavelengths where the 

L R
Resultant

L
R

Resultant

α

a b

L R
Resultant

L
R

Resultant

α

a b
Figure II.2. Illustration of ORD for a dextrorotato ry medium. a Before entering 
the dextrorotatory medium the electric vectors of both right and left circularly 
polarised light combine to produce a plane polarised resultant parallel to the optical 
axis, as defined by the dotted vertical line. b After passing through the dextrorotatory 
medium both right and left circularly polarised light combine to produce a plane 
polarised resultant, which is now oriented at an angle α from the optical axis. 
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material absorbs. Therefore, optically active materials that are non-transparent in 

certain wavelength regions necessarily exhibit CD spectra. Optical rotation over such 

non-transparent regions is known as anomalous ORD. 

Figure II.3 illustrates the combined effects of anomalous ORD and CD on 

circularly polarised light as it exits a dextrorotatory absorbing material. Due to the 

greater absorption of left over right circularly polarised light, the resultant electric 

vector is no longer composed of equal amounts of left and right circularly polarised 

components and this inequality gives rise to a resultant that is no longer plane 

polarised, but instead is elliptically polarised.  The angle α between the major axis of 

the ellipse and the plane of the incident polarised light is the effect of anomalous 

ORD, whereas the angle ψ is the material’s ellipticity, which is defined as the tangent 

of the ratio of the major and minor axes of the ellipse described by the resultant of the 

exiting elliptically polarised light, as follows 

( )
( )LR

LR

EE

EE

+
−

=ψtan                                                         (II.9) 

where EL and ER are the magnitudes of the left and right circularly polarised 

components of the elliptically polarised light. The major and minor ellipse axes 

correspond to the sum and difference in the amplitudes of the two circularly polarised 

components on emerging from the material, respectively. For the purpose of clarity, 

the magnitude of the elliptically polarising effect of CD has been greatly exaggerated 

with respect to the anomalous ORD effect in Figure II.3. 

The amplitude of the electric vector over a unit pathlength decreases as the 

light passes through the absorbing material according to 








 −=
λ
πk

EE
2

exp0                                                           (II.10) 

Since both (kL – kR) and ψ are always very small, approximating tanψ as ψ and 

considering only the first two terms in the exponential of Equation II.10 is reasonable, 

with the result that from Equations II.9 and II.10 the following analogous expression 

arises for the ellipticity, in terms of the absorption indices, kL and kR, as to that of 

Fresnel’s equation II.7 for optical rotation, α, which is expressed in terms of the 

refractive indices, nL and nR; 
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( )
λ

πψ RL kk −=                                                                  (II.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also, because the intensity of light, I, is proportional to the square of the amplitude of 

the electric vector, the following equation can be written; 
















=






=
λ
πk

I

I
A

4
exploglog 10

0
10                                    (II.12) 

Combining Equations II.11 and II.12 gives 

ψ2100.3 −×≈∆A                                                                (II.13) 

R

L

α
ψ

Resultant

R

L

α
ψ

Resultant

Figure II.3. Illustration of the combined effects of ORD and CD on the polarisation 
of plane polarised light after passing through a dextrorotatory optically active 
absorbing medium. The vertical dotted line indicates the optical axis of resultant plane 
polarised light before entering the medium and prior to ORD. α is the angle by which the 
optical axis is rotated when exiting the medium, resulting from ORD. The two dotted 
circles represent the elliptically polarised component left and right circularly polarised 
electric vectors exiting the medium over a complete cycle. The ellipse represents the 
electric vector resultant of the left and right circularly polarised light exiting the medium 
over a complete cycle. The magnitudes of all electric vectors are proportional to the 
lengths of the arrows. 
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where ψ is in degrees. As for the case of optical activity, a material’s CD is quantified 

in terms of its molar ellipticity, [θ], as defined by the equation 

[ ] ( ) lbbl

M r ψψθ 100

100
=

′
=                                                         (II.14) 

where [θ] has the same units as the molar rotation, [M], of deg cm2 dmol-1. The CD 

extinction coefficient, ∆ε, is defined as the difference in the left and right circularly 

polarised extinction coefficients and is given by 

lb

A
RL

∆=−=∆ εεε                                                            (II.15) 

Therefore, the relationship between molar ellipticity and ∆ε can be expressed as 

[ ] 2298θ ε= ∆                                                                     (II.16) 

 

II.1.5 The Relationship Between Absorption, CD and ORD Spectra 

The relationship between the absorption, CD and ORD spectra of a dextrorotatory 

molecule is shown in Figure II.4. Because the CD spectrum represents the differential 

between the absorption of left versus right circularly polarised light, CD bands of an 

optically active molecule will, therefore, be less intense than the corresponding 

absorption bands. To a reasonably good approximation the anomalous ORD spectrum 

results from taking the second derivative of the CD spectrum with respect to 

frequency. More precisely, the ORD and CD spectra are related by a Kronig-Kramers 

transformation, but by using the relation between dispersion and absorption, a simple 

semi-empirical conversion between ORD and CD can be arrived at and is given as 

[ ] [ ] [ ] maxminmax 4028 ε∆⋅=−= MMA                                 (II.17) 

and 

( )minmax925.0 ννν −=∆                                                    (II.18) 

where ∆ν is the CD bandwidth at half-maximum intensity and νmax and νmin are the 

maximum and minimum of the anomalous ORD. 
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II.1.6 The Stimulation of Chiral Electronic Transit ions by Circularly Polarised 

Light  

An optically active electronic transition involves a helical displacement of charge, 

which can be understood in terms of the superposition of a linear charge displacement 

component and a circular charge displacement component. This description of a chiral 

transition makes sense in that photons may only interact with electrons to stimulate 

transitions from lower to higher electronic energy levels if the path of the electron in 

travelling from the lower to the higher energy level coincides with the path of the 

photon, which is the case for both left and right circularly polarised light, since the 

electric vectors of both left and right circularly polarised light in fact describe a helix 

in three dimensional space when the propagation of light is taken into account. Since 

a circular motion of charge gives rise to a magnetic moment, a chiral electronic 

transition has both an electronic and a magnetic transition dipole moment, 

corresponding to the linear and circular charge displacement, respectively, with both 

described by electric vectors that run either parallel or antiparallel to each other, 

according to whether the electron traverses a right or left handed helical path, 

respectively. 

0

-

+

Wavelength

∆ν ∆εmax

[A]0

-

+

Wavelength

∆ν ∆εmax

[A]

Figure II.4. Absorption, CD and ORD spectra for a single electronic transition of a 
dextrorotatory optically active molecule. The solid, dashed and dotted lines represent the 
absorption, CD and ORD simulated spectra, respectively. ∆εmax is the extinction coefficient 
differential characterising the CD spectrum and ∆ν is the CD bandwidth at half maximum 
intensity. In moving from higher to lower wavelength the ORD spectrum describes a 
minimum followed by a maximum and, as such, displays a negative Cotton effect. 
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 The first selection rule for an optically active electronic transition is that there 

must exist non-zero electronic and magnetic transition dipole moments. The electric 

and magnetic dipole intensities, De and Dm, respectively, determine the strength of 

absorption of circularly polarised light, which are reflected in the probability of the 

electronic transition and are given by the square of the electric and magnetic dipole 

transition moments: 

2ˆ 〉ΨΨ〈= jeie µD                                                          (II.19) 

and 

2ˆ 〉ΨΨ〈= jmim µD                                                        (II.20) 

where eµ̂  and mµ̂  are the electric and magnetic dipole moment operators and iΨ  and 

jΨ  are the ground and excited state wavefunctions, respectively. De is generally much 

larger than Dm and, therefore, is mostly responsible for the absorption intensity.  

 

II.1.7 The Rotational Strength 

The absorption intensity and, hence, the area of the CD band for an optically active 

electronic transition of a chiral material is quantified by means of a parameter known 

as the rotational strength, R, in a similar manner to which the electric dipole strength, 

or oscillator strength, of a non-chiral transition determines its absorption band area. 

The rotational strength has the units erg⋅cm3 and is experimentally defined as 

39
2.295 10

3
32

hc
R d d

N
A

ε ε
λ λ

π λ λ

∆ ∆−
∫ ∫= = ×
   
   
   

              (II.21) 

and theoretically defined as the imaginary part of the scalar product of the electric and 

magnetic dipole transition moments: 

{ }〉ΨΨ〈⋅〉ΨΨ〈= jmijeiR µµ ˆˆIm                                                           (II.22) 

where Im indicates that the imaginary part is to be taken, since mµ̂  is purely 

imaginary. Alternatively, Equation II.21 can be written as 

φµµ cosmeR =                                                                    (II.23) 
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where µe and µm are the magnitudes of the electric and magnetic transition dipole 

moments and φ  is the angle between them. 

 

II.2 The Circular Dichroism of Peptides and Proteins 

Protein CD consists of both vibrational and electronic CD. Biologists have selected 

electronic CD, referred to as ECD or, more commonly just CD, over vibrational CD 

(VCD) as the method most suited to the study of proteins and their structures and, 

therefore, ECD spectra comprise the majority of the literature relating to the chiral 

properties of proteins. Protein CD is divided into three distinct wavelength regions, 

according to what aspect of the protein is under investigation: far-UV CD involves 

spectroscopic investigations at wavelengths below 250 nm, near-UV CD is between 

250 and 300 nm and near-UV-visible CD is between 300 and 700 nm.  Near-UV CD 

is less commonly employed for protein investigations, although it does find 

application when information about a protein’s tertiary structure is sought. 

The chromophores for far- and near-UV CD protein spectroscopy are the 

amide groups of the peptide backbone and the aromatic residue side-chains, 

respectively. The peptide group has approximately a tenfold larger extinction 

coefficient than an aromatic amino-acid side-chain in the far-UV wavelength region 

and, therefore, is the dominant chromophore giving rise to far-UV CD spectra. Near-

UV-visible protein CD can be used for secondary structural investigations of proteins 

containing chromophoric prosthetic groups. For example, iron-sulfur proteins, heme 

proteins and flavo proteins all display CD bands above 300 nm, where the 

chromophores are the prosthetic groups.  

 

II.2.1 Protein Far-UV CD 

The most widely used application of electronic CD spectroscopy to proteins is 

far-UV CD and this is used to characterise a protein in terms of its secondary 

structure. Before interpreting a protein’s far-UV CD spectrum, the spectral intensity 

must be normalised with respect to protein concentration and this is achieved by 

expressing the spectral intensity in terms of molar ellipticity [θ], in accordance with 

Equation II.14, as 



                                        Chapter II  Far-UV Circular Dichroism and FRET Spectroscopy 

 15 

[ ] ( )10 c l

θθ =
× ×

                                                         (II.24) 

where θ is the spectral intensity in millidegrees, c is the concentration of the protein 

sample in moles/L and l is the optical pathlength in cm. The units of [θ] are, therefore, 

degrees cm2 per decimole. Sometimes, the additional step of expressing the CD of a 

protein in terms of its mean residue molar ellipticity [θ]MRW is performed, whereby 

[ ] ( )10MRW
rc l

θθ =
× ×

                                                   (II.25) 

where cr is the mean residue molar concentration and corresponds to the molar 

concentration of the protein multiplied by the number of peptide bonds in the protein.  

Although the peptide group in isolation exhibits a plane of symmetry and is, 

therefore, achiral and does not exhibit intrinsic CD, its location within the highly 

unsymmetrical peptide backbone acts to confer optical activity, making it an extrinsic 

chromophore. The aromatic amino-acid side-chain chromophores for near-UV CD 

spectroscopy are considered as intrinsic chromophores. The classification of protein 

CD into either intrinsic or extrinsic CD is done on the basis of whether the 

chromophore is, or is not, part of the protein, and not on whether that chromophore 

exhibits either an intrinsic or extrinsic CD signal. Therefore, near- and far-UV CD are 

examples of intrinsic CD, with near-UV-visible CD representing extrinsic CD. 

 

II.2.2 Electronic Transitions of the Peptide Backbone 

Figure II.5c shows the far-UV peptide backbone amide chromophore along with the 

magnetic dipole and electric dipole transition moments. The condensed phase amide 

far-UV CD is characterised by one nπ∗ and two ππ∗  electronic transitions, as shown 

in Figure II.6. The nπ* transition gives rise to a CD band centred around 220 nm and 

the π0π* and π+π* transitions give CD bands at around 190 and 140 nm, respectively.  

Owing to the lack of symmetry of the amide chromophore within a peptide 

backbone, the nπ∗ transition is not strictly electronically forbidden, as is the case for 

aldehydes and ketones, and exists as a very weak transition. The energy of the peptide 

backbone amide nπ∗ transition is sensitive to hydrogen bond formation, to the extent 

that in apolar solvents the nπ∗ band is red-shifted to 230 nm, while in polar 
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environments it is blue-shifted to 210 nm. The nπ∗ transition involves a circular 

displacement of charge and, therefore, it is magnetically allowed. The magnetic dipole 

transition moment is oriented along the carbonyl bond with a magnitude of 

approximately one bohr magneton. The two ππ* transitions are oriented 

approximately parallel (π0π*, NV1) and perpendicular (π+π*, NV2) to the C-N bond 

direction. Since both ππ* transitions involve a linear displacement of charge, they are 

both electrically allowed and magnetically forbidden, but when the amide group is 

embedded within a peptide backbone the ππ* transitions give rise to CD bands at 190 

and 140 nm for the NV1 and NV2 transitions, respectively. 
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Figure II.5. The nππππ* and ππππ0ππππ* electronic transitions stimulated by the absorption of far-UV 
circularly polarised light. a The amide nπ* transition involves the electronic transition of the 
lone pair electrons on the carbonyl oxygen into the π* carbonyl antibonding orbital. This 
transition involves a circular displacement of electric charge, corresponding to an electric 
quadrupole moment, Q, and, therefore, gives rise to a magnetic transition dipole moment, mnπ* . 
As such, the amide nπ* transition is electrically forbidden and magnetically allowed. b The π0π* 
transition involves a linear displacement of charge from the nitrogen atom towards the centre of 
the carbonyl bond, therefore, giving rise to an electronic transition dipole moment, µπ0π*. The
π0π* transition is, therefore, electrically allowed and magnetically forbidden. c The amide 
chromophore responsible for the far-UV CD signal of peptides. mnπ* extends directly from and in 
the same direction as the carbonyl bond while µπ0π* is offset from the N-O axis by 9.1o and 
points towards the centre of the carbonyl bond. Although neither the nπ* nor the π0π* transitions 
are intrinsically chiral, since for the nπ* transition an electric transition dipole moment is lacking 
and the π0π* transition is without a magnetic dipole transition moment, the lack of symmetry of 
the peptide backbone generates a chiral environment and so induces chirality to both transitions. 
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II.2.3 Exciton Coupled-Oscillator Interactions and Protein Secondary Structure 

The peptide backbone amide ππ* and nπ*  transitions also interact with each other in 

any of three types of mechanisms: Coupled oscillator exciton interactions can occur 

between degenerate or nearly degenerate ππ*  transitions on separate peptide groups, 

in a mechanism referred to as µ-µ coupling; mixing between the nπ* and 

ππ*  transitions on the same peptide group give rise to the so called one-electron 

effect; and where the same mixing is between separate peptide groups there occurs the 

effect known as µ-m coupling. Each of these three mechanisms has a geometrical 

dependence and it is this dependence that links the far-UV CD spectrum of a protein 

to its secondary-structure, since the energies of the nπ* and ππ*  transitions are 

perturbed by the extent to which they interact. Moffitt was able to explain the CD 

signal of an α-helical polypeptide by taking account of the exciton coupled-oscillator 

effect, or µ-µ coupling, in a pioneering work that laid the foundations for the 

interpretation of protein CD spectra.[3]  

Protein CD spectra are interpreted, on some level at least, by means of CD 

spectra generated by model peptide fragments, which are representative for each of 

the characteristic structural motifs that combine to form the individual and varied 

secondary-structures of all proteins. These characteristic secondary structures are 
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Figure II.6. Energy level diagram illustrating the optically active peptide 
backbone nπ∗π∗π∗π∗,,,, ππππ0000π∗ π∗ π∗ π∗ ((((NV1) and ππππ++++π∗ π∗ π∗ π∗ ((((NV2)     electronic transitions. The lower 
energy nπ∗ transition occurs at an approximate wavelength of 220 nm in condensed 
phase and the higher energy π0π∗ transition occurs at approximately 190 nm, with 
the π+π∗ transition falling at 140 nm. 



                                        Chapter II  Far-UV Circular Dichroism and FRET Spectroscopy 

 18 

represented as α-helix, β-sheet, β-turn, poly(pro)II and unordered conformation. The 

model CD spectrum of each is shown in Figure II.7. Importantly, at 222 nm the CD 

spectrum of a protein is dominated by the α-helical secondary structure contribution 

and this phenomenon is widely used in stability studies of a protein’s α-helical 

domains . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.2.4 The CD Spectrum of an αααα-Helix 

The α-helix CD spectrum is characterised by negative minima located at 222 and 208 

nm and a positive maximum centred at 190 nm. As shown  in Figure II.8, the 

minimum at 222 nm results from the nπ* transition. The other negative band at 208 

nm and the positive band at 190 nm result from the exciton splitting of the π0π* 

transition by the µ-µ coupling mechanism, whereby the negative long wavelength 

band is polarised along the helix axis and the positive short wavelength band is 

polarised perpendicular to it. The π+π* transition for the α-helix has been observed as 

a positive band at 140 nm, while the shoulder feature observed at 175 nm is at present 

Figure II.7. CD spectra of model polypeptides adopting the αααα-helix, ββββ-
sheet and random-coil secondary structures. The overlay shows the relative 
intensities of a residues contribution to the CD spectrum at each wavelength 
when in an α-helix (red), β-sheet (blue) and random-coil  (green) 
conformation. (Redrawn from [2]) 
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unassigned. The negative band at 222 nm resulting from the nπ* transition derives 

most of its intensity from static field mixing with the π0π* transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dependence of the α-helix CD spectrum on the length of the helix has 

been examined by Applequist using the dipole interaction model and it was observed 

that when the helix length was varied from 4 to 12 residues there occurred a 

corresponding 25-30% increase in CD intensity.[1] This chain-length dependence of 

the α-helix CD spectrum is extremely important when a quantitative analyses of a 

protein’s secondary structure is sought from its CD spectrum and the empirical 

equation  

( )
r

krV
Vr

−= ∞                                                                 (II.26) 

was proposed by Chen et al., where Vr is the CD amplitude at a specific wavelength 

for a helix of r residues, V∞ is the CD of an infinite helix at the same wavelength, and 

k is an empirical parameter.[4] The parameter k is the number of residues considered 

missing due to end effects at either end of the helix and k values of between 3.7 and 

4.6 have been suggested from the analysis the CD magnitudes at 222 nm of 

Figure II.8. The αααα-helical CD signal. The α-helix CD signal can be constructed from 
three Gaussian bands centred at 222, 208 and 190 nm. The nπ* transition gives rise to 
the negative band at 222 nm, while the π0π* transition is split into two transitions 
polarised perpendicular and parallel to the helix axis, giving rise to the positive band 
located at 190 nm and the negative band at 208 nm, respectively. [1] 
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experimental data.[5] This corresponds to the expected two-residue-at-either end 

distortion of the α-helix observed by Sreerama et al. when they analysed a set of 

protein CD spectra in terms of estimating secondary structure fractions.[6] 

 

II.2.5 The CD Spectrum of a ββββ-Sheet 

The β-sheet CD spectrum displays a negative band around 215 nm, a positive band at 

approximately 198 nm and a negative band near 175 nm (Figure II.9). The negative 

band at around 215 nm has been assigned to the nπ* transition. The amplitude of this 

band, however, comes predominantly from µ-m coupling  between the nπ* and π0π* 

transitions. The bands at 198 and 175 nm are the components of the π0π* exciton split 

transition, via the µ-µ coupling mechanism. Differences in the CD spectrum of a 

parallel versus anti-parallel β-sheet conformation are predicted from exciton coupling 

theory, with the bands offset by approximately 5 to 15 nm. The absolute difference 

between the CD spectra of the two conformations is understood to be inversely 

proportional to the sheet widths of the compared conformations. 

The difficulty with the interpretation of a protein’s CD spectrum in terms of its 

β-sheet content arises from the ease with which β-sheets become distorted within 

proteins, giving rise to somewhat variable CD signatures. Also, the efficiency of 

exciton coupling within β-sheets is greatly diminished compared to the α-helix, with 

the result that in proteins with a mixture of α-helical and β-sheet (αβ-proteins) 

content the major component to the protein’s CD spectrum are the α-helix domains. 

This further complicates the accurate interpretation of a protein’s CD spectrum for β-

sheet content in αβ-proteins. That β-sheet proteins have limited solubilities in 

aqueous solution also hinders their interpretation by CD spectroscopy.  
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The variations in the degree of twisting of the β-sheet geometry has been 

investigated by Manning et al. with the conclusion that increased twisting leads to 

increased amplitudes of the CD bands.[7] Whereas weakly twisted β-sheet 

conformations have relatively unchanged CD bands, strongly twisted β-sheets display 

a significantly more intense π0π* band at around 198 nm. Also, the CD dependence 

on the β-sheet length has been examined by Woody [8] and by Madison and 

Schellman [9], and they found that with increased sheet length there occurs an 

increase in the magnitudes of both the nπ* and π0π* bands. 

 

 

 

Figure II.9. The ββββ-sheet CD signal. The β-sheet CD signal can be constructed 
from two Gaussian bands centred at 215 and 196 nm. The nπ* transition gives 
rise to the negative band at 215 nm, while the π0π* transition is exciton split into 
two bands; a positive band at around 198 nm and a negative band at 
approximately 175 nm. The amplitude of the negative band at 215 nm derives 
mainly from the mixing of the nπ* and π0π* transitions via the µ−m 
mechanism.[1] 

Wavelength (nm)Wavelength (nm)
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II.2.6 The CD Spectrum of a ββββ-Turn 

The CD spectra of β-turns is also somewhat variable, as expected, since there are in 

total eight types of β-turn conformation. A β-turn is understood as a non-repetitive 

structure spanning a total of three residues, which reverses the polypeptide chain 

direction. Of the different β-turn conformations the most common are the type I, II 

and II turns and theoretical calculations suggest that type I and II turns have CD 

spectra similar to an undistorted β-sheet, but with red-shifted band maxima.[8] 

 

II.2.7 The CD Spectrum of Poly(Pro) Structures 

Poly(Pro) structures are of either cis or trans conformations, forming either a right 

handed helix with 3.3 residues per turn or a left handed helix with 3 residues per turn, 

respectively. The cis conformation is refered to as poly(pro)I and is favoured in 

nonpolar solvents, whereas the trans poly(pro)II conformation is favoured in polar 

solvents. The CD spectrum of the poly(pro)I helix is characterised by a weak negative 

band at around 232 nm and a positive band at lower wavelengths, with the crossover 

point around 205 nm. In contrast, the poly(pro)II conformation CD spectrum exhibits 

a weak positive band near 226 nm and an intense negative band near 206 nm. As 

such, the poly(pro)II CD signature is very similar to that of a random coil CD 

spectrum (Figure II.10). From this, it has been proposed that unordered polypeptides 

contain significant amounts of poly(pro)II-like conformation, irrespective of  the 

presence of proline residues within the polypeptide primary sequence.[10] 

 

II.2.8 The CD Spectrum of a Random Coil 

Random coil or unordered secondary-structures are peptide regions that display non-

repeat peptide-peptide orientations. As such, randomly coiled regions tend to exist in 

an extended rather than globular tertiary conformation. Figure II.10 shows the typical 

CD spectrum of a randomly coiled protein. A very weak positive band is seen at 

around  215 nm and an intense negative band appears near 197 nm. As expected, the 

215 nm band corresponds to the the nπ* transition and the negative band around 197 

nm results from the π0π* transition. The weakness of the the nπ* transition is a 

consequence of the lack of mixing between the the nπ* and π0π* transitions. 
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II.2.9 The Calculation of Protein CD Spectra 

The calculation of a protein’s CD spectrum is possible using theoretical methods, 

which can be divided into two approaches; the classical approach, which is based 

upon the interaction of electromagnetic energy with matter and the subsequent 

changes in bond polarizability; and the quantum mechanical method, which focuses 

on the characteristics of the upward electronic transitions. The most commonly 

employed method for the calculation of protein CD spectra is the matrix method, 

which is a quantum mechanical method, since it depends on the quantum mechanical 

description of the chromophores undergoing transitions.[11] The matrix method is in 

line with both the coupled-oscillator and exciton models in that it begins with the 

construction of a matrix with a secular determinant based on the energies of and 

interactions between the transitions of different chromophores. For example, the 

secular matrix for a two-chromophore system having one transition on each 

chromophore is 

                                                








212

121

EV

VE
 

where E1 and E2 are the energies of the transitions on chromophores 1 and 2, 

respectively, and V12 is the energy of interaction between the two transition dipole 

moments. Two excited states, corresponding to linear combinations of the individual 

transitions, result  when the matrix is diagonalized. As such, the matrix method 

Figure II.10. The CD spectrum of a random coil. The random coil CD spectrum can be 
reproduced by a weak positive Gaussian component at around 215 nm and a strong 
negative component at around 197 nm. The positive and negative components correspond 
to the nπ* and π0π* transitions, respectively.[1] 
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employs the ‘divide and conquer’ approach, where the molecule is divided into 

independent chromophores with the potential for mutual interaction. When the 

calculation of protein CD spectra is considered it makes sense to construct a matrix 

consisting of the same amount of independent chromophores as equals three times the 

amount of residues within the protein. This is to allow for the treatment of the nπ* 

and two ππ* transitions as separate chromophores. For a protein containing N 

residues, considering the first nπ* and the first two ππ* transitions leads to the 

following interaction matrix, H,  

            

11 11,12 11,13 11,21 11,22 11,23 11, 1 11, 2 11, 3

12 12,13 12,21 12,22 12,23 12, 1 12, 2 12, 3

13 13,21 13,22 13,23 13, 1 13, 2 13, 3

21 21,22 21,23 21, 1 21, 2 21, 3

22 22,23 22, 1 22, 2 22

N N N

N N N

N N N

N N N

N N

E V V V V V V V V

E V V V V V V V

E V V V V V V

E V V V V V

E V V V V

i i i

i

i

i

i

i , 3

23 23, 1 23, 2 23, 3

1 1, 2 1, 3

2 2, 3

3

N

N N N

N N N N N

N N N

N

E V V V

E V V

E V

E

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

i

i i i i i

i i i i i

i i i i i

i

i

i

 

where the energies of the localized transitions form the diagonal elements and the 

interactions between the localised transitions form the off-diagonal elements. Eij 

represents the energy of the transition j on the chromophore I and Vij,kl represents the 

interaction between the transition j on chromophore i and the transition l on 

chromophore k. As a rule, the second entry to the subscript number represents either 

the nπ*, π0π* and π+π* transitions as 1, 2 or 3, respectively, for both diagonal and off-

diagonal entries. The appropriate charge distribution is used to represent a localised 

transition. Therefore, since the ππ* transitions involve linear displacements of charge, 

they are represented by dipolar charge distributions and the nπ* transition is 

represented by a set of quadrupolar charges centred on the relevant atoms. The Vij,kl 

terms are calculated using the monopole-monopole approximation in considering the 

Coulomb interactions between localised transitions as follows: 

 ,
,

ijm knl
ij kl m n

ijm knl

q q
V

r
=∑ ∑                                     (II.27) 
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where the indices m and n correspond to the point charges for the transitions j and l, 

respectively, and the distance between the point charges is given by r. For the 

interaction matrix, H, the terms with i ≠ k, and j and l = 2 or 3 denote interactions 

which are electrically allowed and, therefore, these interactions are by the µ−µ 

mechanism. Where i ≠ k, j = 1, and l = 2 or 3, the interaction is between an nπ* and 

ππ* transition on different chromophores and, therefore, occurs by the µ−m 

mechanism. When i = k, the interaction mechanism is the one-electron-effect, since 

both transitions lie on the same chromophore and undergo mixing of their excited 

states in the static field of the molecule. If i ≠ k, j = 1 and l = 1, the interaction is 

between quadrupolar charge distributions of two nπ* transitions on two separate 

chromophores. 

Group-states result from the diagonalization of H and these represent the 

eigenvalues and eigenvectors that describe the excited states of the composite 

molecule, as follows 

                                  = T
dH U H U                                 (II.28) 

The diagonal entries of the matrix Hd give the eigenvalues, which correspond to the 

energies of the transitions. The elements of the unitary matrix U (U UT = I , where UT 

is the transpose of U and I  is the identity matrix), describe the mixing of the localized 

transitions. The all important rotational strength can then be calculated by determining 

the transition moments for each group-state of the composite system, and this is done 

by combining the eigenvectors with the properties of the localized transitions, µµµµk
0 and 

mk
0, as follows: 

and 

0
i ki kk

0
i ki kk

 

 

=

=

∑

∑

µ U µ

m U m

                                              (II.30)       

Figure II.11 shows the effectiveness of the matrix method in reproducing the 

CD spectra of a number of well-studied proteins. The calculation of CD spectra from 

the crystal structures of proteins can be seen from Figure II.11 to enjoy a reasonable 

level of accuracy, particularly in terms of the bandshapes predicted.       
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II.3 Fluorescent Resonance Energy Transfer 

II.3.1 Energy Transfer 

The theory behind fluorescence resonance energy transfer (FRET) was primarily 

developed by Förster [12], with Stryer and Haugland extending these principles to the 

lab to show that FRET could be used as an effective and reliable “molecular ruler” for 

measuring distances on the order of between 10-70 Å [13]. FRET is a non-radiative 

dipole-dipole coupled oscillator interactive process, whereby an applied electric 

(radiation) field generates an induced dipole moment in the donor molecule by raising 

it to an excited state and this induced dipole moment then induces a dipole moment of 

equal energy in the acceptor molecule. It is at this resonance point that energy transfer 

Figure II.11. Comparison of the calculated and experimental CD for selected 
proteins. The thin line represents the experimental CD spectra, while the dotted and bold 
lines give the side-chain excluded and side-chain included theoretical CD spectra, 
respectively, as calculated by the matrix method and using the Protein Data Bank (PDB) 
crystal structures for each protein. The PDB code is listed for each protein. (Reproduced 
from [2]) 
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between the donor and acceptor dipole moments becomes possible. The FRET 

process can be explained both classically, in terms of oscillating dipoles, or quantum 

mechanically, in terms of donor and acceptor ground and excited states. 

Where labelling with either donor or acceptor proceeds to 100 %, the 

efficiency of energy transfer, E, from the donor to the acceptor oscillator is given by  

1 1DA DA

D D

I
E

I

τ
τ

= − = −                                                         (II.31) 

where IDA and τDA are the intensity and lifetime of the donor in the presence of the 

acceptor, respectively, and ID and τD are the donor intensity and lifetime in the 

absence of the acceptor. In cases where the acceptor is also fluorescent, it is possible 

to measure E from the increase in fluorescence of the acceptor using the equation 

1AD A

A D

I
E

I

ε
ε

  
= −  
  

                                                         (II.32) 

where IAD is the emission of the acceptor in the presence of the donor, IA is the 

fluorescence of the acceptor only and εA and εD are the molar extinction coefficients 

of the acceptor and donor at the wavelength of excitation. 

 

II.3.2 The Förster Distance 

The Forster distance, R0, is the distance at which half of the energy absorbed by the 

donor is transferred to the acceptor via FRET. The value of R0 is heavily dependent on 

the overlap between the donor emission (fD) and the acceptor absorption (εA) (Figure 

II.12). The normalised spectral overlap (J) at a given wavelength (λ) is given by the 

equation 

( ) ( )
( )

4
A D

D

f d
J

f d

ε λ λ λ λ

λ λ
= ∫

∫
      (M-1.cm-1.nm4)                      (II.33) 

The value of R0 is then described by the equation 

( )
1

5 4 2 6
0 8.79 10 DR Jq n κ− −= ×          (Å)                                 (II.34) 
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where qD is the quantum yield of the donor emission in the absence of acceptor, n is 

the refractive index and κ2 is a geometric factor related to the relative angle of the two 

transition dipoles. By calculating the value of E from the spectral analysis of the 

labelled and unlabelled systems the distance between the donor and acceptor 

molecules (R) can be calculated as 

1

6

0

1
1R R

E
 = − 
 

                  (Å)                                          (II.35) 
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Figure II.12. Donor-acceptor spectral overlap. The overlap of the donor 
fluorescence and acceptor absorption bands, as illustrated by the black spectral 
overlap integral band, is a necessary condition for FRET.  
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II.3.3 The Rate of Energy Transfer 

The rate of energy transfer (kT) is given by the equation 

6

0

T
D

R

Rk τ

 
 
 =                                                                 (II.36) 

From this equation it can be seen that kT has an R-6 dependence, such that as the 

separation between the donor and acceptor becomes greater than the R0 value the rate 

of energy transfer drops off sharply. The quantum mechanical definition of FRET can 

be formulated in describing the energy of interaction between the donor and acceptor 

by the Hamiltonian 

( ) ( )( )
3 5

D A D AH
R R

µ µ µ µ⋅ ⋅ ⋅
= +

R R
                                      (II.37) 

where R is the vector separating the centres of the donor and acceptor and µD and µA 

are the transition dipole moments of the donor and acceptor, respectively. According 

to Fermi’s rule, the rate of energy transfer is proportional to the square of the 

Hamiltonian matrix element between final and initial states, such that 

( ) ( )( )
2

3 5

3D A D A
Tk D A D A

R R

µ µ µ µ∗ ∗
  ⋅ ⋅ ⋅ ∝ −    

R R
                     (II.38) 

where the initial state is the product of the excited state of the donor (<D*) and the 

ground state of the acceptor (<A) and the final state is the product of the ground state 

of the donor (<D) and the excited state of the acceptor (<A* ). In this quantum 

mechanical description the assumption is made that the individual wavefunctions for 

the ground and excited states of the donor and acceptor are not perturbed by the 

dipole-dipole coupling that occurs during FRET. This is valid since such coupling 

would be expected to be very weak. By separating out the quantities that depend on 

the donor wavefunctions, the acceptor wavefunctions and those that depend on the 

relative orientation of the donor and acceptor, we arrive at the equation 

( )
22 26 cos 3cos cosT D A DA D Ak R D D A A D A D Aµ µ θ θ θ− ∗ ∗ ∗ ∗ ∝ −  
(II.39) 
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where DAθ  is the angle between the donor and acceptor transition dipole moments and 

Dθ  and Aθ  are the angles between the donor and acceptor transition dipole moments 

and the R vector joining the two molecules, respectively. Here the rate of energy 

transfer can be seen to depend on the square of the transition dipole moments of the 

donor and acceptor, which can be related to the acceptor absorption and donor 

emission properties. This equation can be rewritten as 

2 26 2
T D Ak R D D A Aµ µ κ− ∗ ∗∝                                                       (II.40) 

where the orientation factor κ is ( )cos 3cos cosDA D AD A D Aθ θ θ∗ ∗− . Where the 

transition dipole moments are not fixed in space, but move rapidly, with respect to the 

donor lifetime, the value of κ must take account of this. As such, the value of κ2 

represents an average orientation value and, by taking the motion of the transition 

dipoles as random, a value of κ2 as 2/3 is generally accepted. This approximation is 

thought to introduce an uncertainty in distance determination by FRET measurements 

of up to 11%. 
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Chapter III 

Protein Mid-IR Fourier Transform Spectroscopy 
 

 

III.1 The Absorption of Infra-Red Radiation 

The energies of the discrete vibrational energy levels, v, of the potential energy curve 

for an harmonic oscillator (Figure III.1), where the energy spacing between 

successive energy levels is the same and equal to hν, are given by 

Ev = (v + ½)h·ν    v = 0, 1, 2, 3….                             (III.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Vibrational transitions occur only between consecutive energy levels in the harmonic 

oscillator model and at room temperature most vibrational transitions occur between 

the ground vibrational state (v = 0) and the first excited vibrational state (v = 1). The 

vibration of a molecule involves either a change in the length or geometry of its 

internal bonds and this is illustrated in Figure III.2 by the stretching and bending 

vibrational modes of the water molecule.  
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Figure III.1. Potential energy curve for an harmonic oscillator. The absorption 
and emission vibrational transitions are shown in blue and red, respectively 
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IR absorption involves interaction of electromagnetic waves with molecular 

vibrations. The absorption of IR light by a vibrating molecule can be understood by 

defining the molecule in terms of the classical picture of two vibrating point charges 

+q and –q, which are connected by a spring. When the frequencies of the 

electromagnetic wave and the vibrating point charges are exactly equal, the electric 

field can interact so as to amplify the movement of the partial charges, as a photon of 

light of frequency equal to the frequency of the vibrating point charges becomes 

absorbed into the system. Implicit in the above description is that the absorption of IR 

radiation by a molecule depends upon there existing a dipole moment to the bond 

involved in the absorption process. Also, the larger the dipole moment – 

corresponding to the size of the point charges at each end of the spring - the stronger 

will be the interaction between the electric field and the system. As such, the polarity 

of a bond is directly related to its IR extinction coefficient. In the simplest case of a 

two-atomic oscillator, the absolute frequency of absorption of the vibrating bond 

depends both on the bond strength and the mass of the atoms on either end of the 

bond. In the above analogy the bond strength corresponds to the tightness of the 

spring and this is referred to as the force constant, k. The frequency, υ, of a two-

atomic oscillator is given by 

O

H H
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H H

O

H
H

O
H H
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H
H
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Figure III.2. The normal modes of vibration of H2O. The symmetric and 
asymmetric stretching modes (3400 cm-1) are labelled a and b, respectively, 
and the bending mode (1600 cm-1) is labelled c. 
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2
r

k

µ
υ

π
=                                                                   (III.2) 

where µr is the reduced mass, defined by the equation µr = m1. m2 /(m1 + m2), where m 

is the mass of either atom 1 or 2 at each end of the bond. 

As mentioned, the value of k is one of the factors governing the absorption 

frequency. Since we are discussing the vibrations of covalent bonds, and a covalent 

bond is simply a sharing of electrons, the bond strength and, hence, the value of k, is 

proportional to the electron density within the bond. Any internal or external 

molecular interaction adding or subtracting electron density to or from the vibrating 

bond in question will have the effect of respectively increasing or decreasing its 

vibrational frequency. As can be seen from Equation III.2, an alternative mechanism 

to alter the frequency of a vibrating bond is to change the mass of one or both of the 

bonded atoms. Increasing the mass of either atom has the effect of reducing the 

vibrational frequency of the bond. The dependence of the bond vibrational frequency 

on the value of m1 or m2 is often exploited by using IR spectroscopy to interpret 

effects of isotopically labelled proteins. A more common use of the mass-frequency 

dependence in protein IR spectroscopy, however, is the use of D2O as a replacement 

solvent for H2O. This procedure will be discussed in depth in Chapter VII, but at this 

point it is enough to remark that the use of heavy water has the effect of shifting the 

solvent band so that it no longer directly overlaps the protein amide-I IR signal, 

making protein IR spectral acquisition considerably less problematic. 

According to the harmonic oscillator rule, the quantum mechanical description 

of an IR absorption process is that a photon of frequency υ and energy hυ (h is 

Planck’s constant) is absorbed by a molecule, promoting it from a lower lying 

vibrational energy level, E, to a higher energy level, E + hυ. The aforementioned 

condition that the frequency of the absorbed photon must match the vibrational 

frequency is ensured, since the spacing of successive vibrational energy levels is hυ. 

For the harmonic oscillator model, all vibrational transitions are subject to the 

selection rule ∆v = ± 1, where v are the vibrational energy levels.  
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III.2 The Transition Dipole Moment 

A transition dipole moment (TDM) is defined as the change in the bond dipole in 

making the transition from one energy level to another. Fermi’s golden rule states that 

the square of this TDM can be taken as the transition probability between the 

respective vibrational energy levels. The TDM is expressed by the following 

equation: 

0 0µm nTDM ψ φ ψ φ=                                                         (III.3) 

where the transition occurs between energy levels n and m of the electronic ground 

state, ψ0. Equation III.3 makes use of the Born-Oppenheimer approximation in that it 

separates the nuclear wavefunctions φn and φm from the electronic wavefunction ψ0 

and so allows the TDM to be considered as a simple function of the spatial 

coordinates of each of the nuclei of the vibrating atoms. The interaction of the electric 

field with the dipole moment as a function of time, t, is taken into account by using 

the interaction potential operator  

U = µµµµ(t)E(t)                                                                           (III.4) 

where E(t) represents the electric field and µµµµ(t) represents the dipole moment 

operator. Since the majority of oscillators that absorb mid-IR radiation at room 

temperature are not thermally excited, a diatomic oscillator TDM can be expressed as 

( )
0.5

0 28 r

h
TDM R

R m

µ
π υ

 ∂=  ∂  
                                             (III.5) 

where h is Planck’s constant, mr is the reduced mass of the diatomic oscillator and υ is 

the frequency of oscillation. The selection rule that IR absorption only occurs when 

there is a change in the molecular dipole moment arises out of the left hand term, 

which denotes the transition’s electronic component. The expectation value for this 

term is the change of dipole moment at equilibrium position, R0, and with a larger 

expectation value comes a stronger IR absorption. This can be seen by again using the 

simple classical picture of vibrating point charges +q and –q with a connecting spring. 

The dipole moment between the point charges separated by the length of the spring, 

R, is µ = qR and the change of this dipole moment is ∂µ/∂R = q. And, since larger 

charges give stronger IR absorption, a larger change in the dipole moment also must 

give stronger absorption. As bond polarity is simply an alternative expression for 



Chapter III  Protein Mid-IR Fourier Transform Spectroscopy 

                                                                37 

dipole moment, bonds with higher polarities will have more intense IR absorptions. 

For example, a C-H bond is significantly less polar than a C-O bond, with their 

respective electronegativity differences of 0.3 and 1. Consistent with this is that strong 

IR bands are observed for C-O bonds, whereas only weak bands result from C-H 

bonds.   

 

III.3 Protein Absorption of Infra-Red Radiation 

For an averaged sized protein there exists many thousand normal modes of vibration, 

where there is 3N-6 normal modes for a molecule containing N atoms. For example, 

even for the small AavLEA1 protein the value of N is 1325 and there exist 3969 

normal modes. At first glance it would seem that the vibrational spectrum of a protein 

would prove far too complicated to be able to extract any meaningful secondary 

structural information. However, it is the C═O and N―H bonds on the peptide 

backbone that comprise the majority of the more polar bonds within a peptide and, as 

such, they make the largest contribution to its IR spectrum. Furthermore, the normal 

vibration used to infer protein secondary structure from its IR spectrum is dominated 

by only one internal coordinate - the C═O stretching vibration. Despite this a 

protein’s vibrational spectrum is very complex, with many of the vibrational bands 

overlapping one another. It is possible, however, to select different spectral regions to 

give answers to specific questions. For example, the region of interest for information 

about a protein’s secondary structure is the amide-I band, located between 1600 and 

1700 cm-1.  

The six highest frequency normal modes of vibration of the amide group are, 

in descending order: the amide-A and -B modes, centred at ~3300 and 3170 cm-1, 

respectively; the amide-I mode, centred at ~1650 cm-1; the Amide-II mode, centred at 

~1550 cm-1; the amide-III mode, located between 1400-1200 cm-1; and the skeletal 

stretch, giving a band between 1200-880 cm-1. A model compound used to understand 

these different modes of vibration is N-methylacetamide (NMA) (Figure III.3).[4] 

Although the contribution of internal coordinates to the six previously mentioned 

normal modes of vibration would be expected to differ for NMA compared with an 

amide group incorporated into a protein backbone, a general correlation between the 

two should persist. Each of the six normal modes of NMA are, therefore, discussed 

below and are expected to be roughly equivalent to an amide group within a protein. 
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Figure III.4 shows the contribution of each of the above vibrational modes to the IR 

absorption spectrum of aqueous hemoglobin. 

 

 

 

 

 

 

 

III.3.1 The Amide-A and –B Vibrational Modes 

 Both the amide-A and -B modes result from the NH stretching vibration and are 

localised entirely on the NH group. Of the two the amide-A band between 3310 and 

3270 cm-1 is the most intense and is usually part of a Fermi resonance doublet, with 

the amide-B band occurring between 3100 and 3030 cm-1. The NH stretching 

vibration can be resonant with an overtone of the amide-II vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.4. Protein amide absorption bands. The hemoglobin FTIR absorption spectrum 
shows the amide-I band centred at approximately 1650 cm-1, resulting from the peptide backbone 
CO symmetric stretch. The amide-II band results from a combination of the protein backbone NH 
bend and the CO asymmetric stretch and is centred at approximately 1540 cm-1. The solid circle 
marks the location of the amide-IIII band, which results from the CN symmetric stretch and NH 
bending vibrations. The band enclosed by the dotted circle results from amino-acid side-chain 
groups and corresponds to the asymmetric stretch of NH3

+ and the bend of CH2. The dashed circle 
shows the location of the symmetric stretching of COO- of side-chain groups. 

Figure III.3. The molecular structure for NMA.  Carbon, nitrogen, 
oxygen and hydrogen are shown as grey, blue, red and light blue, 
respectively. 
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III.3.2 The Amide-I Vibrational Mode 

The NMA amide-I vibration is centred at ~1650 cm-1 and arises predominantly from 

the C═O stretching vibration. Importantly, the CCN deformation, the out-of-phase 

CN stretching vibration and the NH in-plane bend do, however, make minor 

contributions to the amide-I band and the exact extent to which each of these three 

internal coordinates contribute to the amide-I normal mode in a protein is determined 

by the protein’s secondary structure.[5] This dependency, along with the fact that the 

amide-I vibration is largely unaffected by the nature of the amino-acid side-chain, is 

what makes the amide-I band the band of choice for inferring protein secondary 

structure from its IR absorption spectrum.   

 

III.3.3 The Amide-II Vibrational Mode 

The NMA amide-II mode is centred at ~1550 cm-1 and arises mainly from the out-of-

phase combination of the NH in-plane bend and the CN stretching vibrations. The CO 

in-plane bend, the CC stretch and the NC stretch also make minor contributions to the 

amide-II mode. Although the amide-II mode is also not affected by amino-acid side-

chains, the relationship between a protein’s secondary structure and its amide-II 

vibrational mode is considerably more complex than for the amide-I mode. As such, 

the amide-II mode is generally not considered when interpreting protein secondary 

structure using IR spectroscopy. The amide-II band is either weak or absent in a 

protein’s Raman spectrum. 

Figure III.5 shows an FTIR absorption spectral overlay of Myoglobin in both 
1H2O and 2H2O. The comparison reveals that the amide-II band, centred at ~1550 cm-1 

in 1H2O, becomes significantly red-shifted to ~1455 cm-1 in 2H2O. The reason for this 

is that N-deuteration converts the amide-II mode to a predominantly CN stretching 

vibration, with this altered mode referred to as the amide-II' mode. Since the N2H 

bending vibration is substantially red-shifted relative to the N1H bend, it is no longer 

capable of coupling with the CN stretching vibration and instead mixes with other 

modes in the 1070-900 cm-1 region. The fundamental difference between the amide-II 

and -II' modes means they will be affected differently by the environment of the 

amide group. In other words, they will exhibit non-cooperative dependencies on 

protein secondary structure. This effect is not witnessed for the corresponding amide-

I' mode because of the lack of any large contribution from H atoms to this mode and 
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from Figure III.5 the locations of the myoglobin amide-I and amide-I' bands can be 

seen to be similar. Given that it is the amide-I band that is used for protein secondary 

structure IR spectroscopic analysis, protein IR spectroscopy is commonly performed 

using 2H2O solvent, which shifts the OH bending vibration such that it no longer 

overlaps the protein amide-I band. 

 

III.3.4 The Amide-III Vibrational Mode 

The NMA amide-III mode is located between 1400 to 1200 cm-1 and arises 

predominantly from a combination of the in-phase combination of the NH bending 

and the CN stretching vibrations, with minor contributions from the CO in-plane 

bending and the CC stretching vibrations. Because the NH bending vibration 

contributes to several modes of vibration of the polypeptide backbone in the 1400 to 

1200 cm-1 region, protein amide-III IR bands are very complex. Furthermore, unlike 

the amide-I and –II modes, a protein’s amide-III band is very much affected by its 

particular amino-acid side-chains. Among different proteins the contributions of 

backbone and side-chains to the amide-III mode may vary considerably and this 

makes the amide-III band unsuitable for protein secondary structure analysis. Upon 
1H2O to 2H2O solvent exchange the amide-III mode behaves in a complex and less 

predictable manner when compared to the amide-I and –II modes. 
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Figure III.5. Comparison of the protein amide band locations in 1H2O and 2H2O solvent.
The myoglobin FTIR absorption spectrum is shown when using either 1H2O (black) or 2H2O 
(blue) as a solvent.  
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III.3.5 The Skeletal Stretch Vibrational Mode 

The skeletal stretching vibrations for NMA and polypeptides are considerably 

different. NMA consists of two weakly absorbing and well-defined skeletal stretching 

vibrations, a predominantly NCα stretching mode at ~1096 cm-1 and a mixed mode at 

~881 cm-1. Polypeptides lack any distinct NC mode and the skeletal stretching 

vibrations are distributed over a number of modes that, depending on side-chain 

interactions, absorb between 1180 to 920 cm-1. In both NMA and polypeptides the 

skeletal stretching vibrations produce strong Raman bands between 960 and 880 cm-1. 

 

III.4 The Origin and Character of the Amide-I Vibra tional Mode 

Figure III.6 shows the amide-I absorption bands for the characteristic protein 

secondary structures α-helix, β-sheet and random-coil. The splitting of the β-sheet 

amide-I band by about 50 cm-1 into a major component centred at ~1630 cm-1 and a 

minor component centred at ~1680 cm-1 posed a considerable challenge to 

theoreticians attempting to account for the dependence of the amide-I vibrational 

mode on protein secondary structure. Eventually, in 1972 Abe and Krimm proposed 

the transition dipole coupling (TDC) mechanism, which was able to explain the 

unusual amide-I bands of β-sheet proteins.[6] Consideration of through-bond coupling 

and hydrogen bonding effects also helped investigators understand the dependence of 

a protein’s amide-I bandshape on its secondary structure. 

Since the Cα atom is not displaced any considerable distance during the 

amide-I CO stretch, the through-bond interaction of the vibration of one amide group 

to that of its neighbours is not expected to have much of an affect on a protein’s 

overall amide-I band. This is not the case for hydrogen bonding, the effects of which 

have been investigated for NMA by both ab initio calculations and time-resolved 

matrix IR spectroscopy.[7; 8] In the case of a hydrogen bond to the C═O group the 

amide-I frequency is red-shifted by 20-25 cm-1. Where the NH group is hydrogen 

bonded a smaller red-shift of 10-20 cm-1 occurs. 
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Krimm and Bandekar studied the two model β-sheet polypeptides poly-β-L-

Ala and poly-β-L-Glu and observed amide-I peak maxima of 1632 and 1624 cm-1, 

respectively.[2] They attributed the red-shifted amide-I peak maxima of poly-β-L-Glu 

to its ability to form stronger hydrogen bonds. For each of the characteristic secondary 

structures, the relative frequency order of the amide-I peak maxima is consistent with 

the strengths of hydrogen bonding present and, in decreasing order, they are as 

follows: intermolecular extended chains (1610 - 1628 cm-1), intramolecular 

antiparallel β-sheets (1630 - 1640 cm-1), α-helices (1648 - 1658 cm-1), 310-helices 

(1660 - 1666 cm-1) and non-hydrogen bonded amide groups in DMSO (1660 - 1665 

cm-1).[9] Important to the use of IR spectroscopy in studying the folding and 

Figure III.6. Theoretical IR amide-I absorption bands of model 
protein secondary-structures. (Modified from Bruker) a The calculated 
amide-I band of an undistorted α-helix has a distinct Lorenztian 
bandshape with a peak maximum at 1652 cm-1. b The amide-I band of an 
intramolecular antiparallel β-sheet structure showing its splitting into a 
major and minor component centred at 1630 and 1680 cm-1, respectively. 
Both bands are predominantly Lorenztian in shape. c The characteristically 
broad Guassian bandshape of a random-coil secondary structure with a 
maximum at 1645 cm-1.    
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unfolding of protein tertiary structures, Parrish and Blout discovered that the 

vibrational frequency of solvated helices is approximately 20 cm-1 lower than that of 

non-solvated helices.[10] The additional hydrogen bonds to the solvated helices by 

surrounding water molecules are understood to be responsible for this effect. 

 

III.5 Transition Dipole Coupling 

It is widely accepted by theoreticians that the transition dipole coupling (TDC) 

mechanism lies at the heart of a protein’s amide-I bandshape dependence on its 

secondary structure.[3] This mechanism is a resonance interaction involving the 

oscillating dipoles of adjacent amide groups. TDC is strongest when the coupled 

oscillators vibrate with the same frequency and the overall effect of the interaction 

depends on both the distance between the oscillating dipoles and their relative 

orientation. The two effects of TDC are exciton transfer and exciton splitting. Exciton 

transfer is a process whereby energy absorbed by one oscillator is transferred to a 

second nearby oscillator and, therefore, the excited state is understood as being 

delocalised over the two coupled oscillators. For an α-helix the delocalisation has a 

typical time constant of 0.5 ps and is over a distance of 8 Å.[11] Exciton splitting 

shifts the amide-I frequency as a function of the distance, orientation and relative 

phases of the coupled oscillators. As shown in Figure III.7, for the case of two 

coupled oscillators, the exciton splitting effect gives rise to a splitting of the excited 

state energy level into an in-phase and an out-of-phase energy level. The energy 

separation, or splitting, between these resulting energy levels is dramatically 

demonstrated in the case of β-sheet structures, where there is a splitting of 70 cm-1. A 

similar effect is seen in far-UV circular dichroism protein spectroscopy, where π−π* 

electronic transitions couple in a correspondingly relative-orientation-dependent 

manner, yielding secondary structure dependent circular dichroism between 160-250 

nm. Implicit in the description above is that TDC is a through-space rather than a 

through-bond mechanism and that it is mediated by the Coulomb interactions between 

moving partial charges. 

The existence of a permanent dipole moment is not a prerequisite for the 

occurrence of TDC and its formalism starts by giving an account of a non-stationary 

excited state dipole-dipole interaction, as follows: Given an inter-dipole distance R, 

where R > 3Å, the interaction between two oscillating dipoles, UAB, can be expanded 
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in a multipole series, with the leading term being the dipole-dipole interaction. In SI 

units UAB is given by  

UAB = (4πεrε0)
-1[(µµµµAµµµµB)/R3 – 3(µµµµAR) (µµµµB R)/R5]                      (III.6) 

where µµµµA and µµµµB are the dipole moment operators describing the varying oscillations 

of oscillators A and B, respectively, UAB is the operator of the interaction potential of 

A with B and R is the operator describing the varying distance between A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although using the dipole-dipole interaction returns values slightly larger than 

observed for adjacent oscillators, it is nonetheless used in explaining TDC.[12] The 

energy transfer between oscillators can be written as follows 

VAB = <A0B1|UAB|A1B0>                                                       (III.7) 

where the subscripts 0 and 1 refer to the ground and first excited vibrational states, 

respectively, and VAB corresponds to the wavefunction of energy transfer between the 

oscillators A and B. As such, A0B1 refers to oscillator A being in the ground state and 

oscillator B being in the first excited state, and the reverse is true for A1B0. Since VAB 

is a wavefunction, according to Fermi’s golden rule the probability of an energy 

Figure III.7. Energy level diagram of the IR stimulated coupled amide-I transition. The 
identical amide-I vibrational transition of each unperturbed oscillator from the ground state (A0 

and B0) to the first excited state (A1 and B1) occur with absorption of an IR photon of energy E 
= hν = ∆E. TDC leads to a splitting of the first excited state energy levels of the coupled 
oscillators into two new energy levels (AB)1+ and (AB)1-. When a photon of energy hν′ = ∆E′
is absorbed by a coupled oscillator the transition (AB)0 → (AB)1+ occurs. Absorbing a photon 
of energy hν′′ = ∆E′′ stimulates the (AB)0 → (AB)1- transition. The result of TDC is that the IR 
absorption spectrum shifts from showing a single absorption band at the frequency ν to 
displaying two new absorption bands at frequencies ν′ and ν′′.  
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transfer transition between oscillators A and B is given by | VAB |2. Because the dipole 

moment operator of each oscillator acts only on that oscillator, the scalar product of 

Equation III.7 can be separated into <A1|µµµµA|A0> and <B1|µµµµB|B0>. Also, because both 

A and B refer to the same amide-I mode on adjacent amide groups both of these scalar 

products can be replaced by <1|µµµµ|0>, which is non-zero for any IR-active vibrational 

transition. In evaluating the scalar products, the operator R is replaced by a constant 

equal to the distance between the geometric centres. Substituting Equation III.6 into 

Equation III.7 gives the following: 

VAB = (4πεrε0)
-1|<1|µµµµ|0>|2XAB                                                                        (III.8) 

where XAB represents the energy transfer dependence on the relative orientation of the 

coupled oscillators. Krimm and Abe have determined that 

XAB = (cosα - 3cosβcosγ)/R3                                                                          (III.9) 

where α is the angle between the two TDM’s, β is the angle between the line joining 

the centres of the TDM’s with the TDM of oscillator A, γ is the angle between the 

same line with the TDM of oscillator B and R is the distance between the centres of 

the TDM’s.[3] Therefore, from Equation III.8, the probability of an energy transfer 

transition between two coupled oscillators depends upon their distance apart, their 

relative orientations and the TDM of the isolated oscillator, and the stronger the IR 

absorbance of the particular normal vibrational mode in question (in this case the 

amide-I mode) the more probable this transition will be. Whenever the value of XAB is 

non-zero, the energy transfer transition |A1B0> → |A0B1> will have some probability 

and, consequently, the eigenstates |A1B0> and |A0B1> will be non-stationary. It is also 

apparent from Equation III.8 that, since different characteristic secondary structures 

contain different coupled oscillator relative orientations, each structural type will have 

its own unique extinction coefficient and, hence, the overall protein IR amide-I 

absorption band will be a weighted sum of all the individual secondary structure 

amide-I bands, as resulting from the presence of those secondary structures within the 

protein. 

It is helpful at this point to separate the scalar product into its electronic and 

nuclear contributions to the TDM of the isolated oscillator, as follows: 

|<1|µµµµ|0>| = |<∂µµµµ/∂q><φ1|Q|φ0>| = |<∂µµµµ/∂q>|(h/8π2ν)0.5             (III.10) 
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The electronic contribution (<∂µµµµ/∂q>) represents the change of the dipole moment 

brought about by the change of the normal coordinate q at equilibrium position. The 

nuclear contribution is given by <φ1|Q|φ0>, with φ0 and φ1 representing the ground and 

first excited state wavefunctions, respectively, and the frequency of the isolated 

oscillator is given by ν. Substituting Equation III.10 into Equation III.8 gives the final 

expression for VAB as  

VAB = (4πεrε0)
-1(h/8π2υ)|<∂µµµµ/∂q>|2XAB                                    (III.11) 

The next step in formalising TDC is to describe the excited states of the 

coupled oscillators. The occurrence of non-stationary excited states presents an 

obstacle when attempting to describe the energy levels of the individual oscillators. 

As such, we shall confine ourselves to the less detailed description of the excited 

states of the coupled oscillators combined. Similar to the approach taken when 

accounting for a molecular orbital in terms of the contributing atomic orbitals, the 

combined excited state of the coupled oscillators can be expressed as a linear 

combination of the excited states of the separate oscillators in the absence of energy 

transfer, |A1B0> and |A0B1>, giving two new states |1+> and |1->. These can then be 

expressed as 

( )0 1 1 0

1
1

2
A B A B+ = +        and 

( )0 1 1 0

1
1

2
A B A B− = −                                                         (III.12) 

Evaluating the scalar product <1-|UAB|1+> returns a value of zero and, therefore, 

transitions from |1+> → |1-> and vice versa do not occur. As such, these newly 

generated states are stationary and can be used to calculate the energy eigenvalues of 

the excited states. Disregarding the scenario of there being any permanent dipole 

moments affecting the vibrational mode in question, the energy eigenvalues are then 

given as  

E|1+> = <1+|HA + HB + UAB|1+> = E1 + E0 + VAB     and 

E|1-> = <1-|HA + HB + UAB|1-> = E1 + E0 - VAB                                        (III.13) 

where E0 = <0|H|0> and E1 = <1|H|1> are the energies of the ground and first excited 

states of the oscillators in the absence of energy transfer. Since the energy of the 



Chapter III  Protein Mid-IR Fourier Transform Spectroscopy 

                                                                47 

ground states of the coupled oscillators is unaffected by the coupling interaction and 

since TDC produces the two new excited state energy levels E1 + E0 ± VAB, the energy 

difference between the ground and excited states is 

∆E = ∆EnoIA ± VAB                                                                                                        (III.14) 

where ∆EnoIA is the energy difference between the ground and excited states of the 

uncoupled oscillator. Given the relation E = c2ν�, the absorption band of the isolated 

oscillator is correspondingly split into two bands, defined by the equation 

ν� = ν�noIA ± VAB/hc                                                                       (III.15) 

Substituting Equation III.11 into Equation III.15 gives the band splitting affect of 

TDC as  

ν� = ν�noIA ± (4πεrε0)
-1(8π2νc)-1|<∂µµµµ/∂q>|2XAB                                              (III.16) 

Equation III.16 yields three important consequences: Firstly, TDC results in a 

splitting of the isolated oscillator absorption band into two. Secondly, since the 

displacement of the dipole moment with vibration (∂µµµµ/∂q) is proportional to the IR 

absorption intensity, the greater the IR absorption of the isolated oscillator the larger 

will be the band splitting effect. Thirdly, the magnitude of band splitting as a result of 

TDC is heavily dependent on the relative oscillator orientation, XAB.  

 Assuming that each operator µµµµA and µµµµB acts only on the states of oscillators A 

and B, respectively, means that terms like <A1B0|µµµµA|A0B0> are equal to <A1|µµµµA|A0>. 

Since we are considering the case for oscillators possessing no permanent dipole 

moment, i.e. the terms <A0|µµµµA|A0> and <B0|µµµµB|B0> equal zero, the following 

expression for the polarization of a coupled oscillator transition results: 

|<1±|µµµµA + µµµµB|0>|2 = ½ |<B1|µµµµB|B0> ± <A1|µµµµA|A0>|2                       (III.17) 

And because both oscillators A and B are the same, this gives 

½ |<B1|µµµµB|B0> ± <A1|µµµµA|A0>|2 = |<1|µµµµ|0>|2 (1 ± cos ΘΘΘΘ)                 (III.18) 

where ΘΘΘΘ is the angle between the two TDMs of A and B. From Equation III.18 it can 

be seen that the polarization of a coupled oscillator transition is not identical to that of 

the isolated oscillators and that the polarization of the coupled oscillator system can 

be obtained by adding or subtracting the TDMs of the isolated oscillators when the 

oscillators oscillate in-phase or out-of-phase, respectively. This relationship will be 
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useful in understanding the particular IR absorbencies of coupled oscillators for 

various relative orientations.  

The localisation of the amide-I and –II modes on the peptide group within a 

protein means that these modes can be considered as arising from separate molecules 

within a crystal. IR and Raman active modes within crystals have the constraint that 

the vibrational modes common to each unit cell must be in-phase, where a unit cell is 

taken as the two coupled adjacent oscillators, which translates as two neighbouring 

residues within a protein. This selection rule for the optically allowed vibrational 

transitions places considerable restraints on the allowed phase differences between the 

individual oscillators within each unit cell, i.e. the allowed phase differences (δ) 

between each of the coupled oscillators. For β-sheets this phase difference is denoted 

as δ′, taking account of the hydrogen bonding to groups in adjacent β-sheet chains. 

When the TDMs of a unit cell’s amide groups sum to zero the optically allowed 

transition becomes IR inactive, as sometimes turns out to be the case. 

 

III.6 Amide-I TDC for the Infinite Parallel ββββ-Sheet 

Figure III.9 shows a representation of the unit cell of a single chain of an infinite 

parallel β-sheet, which contains two adjacent peptide groups. As mentioned above, all 

other chains within the β-sheet must move in-phase for optically active vibrations, i.e. 

δ = 0. Also, since adjacent unit cells of a chain must move in-phase, they are 

restricted to a phase difference of 0 or 2π and, because there are two amide groups per 

unit cell, the phase difference between amide groups can, therefore, be either 0 or π. 

Depending on the symmetry of the coupled oscillators, they are referred to as either A 

or B. As such, A(0,0) and B(π,0) refer to the in-phase and out-of-phase combinations. 

As can be seen from Figure III.8a, the in-phase combination has identical individual 

oscillator contributions to the overall TDM, where the TDM of each individual 

oscillator is represented by a vector with a centre close to the C=O bond and pointing 

away from the C=O bond towards the C-N bond by 20o.[13] These contributions 

cancel perpendicular to the chain and add parallel to it, resulting in a small overall 

TDM polarized parallel to the chain. This small overall TDM is responsible for the 

minor β-sheet IR amide-I band centred at ~1685 cm-1. Figure III.8b shows the out-of-

phase combination and, in this case, the contribution made by the π group must be 



Chapter III  Protein Mid-IR Fourier Transform Spectroscopy 

                                                                49 

multiplied by a phase factor of –1, with the result that the contributions cancel parallel 

to the chain and add perpendicular to it. The highly polarized overall TDM produced 

is oriented perpendicular to the chain. It is this transition which gives rise to the main 

β-sheet IR amide-I band centred at ~1635 cm-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III.7 Amide-I TDC for the Infinite Anti-parallel ββββ-Sheet 

Figure III.9 shows the unit cell of an antiparallel β-sheet containing four peptide 

groups and two chains. The requirement that the two unit cells must have either a 

phase difference of 0 or 2π places restrictions on the allowed phase combinations for 

an IR active transition. In summing the contributions for each of the four TDMs an 

overall TDM of either 0 or 2π must result. There is only one possible way to achieve 

an overall TDM of zero and that is for all the TDM contributions to be themselves 

zero. This scenario is depicted in Figure III.9a and gives rise to the transition A(0,0). 

Figure III.8. Scheme of the parallel ββββ-sheet unit cell showing the amide-I vibrational 
modes A(0,0) and B(ππππ,0). (Modified from[1]) The two peptide groups contained in each 
unit cell are drawn as red vertical lines, while the individual TDM contributions of each 
oscillator are drawn as blue arrows. The direction of the arrows indicates the phase of the 
TDM, with a δ = 0 shown as an arrow pointing towards the chain and a δ = π as an arrow 
pointing away. The overall TDM is shown as a bold arrow on the right of each schematic, 
with the direction indicating the direction of polarisation and the length indicating its 
magnitude. The NH bonds are also shown as black vertical lines joining the horizontal chain. 
The bold and faint dashed lines indicate that the chain is either rising out of or pointing in 
towards the plane of the paper, respectively.  a A phase difference of δ = 0 between the two 
coupled oscillators results in the A(0,0) vibrational mode and the minor component of the 
amide-I band. b A phase difference of δ = π produces the B(π,0) mode and the major 
component of the amide-I band.  

b

a

b

a
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Because individual TDMs may have a phase of either 0 or π, there are three ways to 

achieve an overall TDM of 2π. Each of these possibilities are shown as Figures III.9b, 

c and d and the corresponding transitions are referred to as B1(0,π), B2(π,0) and 

B3(π,π), respectively. Each of the four vibrational modes are Raman active.[5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the A(0,0) vibrational mode Figure III.9a shows that the individual TDMs 

cancel each other and so the A(0,0) mode is IR inactive. Figure III.9b shows that for 

the B1(0,π) vibrational mode adjacent chains vibrate with a phase difference of π. 

Both chains have TDMs that cancel perpendicular to the chain and add parallel to it. 

As such, the overall TDM is small and polarized parallel to the chain. The B1(0,π) 

vibrational mode gives rise to a weak IR amide-I band centred ~1695 cm-1. Figure 

III.9c shows that the overall TDM of the B2(π,0) vibrational mode consists of 

individual TDM contributions where there is a phase difference of π between adjacent 

Figure III.9. Schematic representation of the antiparallel ββββ-sheet unit cell showing 
the amide-I vibrational modes A(0,0),  B1(0,ππππ), B2(ππππ,0) and B3(π,ππ,ππ,ππ,π). (Modified from [1; 
3]. Figure details are as given for Figure III.8. The hydrogen bonds linking the two chains 
of the unit cell are shown as dotted green lines. 

A(0,0) B1(0,π)

B3(π,π)B2(π,0)

a b

c d

A(0,0) B1(0,π)
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c d
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groups on each chain. For each chain the TDMs add perpendicular to the chain and 

cancel parallel to it. Therefore, the overall TDM is very large and is highly polarised 

perpendicular to the β-sheet chains, giving rise to the major β-sheet IR amide-I band 

centred ~1630 cm-1. From Figure III.9d it would appear that the individual TDMs for 

the B3(π,π) vibrational mode, having a similar phase difference of π between adjacent 

groups on the same chain as for the B2(π,0) vibrational mode, would cancel to give an 

overall TDM of zero, as in the case of the A(0,0) vibrational mode. While it is true 

that they do cancel both parallel and perpendicular to the chain, perpendicular to the 

plane of the paper they add and, as such, the overall TDM is very small and polarized 

perpendicular to the plane of the paper. The B3(π,π) transition produces only a very 

weak IR absorption band and is rarely detected in a protein’s IR spectrum.  

 

III.8 Amide-I TDC for the Infinite αααα-Helix 

Figure III.10 shows a scheme of a unit cell of a hypothetical α-helix having four 

residues per helix turn. In reality α-helices have five helix turns for every 18 residues 

and, therefore, the unit cell for an infinite α-helix consists of 18 amino-acid residues. 

There are two vibrational modes of α-helices arising from there being two phase 

difference values between adjacent peptide groups, δ1 = 0 and δ2 = 2π/3.6, with the 

latter value corresponding to the angle between the lines connecting two adjacent 

peptide groups to the helix axis. Multiplying δ2 by 18 gives a value of 10π and this 

satisfies the condition that all unit cells must be in-phase for an IR active vibration.  

Figure III.10a illustrates the individual TDMs contributing to the overall TDM 

of the A species vibrational mode of the four-residue-per-turn model, with a phase 

difference of zero between adjacent groups. The TDMs cancel perpendicular to the 

helix axis and add parallel to it, resulting in an overall TDM polarized parallel to the 

helix axis. Figure III.10b shows the E1 species vibrational mode, where the phase 

difference between adjacent residues is 2π/4. Therefore, coupling between adjacent 

residues is forbidden and, in complying with the condition that the phase difference 

between coupling vibrations must be either 0 or π, coupling is instead to the second 

next neighbour. As such, energy transfer occurs in such a way as to produce the 

following excited state transitions: |A0C1> ↔ |A1C0> and |B0D1> ↔ |B1D0>. The 

result is that two degenerate vibrations are possible, with the overall TDMs of both 
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being polarized perpendicular to the helix axis and to each other. The final vibrational 

mode for the infinite α-helix is the E2 species. For this mode δ2 = 4π/3.6 and, 

therefore, adjacent groups have a phase difference of π and can couple to one another. 

The individual TDMs contribute in such a way as to cancel both perpendicular and 

parallel to the helix axis and so the E2 vibrational mode is IR inactive. Both the E1 and 

E2 species are Raman active.  

 

 

 

 

 

 

 

 

 

 

 

 

III.9 Fourier Transform Infrared Spectroscopy 

III.9.1 The Michelson Interferometer 

Over 95 % of all mid-infrared spectrometers in use today are Fourier transform 

infrared (FTIR) spectrometers. In the same way that a monochromator is central to a 

dispersive spectrometer, the heart of an FTIR spectrometer is the Michelson 

interferometer, a schematic of which is shown in Figure III.11. Radiation emitted 

from the IR source (commonly a glow bar) is reflected by a mirror onto a semi-

permeable beamsplitter. Half of the IR radiation passes through this beamsplitter to 

contact a moving mirror and half is reflected onto a fixed mirror. The radiation is then 

reflected from both mirrors and recombines at the beamsplitter. From there, half of 

Figure III.10. Schematic representation of the vibrational modes of a hypothetical four-peptides-
per-turn helix. (Modified from [2]) The figure details are as given in Figure III.8 with the unfilled circles 
representing one complete turn about the helix major axis, which is defined by the circle’s origin, and the 
filled circles representing the C=O oscillator. a δ1=0. Coupling occurs between adjacent oscillators when 
the phase difference is zero, giving rise to the A species vibrational mode whose overall TDM is oriented 
parallel to the helix major axis. b δ2=2π/4. Coupling is to the next nearest neighbour when the phase 
difference between adjacent oscillators is 2π/4, resulting in two degenerate vibrational modes with overall 
TDMs perpendicular to each other and to the helix major axis, known as the E2 species vibrational mode. 
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the light is directed back to the source, and is lost, and half is sent through the sample 

and then focused onto the detector using another mirror.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III.9.2 The Interferogram 

FTIR spectroscopy is an interference technique. An interference effect occurs when 

photons of radiation interact with one another, where photons can either 

constructively or destructively interfere. The degree to which each photon is in-phase 

determines the degree to which it constructively interferes and the reverse is true for 

destructively interfering out-of-phase photons. Because of the wave-like motion of 

light, the phase of a photon at the beamsplitter after returning from either the fixed or 

moving mirror depends upon the absolute distance it has travelled in making the 

journey from the beamsplitter to the mirror and back again. Therefore, since the 

movement of the moving mirror introduces a variable pathlength for the radiation 

travelling from the beamsplitter to the moving mirror and back again, there will also 

occur a correspondent variation in radiation phase at the beamsplitter. And because 

the pathlength between the beamsplitter and the fixed mirror is constant, radiation 

Movable mirror

Fixed mirror

Beamsplitter

Sample

Detector

Focusing mirror

Focusing mirror

Radiation source

Figure III.11. Schematic representation of an FTIR spectrometer with a 
Michelson interferometer. The arrows show the direction of light propagation. 
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arriving at the beamsplitter from the fixed mirror will also be of a constant phase. 

When radiation from the moving mirror recombines with radiation from the fixed 

mirror at the beamsplitter, the degree to which constructive and destructive 

interference occurs depends upon the relative phases of the photons arriving from 

each mirror and, therefore, on the position of the moving mirror. The precise 

constructive and destructive photon interactions for each incremental position of the 

moving mirror along its complete path determine what frequencies of IR light survive, 

and to what relative intensities, to be focused onto the sample. The sum total of all the 

radiation received by the detector when the moving mirror has made a complete 

movement along its path is referred to as the interferogram. In this manner the 

exciting radiation is encoded into an interferogram and it is the function of the Fourier 

transform mathematical procedure to decode this interferogram into a spectrum. 

A mid-IR interferogram is shown in Figure III.12, where the moving mirror 

has moved through a full displacement, as defined by the distance extremities of the 

moving mirror from the beamsplitter. The x-coordinate corresponds to the pathlength 

from the beamsplitter to the moving mirror and the y-coordinate is the overall photon 

intensity produced by interference at each position of the moving mirror. The peak 

maximum located at the centre of the interferogram is referred to as the centre-burst 

and it corresponds to the position of the moving mirror at which the pathlength 

between moving mirror and beamsplitter is precisely equal to the pathlength between 

the beamsplitter and the fixed mirror. As such, all photons from the moving mirror 

will be in-phase with photons from the fixed mirror when they recombine at the 

beamsplitter and so all photons will interact constructively, giving rise to a maximum 

of photon intensity. The so-called wings of the interferogram correspond to positions 

of the moving mirror that give rise to partial destructive interference at the 

beamsplitter and, therefore, a decreased photon intensity signal. In terms of FTIR 

spectroscopy, a good interferogram has an intense centre-burst, with a small number 

of wings and a flat baseline, and spectra produced from the Fourier transforms of such 

interferograms are deemed reliable. 

 

 

 



Chapter III  Protein Mid-IR Fourier Transform Spectroscopy 

                                                                55 

 

 

 

 

 

 

 

 

 

 

Modern FTIR spectrometers produce digitised interferograms and the digitised 

Fourier transform (DFT) is given by  

S(k⋅∆ν�) = ΣI(n⋅∆x)exp(i2πnk/N)                                            (III.19) 

where n⋅∆x and k⋅∆ν� represent the discrete interferogram and spectral points, 

respectively, and N is the number of discrete points within the interferogram. Unlike 

the regular Fourier transform, the DFT is not a continuous function; since it is only 

calculated for a limited number of values, n, and this leads importantly to the picket-

fence effect and leakage.  

 

I.9.3 The Picket-Fence Effect and Zero-Filling 

When the interferogram contains frequency components that do not exactly coincide 

with the data point positions of the spectrum, k⋅ν�, the result is the picket-fence effect. 

It is so named because the spectrum produced is absent of those frequencies lying 

between the data points k⋅ν�, in analogy to a spectrum as viewed from behind a picket-

fence, in that certain regions are shielded from view. To correct for this effect, which 

in the worst case can lead to a signal reduction of around 36 %, a procedure known as 

zero-filling is performed. Zero-filling reduces the picket-fence effect by adding zeros 

to the end of the interferogram, with the result that the DFT decoding returns an 

interpolated spectrum that has a greater number of points per wavenumber. A greater 

Figure III.12. A Mid-IR interferogram from a Tensor  27 FTIR 
spectrometer. 
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amount of zeroes added to the end of the interferogram causes a correspondingly 

greater reduction of the picket-fence effect. Since zero-filling interpolates by using the 

instrument line-shape function (ILS), it should not be regarded as simply a smoothing 

process and it is considered to be more appropriate than either polynomial or spline 

interpolation methods, which act directly on the spectrum, as opposed to the 

interferogram.  

 

I.9.4 Apodization and the Leakage Effect 

Apodization is a process that smoothly brings the interferogram down to zero at the 

edges of the sampled region. However, apodization is performed at the expense of 

spectral resolution, since it has the effect of widening spectral lines. Because the 

moving mirror travels a finite pathlength, the experimental interferogram is available 

only over a limited length. To arrive at this finite interferogram mathematically 

requires that the infinite interferogram function be multiplied by a rectangular 

function that is unity over the experimental interferogram region and zero everywhere 

else – referred to as a boxcar truncation apodization function. An apodization function 

is an artificial weighting of the interferogram, such that when the Fourier transform of 

the weighted interferogram (apodization function) is taken the ILS is returned. In 

order to achieve the best possible spectral resolution it is desirable that a boxcar 

apodization function be used, since this allows for the entire interferogram to be used 

in reproducing the spectrum – at all points a weighting factor of one. However, as can 

be seen from Figure III.13, using the boxcar truncation apodization function gives rise 

to a maximum leakage effect.  

Leakage is a process that leads to oscillations around the base of the ILS band, 

giving rise to the sidelobes shown in Figure III.13. Side lobes result from measuring 

the interferogram only up to a certain point and these are minimized by increasingly 

reducing the weighting of the interferogram when approaching its edges. Figure III.13 

also shows other apodization functions available for determining the ILS function that 

are better able to reduce the leakage effect, but in all cases there exists a trade off 

between minimizing the leakage effect and obtaining maximum spectral resolution, 

and achieving one is always at the expense of sacrificing the other. It is a matter of 

choice and the particular experiment system in question as to which is the best 

apodization function to be used, with more drastic apodization functions being 
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required when quantitative evaluation of closely spaced spectral lines is required and 

minimum apodization when a qualitative analysis is wanted. Because protein FTIR 

does not require very high spectral resolution, the Blackman apodization function was 

chosen as the most suitable, since this function involves relatively heavy apodization, 

thus minimizing the leakage effect. The apodization and ILS formulae for each of the 

apodization functions are shown in Table III.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.13. Apodization and instrument function plots. (Wolfram 
Math World) The side lobes of each ILS are shown on a magnified scale on 
the right of the figure. Uniform corresponds to the Boxcar apodization.  
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III.9.5 Phase-Correction 

Owing to particular beamsplitter characteristics and, also, to electronic effects 

introduced when processing the interferogram before it becomes digitised, 

interferograms routinely display asymmetry about the centreburst brought about by a 

frequency-dependent phase delay effect. This effect causes a slight shifting of the 

interference patterns of different wavelengths with respect to one another and 

introduces sinusoidal components into the cosinusoidal output from the 

interferometer. It is corrected for by using a “phase-correction” algorithm, the most 

commonly used is the “Mertz phase correction”. 

 

III.9.6 FTIR Spectral Resolution 

The resolution of an IR dispersive spectrum depends upon the monochromaticity of 

the sampling radiation and, therefore, on the focal length slit width of the 

monochromator. Narrowing the slit width allows a smaller range of frequencies of 

light to pass through to the sample compartment, thereby increasing the 
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monochromaticity of the sampling radiation. The nominal resolution of an FTIR 

spectrum, by contrast, depends upon the pathlength of the moving mirror in acquiring 

that spectrum, according to the equation R = 1/L, where L is the moving mirror 

pathlength. Therefore, in order to improve the spectral resolution by a factor of two 

one needs to double the distance over which the moving mirror must move. Because 

for any FTIR spectrometer there is a maximum moving mirror pathlength, there is a 

correspondent maximum resolution obtainable for a given instrument.  

 

III.9.7 Advantages of FTIR Spectroscopy 

The main advantages of using FTIR over dispersive IR are the increased signal-to-

noise ratio of FTIR spectra, their superior accuracy and their shorter acquisition times. 

Also, because the sampling position of FTIR spectrometers is typically located behind 

the modulating interferometer, the scattering effects for FTIR spectra are considerably 

less than for dispersive IR spectra. Increased signal-to-noise ratio is a consequence of 

using a greater proportion of the radiation source output in collecting the IR spectrum. 

This technique is referred to as multiplexing and it gives the so-called FELLGETT’S 

advantage.  

With dispersive IR spectroscopy a monochromator is used to select a single 

wavelength of the entire source output and this monochromatic light is then passed 

through the sample. Therefore, only a small percentage of the produced light goes 

towards generating the spectral band. However, the spectral noise is independent of 

what percentage of the produced light is used during spectral acquisition and, 

therefore, in the case of dispersive IR spectroscopy, the signal-to-noise ratio tends to 

suffer as a consequence of discarding so much light within the monochromator. The 

multiplexing technique of FTIR uses a far higher percentage of the light produced by 

the source in generating the interferogram and it is the interferogram that is used to 

investigate the light absorbing properties of the sample, being subsequently decoded 

by the Fourier transform procedure to reproduce the IR spectrum. Therefore, the 

signal-to-noise ratio of an FTIR spectrum is significantly enhanced compared to that 

of an IR spectrum.  

Another advantage of using FTIR rather than dispersion IR spectroscopy 

comes from the fact that the circular apertures used in FTIR spectrometers have larger 

areas than the slits used in grating monochromators and, therefore, higher radiation 
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throughput is achieved with FTIR. This is referred to as the JACQUINOT advantage 

and it acts in concert with the FELLGETT advantage in improving the signal-to-noise 

ratio of FTIR spectra, which can be up to ten times less noisy than corresponding 

dispersion IR spectra. 

The superior accuracy of the wavenumber scale of FTIR spectrometers arises 

from its dependence on the interferogram of a built-in HeNe laser. The distance 

between zero-crossings of the HeNe laser interferogram determines the sampling 

interval of the FTIR interferogram, and the point spacing in the resulting spectrum is 

inversely proportional to this. Assuming that the FTIR spectrometer is correctly 

zeroed it should have a wavenumber scale precise to a few hundredths of a 

wavenumber, and this intrinsic precision of FTIR spectroscopy is referred to as the 

CONNES’ advantage. Generally, if the position of the HeNe laser is centred as 

15,798.002 cm-1 the FTIR spectrometer is regarded as being accurate to ±0.1 cm-

1.[14] 

 Because during the acquisition of a dispersive IR spectrum the sample has to 

be separately exposed to radiation of each wavelength, the acquisition time of a 

dispersive IR spectrum is greatly increased compared to that of an FTIR spectrum. 

This increased acquisition time becomes problematic where there are issues of sample 

stability and, also, makes the performance of time-resolved IR spectroscopy 

implausible. With FTIR, spectra can be acquired in approximately one second for a 

single scan spectrum. Also, with expensive and complex instrumentation, a step-scan 

experiment can be performed for the acquisition of time-resolved FTIR spectra with 

nanosecond time-resolution, and this is currently being developed at NUI Maynooth. 

Time-resolved FTIR has been used by many researchers in studying the folding and 

unfolding mechanisms of proteins at nanosecond time-resolution. For example, along 

with laser excitation, time-resolved FTIR has been used in studying the 

conformational changes of the light-driven proton pump of bacterior rhodopsin [15], 

the redox-driven proton pump cytochrome-c-oxidase [16] and the photosynthetic 

reaction centre [17]. 
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III.10 Attenuated Total Reflectance Spectroscopy 

Attenuated total reflectance (ATR) spectroscopy is a technique used to ensure reliable 

pathlength reproducibility where very short optical pathlengths must be used. It makes 

use of the particular refractive indices of various materials and samples in generating 

evanescent waves that penetrate only very small, but highly reproducible distances 

into samples placed in contact with ATR crystals. 

 

III.10.1 Snell’s Law 

The direction of a beam of light is altered upon passing from one medium to another 

in a manner that depends upon the angle the light travels relative to the boundary 

between the two media. This angle is referred to as the incidence angle (Θ) and is 

related to the refraction angle (Φ), the angle by which the path of light is altered, by 

Snell’s Law, which holds that 

1 2.sin .sinn nΘ = Φ                                                              (III.20) 

where n1 and n2 are the refractive indices of medium 1 and 2, respectively. Figure 

III.14 illustrates this relationship when the media consist of an ATR crystal in contact 

with a sample solution and from this it can be seen that beam c has an incidence angle 

at which the beam is neither reflected back into the ATR crystal nor propagates 

through the sample solution. This angle is referred to as the critical angle (ΘG) and 

total reflection of an incident beam occurs at the boundary between two media at any 

angle that exceeds this critical angle. At the critical angle the angle of refraction is 

exactly 90oand, therefore, using Snell’s Law 

2

1

sin G

n

n
Θ =                                                                            (III.21) 

Where ZnSe is used as the ATR crystal material, ΘG equals 38o when samples having 

an n value of 1.5 are used. The reflection process is illustrated by beam d and it is by 

this mechanism that radiation may be passed through an ATR crystal and then be 

redirected and collected by a detector. Typically the beam is returned to the boundary 

between medium 1 and 2 numerous times by the same reflection principle by placing 

another material at the opposite side of the ATR crystal that has the same n value as 

that of the sample solution. 
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III.10.2 The Harrick Approximation and Penetration Depth 

At the boundary point between the two media where the beam is reflected an 

evanescent wave is generated that travels a very small distance into the sample 

solution, before travelling the same distance back to the boundary and re-entering the 

ATR crystal at the same angle with which it exited. This distance of penetration (dp) 

can be calculated from the Harrick approximation as  

 

( )
1

2 2 22 sin
p

p sp

d

n n

λ

π θ
=

−
                                                 (III.22) 

where λ is the wavelength, np is the crystal refractive index, θ is the incidence angle 

and nsp is the refraction index ratio between the sample and crystal. dp is defined as 

the distance between the sample surface and the position where the intensity of the 

penetrating evanescent wave dies off to (1/e)2 or 13.5 %, or its amplitude has decayed 

to 1/e. The Harrick approximation predicts that ATR crystals having higher refractive 

indices will generate evanescent waves with shallower penetration depths.  For ZnSe 

crystals the refractive index at 1000 cm-1 is 2.4 and the penetration depths of beams 

with incidence angles of 45o and 60o are 1.66 and 1.04 µm, respectively.  

 It is also evident from the Harrick approximation that the value of dp has a 

linear dependence on the wavelength of the incident light. The spectral effect of this 
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Figure III.14. Refraction and reflection of light within an ATR crystal.  n1 and n2 are 
the refractive indices of the ATR crystal and the sample solution, respectively. Θ and Φ
are the angles of incidence and reflection, respectively. 
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wavelength dependence of dp can be seen from the comparison of the transmission 

and ATR spectrum of the same sample (Figure III.15). At shorter wavelengths (higher 

frequency) the penetration depth is smaller and so the absorbance of the bands from 

2800-3000 cm-1 is reduced, relative to the transmission spectrum, due to a decrease in 

the sample pathlength. The opposite is true at longer wavelengths (lower frequency) 

and the bands from 1400-1500 cm-1 have higher absorbance for the ATR spectrum 

than for the transmission spectrum. The overall effect on the ATR absorption 

spectrum is to alter the relative intensities of bands in a wavelength dependent 

manner, increasing the band intensities at lower frequency while decreasing the 

intensities of bands at higher frequencies. It is possible to correct for this effect by 

creating an algorithm that takes account of the frequency dependence of the 

penetration depth of the evanescent wave and which post-processes the ATR 

spectrum to return the transmission spectrum. 

 

 

 

 

 

 

 

 

 

 

 

III.11 Perturbation Based Two-Dimensional Spectroscopy 

Perturbation two-dimensional (2D) spectroscopy relies upon the application of a 

perturbing influence to a system that is being monitored spectroscopically in order to 

stimulate spectral variation along the perturbation coordinate and the generation of 

dynamic spectra, which are then used to generate a 2D spectrum, as described below. 

Examples of such perturbing influences are temperature, pH, pressure, electricity, 

Figure III.15. The wavelength dependence of penetration depth for ATR FTIR.  The ATR and 
transmission absorption spectra are shown as red and blue, respectively (Bruker OPUS software). 
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magnetism and ligand titration, and their effects are detected by changes induced in 

the spectrum of the system. This spectral variation is referred to as a dynamic 

spectrum and it may be defined as a direct function of the imposed physical effect 

over any range of the total applied perturbation or it might be created to reflect the 

temporal spectral profile of the system at each incremental point of the applied 

perturbation. The dynamic spectrum is usually defined for each spectral wavelength 

of the system's spectrum and the interval between successive dynamic spectra 

determines the resolution of the 2D plot.  

 

III.11.1 The Dynamic Spectrum 

The dynamic spectrum ỹ(υ,t)of a system that has experienced some perturbation by an 

external variable t is formally defined as 

( ) ( ) ( ) min max, ,     for y t y t y T t Tυ υ υ= − ≤ ≤ɶ ɶ , 

0 otherwise                                                  (III.23) 

where ỹ(υ) is the reference spectrum of the system and Tmin and Tmax define the range 

of variation of the external variable. Where ỹ(υ) is set equal to zero the dynamic 

spectrum corresponds to the observed variation of spectral intensity at a given 

wavelength, or spectral variable. ỹ(υ) may also be defined as the system spectrum 

before the application of the external perturbation (the system ground state). 

Alternatively, an averaged spectrum may be used for ỹ(υ), given by 

( ) ( )max

min
max min

1
,

T

T
y y t dt

T T
υ υ=

− ∫ɶ                                               (III.24) 

 

III.11.2 The 2D Correlation Spectrum 

2D correlation spectroscopy can be understood as a quantitative comparison of the 

patterns of spectral intensity variation along the external variable t observed at two 

different spectral variables, υ1 and υ2, over some finite observation interval between 

Tmin and Tmax. The 2D correlation spectrum is formally defined as 

( ) ( ) ( )1 2 1 2X , , ,y t y tυ υ υ υ ′= ⋅ɶ ɶ                                                (III.25) 
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The intensity of the 2D correlation spectrum depends upon the similarity or 

dissimilarity of the dynamic spectra generated at υ1 and υ2. The  symbol denotes a 

cross-correlation function that compares the dependence of two different quantities on 

t. 

Treating the 2D correlation spectrum as a complex number function gives 

( ) ( ) ( )1 2 1 2 1 2X , , ,iυ υ υ υ υ υ= Φ + Ψ                                              (III.26) 

where ( )1 2,υ υΦ  is the real component that is orthogonal to the imaginary component 

( )1 2,i υ υΨ  and these are known respectively as the synchronous and asynchronous 

2D correlation intensities. The overall similarity between the two dynamic spectra at 

υ1 and υ2 is reflected in the synchronous 2D correlation intensity ( )1 2,υ υΦ , while the 

overall dissimilarity between these dynamic spectra determines the asynchronous 2D 

correlation intensity ( )1 2,i υ υΨ .  

The formal definition of the synchronous and asynchronous correlation 

intensities is given by  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 20
max min

1
, ,i Y Y d

T T
υ υ υ υ ω ω ω

π
∞

Φ + Ψ = ⋅
− ∫ ɶ ɶ          (III.27) 

where xYɶ  is the forward Fourier transform of the dynamic spectrum ( ),xy tυɶ , as given 

by 

( ) ( )

( ) ( )Re Im
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i t
x x

x x

Y y t e
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ωω υ

ω ω

∞ −
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=

= +

∫ɶ ɶ

ɶ ɶ

                                                            (III.28) 

where ( )Re
xY ωɶ  and ( )Im

xY ωɶ  are the real and imaginary components of the Fourier 

transform, respectively. ( )Re
xY ωɶ  corresponds to an even function of ω, while ( )Im

xY ωɶ  

is an odd function.  
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III.11.3 Properties of the Synchronous 2D Correlation Spectrum 

Figure III.16 shows a schematic representation of a sample synchronous 2D contour 

map. The diagonal line is defined by coordinates where 1 2υ υ= . Correlation peaks are 

shown as concentric circles and they can be either positive (clear) or negative 

(shaded) in sign. Correlation peaks occurring along the diagonal line are referred to as 

autopeaks, since they correspond mathematically to the autocorrelation function of 

spectral intensity variation observed during the interval between Tmin and Tmax. Taking 

a slice through the diagonal of a synchronous 2D map returns the autopower 

spectrum. The magnitude of autopeaks is always positive and it represents the overall 

extent of spectral intensity variation observed at the specific spectral variable υ during 

the observation interval between Tmin and Tmax. Strong autopeaks will be present for 

the spectral regions that undergo considerable spectral variation between Tmin and 

Tmax; while for regions where there occurs only minor intensity variations autopeaks 

will be weak or non-existent. 

Peaks located off the diagonal line are referred to as cross peaks and, in a 

synchronous 2D map, they represent simultaneous or coincidental changes of spectral 

intensity observed at two different spectral variables υ1 and υ2. The coincidence of 

such spectral variation suggests a possible coupling between the events giving rise to 

the intensity changes. In order to illustrate the coherent variation of spectral intensities 

at these spectral variables, a correlation square can be constructed, whereby the pair 

of cross peaks located at opposite side of the diagonal line are connected to the 

autopeaks located at each of the spectral variables. In Figure III.16 correlation squares 

show the correlation of A with B and C with D. 

Unlike autopeaks, cross peaks may be of either positive or negative sign. 

When the spectral intensities at both υ1 and υ2 (corresponding to the coordinates of 

the cross peak on the 2D correlation map) either increase or decrease together as 

functions of the external variable t the sign of the cross peak is positive. If the 

intensity variation at υ1 occurs in the opposite direction to that of υ2, however, the 

cross peak sign is negative. Therefore, in Figure III.16 B and D spectral regions either 

increase or decrease together while moving from Tmin to Tmax. Whereas the spectral 

regions labelled A and C experience spectral variation such that A is increasing in 

intensity while C is decreasing, or vice versa. 
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III.11.4 Properties of the Asynchronous 2D Correlation Spectrum 

Figure III.17 shows a schematic representation of an asynchronous 2D correlation 

spectrum. Whereas the synchronous 2D correlation spectrum represents coincidental 

changes in intensity variations, the asynchronous 2D correlation spectrum represents 

sequential or successive changes measured separately at υ1 and υ2. Unlike a 

synchronous spectrum, an asynchronous spectrum is anti-symmetric with respect to 

the diagonal line and contains no autopeaks, consisting exclusively of cross peaks. In 

the same manner as above, asynchronous correlation squares can be constructed and 

from Figure III.17 it can be seen that asynchronous correlation is observed for band 

pairs A and B, A and D, B and C, and C and D, and that four asynchronous 

correlation squares can be drawn. 

An asynchronous cross peak will only result if the intensity variations at υ1 

and υ2 occur out of phase with each other (i.e. at a lower or higher temperature range, 

if temperature is the external variable and the dynamic spectrum is a direct function of 

the temperature perturbation). As such, asynchronous cross peaks are very effective in 
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Figure III.16. Schematic representation of a synchronous 2D correlation 
spectrum. Where the map is positive the area is left clear and where it is 
negative the map is shaded. Therefore, shaded peaks are peaks of negative 
sign, whereas positive peaks are clear. 
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resolving overlapped bands that have different origins. For example, in protein FTIR 

there occurs considerable overlap in amide-I signals arising from the symmetric CO 

stretching vibration of the peptide backbone of CO groups residing in different protein 

secondary structure environments. Altering the physical environment of the protein 

may result in the loss of some secondary structural types and the formation of others. 

By generating an asynchronous 2D correlation spectrum it is possible to resolve the 

amide-I bands of the separate secondary structural types if the loss and gain of the 

different structural types occur sequentially. The resolving potential of asynchronous 

2D correlation spectroscopy is very high and the resolution is determined by the 

degree to which spectral variations occur sequentially. 

Similar to the synchronous 2D correlation spectrum, the sign of asynchronous 

cross peaks can be either positive or negative and this distinction is very useful 

because it provides information on the sequential order of events stimulated by 

performing the perturbation over a given range. If the asynchronous cross peak is 

positive it can be taken that the intensity change at υ1 occurs predominantly before 

that at υ2. On the other hand, if the cross peak is negative the reverse is true. A caveat 

to these rules is that the synchronous correlation spectrum must be greater or equal to 

zero at the same coordinate as the asynchronous cross peak. Where this is not the case 

and ( )1 2,υ υΦ  < 0 then the rules are reversed and a positive (negative) asynchronous 

cross peak should be taken as evidence that spectral intensity variation at υ2 occurs 

predominantly before (after) that at υ1. Therefore, in Figure III.17 the intensity 

changes at bands A and C occur after those at B and D. It should be noted, however, 

that the above set of sequential order rules can only be applied if the patterns of 

spectral intensity variations during the perturbation range selected for composition of 

the 2D correlation spectrum are generally monotonic. In other words, spectral 

intensity variation should be unidirectional at each spectral variable of interest. 

The description of 2D correlation spectroscopy given above in some ways 

assumes ideal spectral behaviour along the perturbation coordinate. Where spectral 

features such as band position shifts or line shape changes occur conventional rules of 

2D spectroscopy do not apply. It is possible to modify the analysis in order to take 

account of such anomalous behaviours by analysing correlation peaks in clusters 
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instead of individual peaks and a description of this procedure is provided by 

Noda.[18] 
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Figure III.17. Schematic representation of an asynchronous 2D 
correlation spectrum. Positive cross peaks are shown as clear and negative 
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Chapter IV 

Experimental Instrumentation 

 

IV.1 Luminescence Instrumentation 

IV.1.1 Steady-State Luminescence 

Figure IV.1 shows a schematic of the instrumentation used for the acquisition of 

steady-state luminescence for the fluorescence resonance energy transfer (FRET) 

experiments. The set-up consists of an L6310 D2 ultra-violet light source 

(Hamamatsu), a 300i SpectraPro dispersal monochromator (Acton Research 

Corporation) for excitation, an SC-447 Sample Chamber (Acton Research 

Corporation), a single photon counting (SPC) R928-P photon multiplier tube (PMT) 

(Hamamatsu) detector for excitation, a 500i SpectraPro dispersal monochromator 

(Acton Research Corporation) for emission, an IP28 PMT (Hamamatsu) detector for 

emission and an NCL Spectral Measuring System (Acton Research Corporation) for 

controlling both the excitation and emission monochromators. 

The 500i and 300i SpectraPro monochromators have focal lengths of 500 and 

300 mm, respectively, and are capable of operating in the wavelength range of 180 

nm to the far infrared region. They are capable of accommodating up to three 

different gratings, which are mounted on a rotatable turret. In terms of 

(grooves/mm)/Blazed (nm), the three gratings fitted were 1200/300, 600/600 and 

150/300, for the 500i SpectraPro, and 1200/500, 150/500 and 150/300, for the 300i 

SpectraPro. A larger number of grooves provides increased spectral resolution, but at 

the expense of the spectral acquisition wavelength range. The wavelength at which 

each grating is blazed correlates its optimum wavelength for generating 

monochromatic light. Using the 1200/300 and 1200/500 gratings, the 500i SpectraPro 

and 300i SpectraPro have an accuracy of ±0.2 nm. The NCL Spectral Measuring 

System controls both monochromators via a computer using the SpectraSense 

software (Acton Research Corporation). 

The IP28 emission PMT has a wavelength range between 185-650 nm and is 

optimised at 340 nm. It has an anode sensitivity of 200 A/Im and a cathode sensitivity 
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of 40 µA/Im. The R928-P SPC excitation PMT has a wavelength range between 185-

900 nm and is optimised at 400 nm. It has an anode sensitivity of 2000 A/Im and a 

cathode sensitivity of 200 µA/Im. 

 

 

IV.1.2 Time-Resolved Emission 

Figure IV.2 shows a schematic of the instrumentation used to record both steady-state 

and time-resolved emission during the FRET analyses. Excitation was achieved by 

taking the second harmonic (532 nm) of a YG-980E pulsed solid state neodynium: 

yttrium aluminium garnet (Nd:YAG) laser (Quantel) and using it to pump a TDL-90 

dye laser (Quantel) containing a Rhodamine 590 dye (Exciton) to generate an output 

of 565 nm. This beam was then frequency-doubled by passing it through a pair of 

DCC3 doubling crystals (Quantel) to generate the excitation radiation of 282.5 nm. A 

300i SpectraPro monochromator (Acton Research Corporation) (described above) was 

used to collect emission radiation and detection was by means of an iStar DH-720-

25F intensified charged couple device (iCCD) camera (Andor Technology). 

Figure IV.1. Instrument schematic of steady-state luminescence for the detection of 
FRET. Excitation radiation is shown in blue and emission radiation is coloured red.  
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Figure IV.3 shows a schematic representation of the iStar DH-720-25F iCCD 

image intensifier. The 2D CCD Array, composed of a 2D grid of 256 x 1024 pixels, 

allows for the simultaneous collection of a wavelength range of between 180-850 nm 

by a process known as vertical binning, whereby the charge collected by each column 

of pixels is summed to generate the overall spectral intensity at the corresponding 

wavelength. The three major components to the image intensifier are the 

photocathode, the microchannel plate (MCP) and the phosphor screen. When a photon 

of a particular energy strikes the photocathode at a characteristic location it stimulates 

the emission of an electron from the opposite side of the photocathode. This electron 

then travels in a straight line across a distance of approximately 0.2 mm down a 

voltage gradient of -200 volts to strike the MCP. The MCP consists of a thin disk of 

about 1 mm thickness that is composed of numerous honeycombed glass channels of 

approximately 10 µm diameter. Within each channel there exists a high potential of 

up to 1000 volts, so that an entering electron produces a cascading effect that results 

in the generation of up to 10,000 secondary electrons in a process known as gain. 

These secondary electrons then exit the MCP and travel in a straight line across 
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Figure IV.2. Schematic representation of the instrumentation used to acquire steady-
state and time-resolved emission spectra for the detection of FRET. The emission 
radiation is shown in red.  
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another gap of 0.5 mm and down a potential of several thousand volts to strike the 

phosphor screen, where they are converted into an image by a fibre optic window. 

The voltage gradient between the photocathode and the MCP can be regulated 

between on and off. At the on-position the -200 volt gradient mentioned above exists 

and at the off-position there exists an opposite gradient of +50 volts. When in the off-

position electrons generated by photons striking the photocathode are prevented from 

reaching the MCP by the positive voltage gradient, so that by turning the voltage to 

either on or off acts like a shutter mechanism. This has the advantage that toggling 

between the two voltages, or ‘gating’, can be performed on a ns time-scale with a high 

degree of accuracy, which provides a mechanism whereby time-resolved detection of 

radiation can be achieved. The DH-720-25F is specified to a minimum optical gate-

width of 4.6 ns and this defines the limit to which time-resolved detection can be 

performed.  
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Figure IV.3. Schematic representation of the iStar DH-720-25F iCCD image intensifier. 
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IV.2 Circular Dichroism Spectroscopy Instrumentation 

CD spectra were acquired using a Model 400 Circular Dichroism Spectrometer (Aviv 

Biomedical Inc.). The Model 400 is functionally divided into the following 

subsystems: lamp and lamp power supply; monochromator; polarizer compartment; 

sample compartment; and detector compartment. A schematic of the Model 400 

Circular Dichroism Spectrometer is shown in Figure IV.4.  

The light source for the Model 400 is a Xenon Short Arc XBO® 150/4 Bulb 

(OSRAM). The front panel of the power supply contains several indicators as to the 

instruments status, including an Hour Meter and Lamp Ready, Instrument Power On, 

Lamp Temperature On and N2 Flow OK lights. The lamp is automatically shut down 

after 30 seconds if the N2 gas flow (see below) drops below a certain value, during 

which an alarm sounds. 

The white light produced by the xenon bulb is directed into the 

monochromator, where it is dispersed using two fused silica prisms in series in a “w” 

double monochromator design, thereby producing superior wavelength resolution and 

containing less stray light than would result from using a single monochromator. The 

prisms have been optimised to produce dispersion of light in the UV region and the 

wavelength range of the Model 400 is between 165 and 1200 nm. Rotation of the two 

prisms is linked to a wavelength cam, which converts the non-linear dispersion of the 

fused silica prisms into a linear motion of a computer-controlled stepped external gear 

drive mechanism. The motor step size determines wavelength specificity, with each 

step corresponding to a 0.05 nm change in wavelength. The motor slew speed is 

approximately 60 nm per minute. Backlash in the drive mechanism is eliminated by 

the monochromator drive mechanism automatically overshooting by 10 nm when 

moving from short to long wavelengths and this ensures wavelength accuracy during 

scanning. The monochromator can only scan from longer to shorter wavelengths. 

The use of a linear wavelength scale makes it possible to calibrate the 

instrument for wavelength accuracy by precisely calibrating it at a single wavelength. 

This single wavelength corresponds to the position of an optical beam switch linked 

to the motion of the wavelength cam. All other wavelengths are then taken by 

counting the number of motor steps the wavelength cam is removed from this 

position. The entrance and exit slits of the monochromator are not fixed in position, 

but rather they move synchronously and are guided by the motion of an external drive 
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system, with the exit slit width (mm) determining the fraction of the light allowed 

through to the sample. A stepping motor also controls the motion of the slits and the 

maximum slit width is 3.6 mm. 

Non-polarised light is converted to linear-polarised light by an MgFI2 

polarizer, located within the polarizer compartment. Of the ordinary and extra-

ordinary beams produced by the polarizer only the ordinary beam is used for the CD 

measurement, while the extra-ordinary beam is filtered out by a filter located beyond 

the photoelastic modulator (PEM). Circularly polarised light is produced from this 

linear polarised light by a PEM, which is driven by a 50 kHz oscillator, producing a 

strain-induced birefringence oriented 45 degrees to the axis of the linear polarised 

light. The oscillation amplitude is adjusted such that the PEM alternately produces 

+90 and –90 degrees retardation along one birefringent axis of the oscillation peaks. 

This leads to the alternate production of left and right circularly polarised light. 

Within the polarizer compartment an achromatic lens focuses light from the 

monochromator exit slit to a suitable point within the sample compartment and the 

lens is so designed that the location of this focal point is independent of wavelength. 

Because of this wavelength independent focal point a variety of micro cells can be 

used within the sample compartment without the need for special accessories. 

The sample compartment is of sufficient volume to facilitate the use of a 

number of accessories. It is possible to monitor fluorescent CD by attaching a PMT at 

an angle of 90 degrees to the excitation beam. The sample holder is equipped with a 

Peltier heating system, a magnetic stirrer and ports for a stand-alone thermometer (to 

monitor the temperature precisely at the quartz cuvette surface) and for the insertion 

of a microelectrode. Provision is also made for the supply and removal of titration 

solutions by directing thin tubes into the sample compartment.  

The detector compartment houses a high speed, high sensitivity end-on 

photomultiplier tube (PMT) (Hamamatsu). The output current is converted to a 

voltage by a preamplifier within the PMT housing and is then sent to the electronics 

for processing. The PMT is operated in such a way that the output current is kept 

constant and, since the light energy received by the PMT varies as a function of 

wavelength and sample absorption, a dynode voltage is applied to the PMT to account 

for this variation and produce a constant current output. Mounted close to the PMT 

housing is a high voltage generator containing a DC to DC converter, which produces 
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a PMT dynode voltage of 280 volts for each volt of input supplied by a D/A 

converter. The dynode voltage is transmitted to the PMT via a voltage driver chain at 

the PMT socket.  

 The Model 400 is kept under a continuous N2 purge while operational and 

this is supplied by the boil-off from liquid nitrogen contained within a PV-120 liquid 

nitrogen dewar (Wessington Cryogenics). The boil-off is routed from the dewar 

through an Oxygen Indicator Cartridge (Aviv Biomedical), is purified in an model 

RGP-R1-3000B Rechargeable Gas Purifier (Aviv Biomedical), then passes through 

another Oxygen Indicator Cartridge before supplying a separate purge to the lamp 

housing, monochromator, polarizer and sample compartment of the Model 400. 

A MICROLAB 500 series diluter (Hamilton) equipped with two 500 µl 

syringes (one for solution delivery and one for removal) and fine bore no.240010 

tubing (Hamilton) is interfaced with the Instrument Control Version 3.05 CD software 

(Aviv Biomedical Inc.) to allow for automated titration of solutions into the sample. 

The magnetic stir device in the cuvette holder can control a miniature stir bar placed 

within a 10 mm cuvette and this device is also integrated with the Instrument Control 

software, so that the stir speed can be varied and the experimenter can select to stir 

between or during spectral acquisition. Because the stepping motors that control the 

injection pumps have in total 2000 steps available, the minimum volume of titrant that 

can be injected into the sample is the volume of the syringe divided by 2000, which 

corresponds to 0.25 µl for 500 µl syringes. Also interfaced with the Instrument 

Control software is an Orion 720A+ pH meter (Thermo Electron Corporation) 

equipped with an MI-710 Micro-combination pH microelectrode 

(MICROELECTRODES INC.), allowing the pH of the sample to be monitored during 

titration experiments. 

The sample is housed within rectangular quartz SUPRASIL sample cuvettes of 

nominal pathlengths 10, 5, 1, 0.1 (strain-free) and 0.01 (strain-free) mm (HELLMA 

UK LTD.) to allow for samples of different protein concentrations and within a range 

of buffer solutions to be scanned. Because of the uniform dimension of the Model 400 

sample holder different pathlength cuvettes must be matched with their appropriate 

adaptors. Since both the 0.1 and 0.01 mm cells are demountables they fit into a 

common adaptor. The 10 mm cuvettes can be sealed with either a stopper or a lid. 

Both are necessary, since titration experiments require that the open-ended lid-
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designed cuvette be used to facilitate the delivery tubes, the microelectrode and the 

magnetic bar, while temperature ramp experiments require the cuvette to be sealed 

with an air-tight stopper throughout in order to prevent solvent evaporation and 

consequent changes in sample concentration.  

 

 

 

IV.3 Fourier Transform Infra-Red Instrumentation 

IV.3.1 The Tensor 27 

Figure IV.5 shows a schematic representation of the instrumentation used to acquire 

FTIR spectra. The major component is the Tensor 27 FTIR spectrometer (Bruker), 

which is equipped with a mid-IR glow-bar light source and a liquid nitrogen cooled 

photovoltaic mercury cadmium telluride (MCT) mid-IR detector. The Tensor 27 

spectrometer was customised to have an operational wavenumber range of between 

4000 to 1000 cm-1 and has a maximum resolution of about 1 cm-1. The Michelson 

interferometer and MCT detector compartments of the Tensor 27 are both air-tight 

sealed and in both there is a column containing silicon beads that acts as a drying 

agent to remove water vapour from these areas. The sample compartment is supplied 
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Figure IV.4. Schematic representation of the Model 400 Circular Dichroism Spectrometer. 
The dotted lines indicate piping through which the N2 purge is supplied. 
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with a dry-air purge from a PG28L air drier (PEAK SCIENTIFIC). Protein FTIR 

spectral acquisition was achieved using either the AquaSpec or BioATR-IV sample 

accessories (Bruker), with both customised to fit the Tensor 27 and interface 

electronically to the spectrometer. Both accessories are designed to be able to be 

purged with the dry air supply to the Tensor 27 sample compartment and to be 

temperature regulated with a HAAKE DC 30 temperature control module and 

HAAKE K20 bath vessel (Thermo Electron Corporation), the functioning of which 

are automated with the OPUS software used to control the Tensor 27. 

 

 

 

 

 

 

 

 

 

 

 

 

IV.3.2 The AquaSpec Transmission Cell 

The AquaSpec transmission cell sample accessory is shown in Figure IV.6. It is 

mounted on a QuickLockTM base plate that locks into place with a fitting in the 

Tensor 27 sample compartment and ensures optimised and reproducible transmission 

of radiation through the cell. An approximate airtight seal is achieved for the beam 

path by telescopic tubes that bridge the distance between the KBr windows of the 

Tensor 27 sample compartment and CaF2 windows of the AquaSpec sealed cell. 

Water vapour is removed from within these tubes by the presence of tubing that 

redirects the dry-air purge of the Tensor 27 sample compartment. An aperture fitting 

is located within the telescopic tube that carries radiation to the cell, which reduces 

Figure IV.5. A schematic representation of the instrumentation used for protein 
FTIR spectroscopy. 
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the occurrence of spurious reflections within the tube. Figure IV.6c shows an 

expanded schematic of the AquaSpec sealed cell, revealing the presence of a 

thermostating plate, which is supplied with water at a controlled temperature from the 

K20 bath vessel through an inlet and outlet aperture. A surrounding Teflon jacket, 

visible as the white region of Figure IV.6b, insulates the sealed cell. The cell consists 

of two CaF2 windows that are sealed by a special resin, which is capable of small 

expansion and retraction movements. At the top of the cell is located an injection 

aperture and at the bottom there is another aperture for the cell to drain. The cell is 

filled using a 50 µl HPLC syringe with a dull point, open-end needle of size 22 gauge 

x 2 inches. The sample is first passed through a filter with a 2-micron frit, located 

above the inlet port, before passing into the cell. The cell has a very small pathlength 

of 6 µm, which enables aqueous protein FTIR spectral acquisition, and in order to 

inject aqueous samples into a cavity of this size a considerable injection pressure must 

be used. The cell withstands this pressure by temporarily expanding upon injection 

and then contracting again once the sample has been injected and movement of the 

resin that creates the seal facilitates this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

c

ba

c

b

Figure IV.6. The AquaSpec transmission cell. a shows an end-on and top view of a schematic of 
the AquaSpec accessory, photographed in b. c shows an expanded schematic of the temperature 
regulated sealed cell assembly.  
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IV.3.3 The BioATR-IV Accessory 

The BioATR-IV sample accessory is depicted in Figure IV.7. Similar to the 

AquaSpec accessory, the BioATR-IV is mounted on a QuickLockTM base plate and 

has telescopic tubes that seal the beam path and these are supplied with a dry air purge 

from the Tensor 27 sample compartment purge. The sample is placed on a silicon 

wafer located in a well at the centre of the Main Plate of the BioATR-IV and securing 

a Top Plate directly on top of the Main Plate encloses the sample area. Figure IV.7b 

shows both the Main and Top Plates and the sample well is also labelled. Both the 

Main and Top Plates have cavities through which water is passed by connecting tubes 

from the K20 bath vessel to connectors on both plates. The Main Plate receives water 

directly from the K20 bath vessel and then transmits this water to the Top Plate via a 

tubular inter-connect linking the two plates and from the Top Plate the water exits and 

returns to the K20 bath vessel. The BioATR-IV is thermo-regulated by this circulation 

of water and a Teflon jacket fits over the Top Plate and helps to insulate the 

accessory. The Top Plate has a removable piece at its centre on the underside and by 

replacing the standard fitting with a dialysis insert it is possible to perform titration 

experiments using the BioATR-IV. Protruding from the Top Plate is a stem with a 

small hole bored through its centre, through which an M15(G)300 K thermocouple 

(Farnell) is placed in order to monitor the temperature directly at the sample area.   

The mid-IR beam is deflected by an adjustable mirror into the ATR-crystal 

assembly, as shown in Figure IV.7a. The beam then undergoes multiple ‘bounces’ 

within the ATR-crystal before being directed onto another adjustable mirror, located 

on the opposite side of the crystal assembly, from where it is directed to the MCT 

detector. The adjustable mirrors are shown in Figure IV.7d, along with the screws 

used to position the mirrors so as to optimise the throughput of radiation through the 

BioATR-IV.  

A schematic of the ATR-crystal assembly is shown in Figure IV.7c and it 

consists of a ZnSe ATR-crystal joined to a silicon wafer by a pressure exerted from a 

securing screw. The pressure applied is finely adjusted so as to ensure maximal 

contact between the ZnSe crystal and the silicon wafer, without cracking the silicon 

wafer. The throughput of the BioATR-IV is heavily dependent upon optimal contact 

between the ZnSe crystal and the silicon wafer. Figure IV.8 shows an overlay of a 

transmission spectrum of an empty sample compartment and a sample compartment 
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with the BioATR-IV in place, within which no sample has been injected. From this it 

can be seen that the throughput of the BioATR-IV at 2000 cm-1 is approximately 3.5 

%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.7. The BioATR-IV accessory. A schematic representation of the BioATR-IV is shown in 
a and is photographed when positioned in the Tensor 27 in b. A schematic representation of the ATR 
ZnSe crystal assembly is shown in c, while d gives a side and top view photograph of the directing 
mirrors with the adjusting screws, as represented in a. 

T
ra

ns
m

itt
a

nc
e

Wavenumber (cm-1)

T
ra

ns
m

itt
a

nc
e

Wavenumber (cm-1)

ZnSe crystal Silicon wafer d

a b

c ZnSe crystal Silicon wafer d

a b

c

Sample well

ZnSe crystal Silicon wafer d

a b

c ZnSe crystal Silicon wafer d

a b

c

Sample well

Sample well

Main plate

ZnSe crystal Silicon wafer d

a b

c ZnSe crystal Silicon wafer d

a b

c

Sample well

ZnSe crystal Silicon wafer d

a b

c ZnSe crystal Silicon wafer d

a b

c

Sample well

Sample well

Main plate

Figure IV.8. BioATR-IV throughput.  The transmission spectrum of the empty 
sample compartment and the sample-free BioATR-IV is shown as red and blue, 
respectively. At 2000 cm-1 the BioATR-IV has a throughput of 3.5 % of that of the 
empty sample compartment. 
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IV.3.4 The Demountable Liquid Cell for Transmission FTIR 

The DLC-M13 demountable liquid cell (Harrick), along with two 13 mm CaF2 

windows (Korth Crystal) and a 100 µm Mylar spacer (Harrick) is shown 

photographed in Figure IV.9. Also shown in Figure IV.9 is a sample holder and 

QuickLockTM base plate for reproducible and optimised positioning within the Tensor 

27 spectrometer. The DLC-M13 can be filled while completely assembled using a 

syringe that attaches to either the top or bottom inlets of the cell. However, this is only 

possible when cell pathlengths above 200 µm are used. Spectral acquisition under 

purged conditions is possible by closing the lid of the Tensor 27 sample compartment 

and purging the entire sample compartment with the DLC-M13 in place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure IV.9. The DLC-M13 demountable liquid cell. The assembled and disassembled 
FTIR transmission cell is shown as left and right, respectively, along with the 
QuickLockTM base plate and transmission cell holder.  
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Chapter V 

Quantitative Analysis of Protein Secondary Structure 

by CD Spectroscopy 

 

V.1 Methods for Deconvoluting Protein CD Spectra 

Numerous approaches have been taken in the design of programs used for the 

quantitative analysis of protein secondary structure from its CD spectrum. In order of 

their appearance they are as follows: multilinear regression; singular value 

decomposition; ridge regression; convex constraint analysis; the self-consistent 

method; and neural networks. The ridge regression method is used in creating the 

CONTIN program, while variable selection is at the heart of the VARSLC program 

(CDSSTR) and the self-consistent method underlies the SELCON program. All of 

these methods make the assumption that the CD spectrum of a protein can be 

represented as a linear combination of the spectra of the secondary structural 

elements, as follows: 

noisei iF Sλ λθ = +∑                                           (V.1) 

where θλ is the CD of the protein as a function of wavelength, λ, Fi is the fraction of 

each ith secondary structure and Sλi is the ellipticity at each wavelength of each ith 

secondary structural element. The noise term includes the contribution made to the 

CD spectrum by any aromatic chromophores present. 

 

V.1.1 Multilinear Regression 

Using the multilinear regression method, the first attempts at deconvoluting the CD 

spectra of proteins made use of the CD spectra of model polypeptides of pure single 

classed secondary structure and fitted them to the protein CD spectrum by a simple 

least squares method.[1; 6] When a sufficient number of proteins had been 

structurally characterised using X-ray crystallography, the CD spectra of these same 

proteins were used to create a protein data bank and from this basis curves were 

extracted using multilinear regression. The basis spectra were generated so as to 

represent the CD spectrum of an α-helix, β-sheet (both parallel and antiparallel), β-
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turn and random coil as they would appear when these structures were present within 

a protein.[9-13] These basis spectra were then substituted for the model polypeptide 

CD spectra in analysing novel proteins by CD spectroscopy.  

The multilinear regression approach has been used to generate programs 

designed to perform quantitative secondary structural analysis based on protein CD 

spectra and these programs can be categorised based upon whether the least-squares 

fit is constrained or non-constrained. If a constrained fit is used then the sum of all Fi 

values must equal 1, the logic behind this being that the fractional sum of all 

secondary structures that combine to produce the protein’s CD spectrum cannot 

possibly be greater than unity. Constrained least-squares analysis was used in creating 

the multilinear regression LINCOMB and G&F programs. By using a non-constrained 

least-squares analysis the fit is not restricted such that the sum of the Fi values must 

equal unity. Instead, the coefficients are allowed to be normalised after the fitting 

procedure. Non-constrained analysis has the advantage that it allows for more 

flexibility in the fitting procedure and so can take account of the possibility of the 

basis spectra being less than perfect for fitting the protein CD being analysed. The 

MLR program was developed by the non-constrained multilinear regression method. 

The G&F and the LINCOMB programs are superior to the MLR program for 

the prediction of β-sheet and β-turns and the use of the model polypeptide standard 

curves gives more accurate predictions than the use of basis curves extracted from 

protein databases.[1; 9; 12] However, the prediction of both β-sheet and β-turn 

content using the multilinear regression method is generally quite poor. A number of 

factors combine to produce this lack of performance. Firstly, the contributions made 

by aromatic groups to the protein CD are ignored when generating the basis spectra 

from the protein reference database, and, as such, model polypeptide standard spectra 

when used with multilinear regression enhances the estimation by this method of β-

sheet and β-turn content. Secondly, because the basis or model polypeptide spectra 

are not well distinguished over several wavelength regions, the multilinear regression 

method of analysing the protein CD spectrum at each wavelength independently is 

open to a significant degree of error. The G&F, LINCOMB and MLR programs 

perform equally well when predicting α-helix content. The main benefit for using the 

multilinear regression approach for quantitative secondary structural analysis is that 

the programs can work with CD spectra acquired over a quite narrow wavelength 
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range (240-200 nm) with only a slight drop in performance. Since MLR uses a non-

constrained analysis, it is the only program that can be used for quantitative secondary 

structural analysis in the absence of accurate knowledge of protein concentration. 

 

V.1.2 Singular Value Decomposition 

To address the problem of the similarity of basis spectra over certain wavelength 

regions, the singular value decomposition (SVD) approach was developed, whereby 

basis spectra were no longer generated by considering the CD spectra of the reference 

proteins at each wavelength independently, but rather that orthogonal basis curves 

were extracted from the reference base as eigenvectors in a method of 

multicomponent analysis.[14] Here, the component is the CD spectrum at a single 

wavelength and, therefore, the spectral magnitude at each wavelength is no longer 

considered independently of its magnitude at other wavelengths, with the result that a 

combination of co-dependent spectral magnitudes at several wavelengths is much 

better suited to being able to characterise the CD signature of a structural component. 

SVD also constrains the fractional weights of each conformation to equal 1 during the 

fitting procedure. The SVD approach has an improved performance over the 

multilinear regression method when predicting the α-helix content of a protein from 

CD data, but it is less able to estimate β-turn content. Both approaches perform 

equally well in attempting to estimate β-sheet content. SVD suffers in that to have 

enough information for conformational analysis basis spectra must have a sufficient 

number of nodes (maxima and minima) and as a result the CD data must be collected 

to at least 184 nm. 

 

V.1.3 Convex Constraint Analysis 

Convex constraint analysis (CCA) is an approach to spectral deconvolution similar to 

the SVD method, in that it uses multicomponent criteria for generating the basis 

spectra from the protein CD spectra compiling the reference database.[15-17] Similar 

to SVD, the sum of the fractional components is constrained to equal 1 for CCA. 

CCA differs from SVD in the manner by which the basis curves are extracted. Instead 

of relying on spectral nodes to define each basis spectrum, a volume minimization 

procedure is performed, introducing a constraint that results in a finite number of 

component curves being extracted from the reference base. CCA also differs from 
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SVD in that no X-ray crystallographic data are used in generating the basis spectra. 

Instead the basis curves are assigned to specific secondary structures by correlation of 

the fractional weights of each secondary structure in the protein reference set with the 

fractional weight of each extracted basis spectrum. CCA gives a very good estimate of 

α-helix, which is largely independent of the wavelength range of the CD spectrum 

under investigation. However, estimates of β-sheets and β-turns are poor. It is 

supposed that the weakness of CCA in this regard is attributable to secondary 

structures within a protein not being truly independent of one another, as is assumed 

by the CCA method. 

 

V.1.4 The CONTIN Program 

To test the theory that the secondary structure of an unknown protein can be best 

estimated by interpreting its CD spectrum with respect to other proteins that have 

similar CD spectra and are of known structure, methods were developed that could 

select from the protein reference data base only those proteins that have CD spectra 

similar to the test spectrum and, from these, compose a new reference set with which 

to analyse the test spectrum. Such selection methods include ridge regression, variable 

selection and neural networks. Selection is seen as important in that proteins may 

display unusual CD spectra, which have been distorted by features such as a high 

presence of aromatic amino acids or the occurrence of disulfide bridges.[18] Even the 

adoption of a rare tertiary conformation by a protein can greatly distort its CD 

spectrum. Therefore, the desire to have as comprehensive a protein reference set 

should be balanced by including a selection method in the generation of the basis 

spectra.  

CONTIN uses ridge regression analysis to fit the test protein CD spectrum 

directly from the CD spectra of a large protein reference set, without the generation of 

basis spectra.[19] In doing this it keeps the contribution of each spectrum small unless 

it contributes to a good agreement between the theoretical best-fit curve and the test 

spectrum. Therefore, spectra most similar to the test spectrum are given greater 

weight than those that are less similar. The main improvement in using CONTIN to 

estimate secondary structural content is that it gives a much better estimate of β-turn 

content than previous methods based on multilinear regression, or either SVD or 

CCA. Also, CONTIN doesn’t suffer from limiting the test spectrum to wavelengths 
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longer than 200 nm. The most recent version of CONTIN uses a locally linearised 

method instead of the ridge regression method in selecting the weighting of proteins 

within the reference set and is called CONTIN/LL.   

 

V.1.5 The VARSLC and CDSSTR Programs 

Combining variable selection with the SVD method led to the creation of the 

VARSLC program.[20] Here proteins are systematically eliminated from the 

reference set, creating numerous smaller reference sets. These reduced sets are used in 

evaluating the conformation of the test protein and the results obtained using each are 

examined. Selection criteria are then applied to all the results and only those yielding 

a good fit are chosen. These results are then averaged to give the final result. The 

VARSLC program gives excellent evaluation of protein secondary structure from CD 

spectra, but suffers from requiring the test spectrum to be collected to at least 184 nm. 

In the VARSLC program there are a number of parameters that can be varied by the 

user for each analysis, such as the amount of calculations to be made, the constraint 

on the total sum of the fractional composition, the number of basis proteins to be used 

and the maximum root mean square deviation acceptable for a solution. Solutions that 

do not lie within the boundaries set by the user are ignored by the program, regardless 

of whether they happen to be good solutions. The CDSSTR program is essentially the 

same as the VARSLC program, but is designed so that all of the above-mentioned 

boundaries are given maximum freedom. The result is that calculations done using the 

CDSSTR program generally take longer than the VARSLC program, but the solutions 

are arrived at in a more comprehensive manner and so improve the probability of 

achieving a successful estimation of the test protein’s secondary structure.   

 

V.1.6 The SELCON Program 

The self-consistent method continues on from the variable selection method, 

improving its speed and accuracy, and it is the basis on which the SELCON program 

has been develop.[21-23] The SELCON program arranges the proteins of the 

reference set in order of increasing root-mean-square difference from the test 

spectrum and then the most dissimilar proteins to the test data are systematically 

eliminated so that a reduced protein reference set is produced. This serves to increase 

the speed of finding the best solutions. Also, included in the reduced reference set is 

the test protein spectrum and an initial guess is made at its fractional secondary 
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structural composition. This serves to improve the estimation of the structure of the 

test protein, since the reduced reference set is made biased towards the test protein 

structure. The test spectrum is then deconvoluted by the SVD method and the 

protein’s secondary structure is determined. The solution serves to replace the initial 

guess of the test protein’s fractional composition and the procedure is repeated. This 

is continued until self-consistency is reached and at that point the final structure is 

estimated.  

The latest version of the SELCON program is SELCON3 and it includes in the 

analysis the constraint that the sum of the estimated secondary structures is equal to 

one and that each estimated secondary structure fraction be greater than –0.5. A final 

constraint is introduced in the SELCON3 program that only solutions conforming to 

the helix limit theorem be included in the final solutions, whereby the solutions must 

fall within the range of helix content suggested by the Hennessey and Johnson 

method.[14] 

The SELCON program returns very good predictions of α-helix, β-sheet and 

β-turn structures, even when the test data is only collected between 240 and 200 nm. 

The SELCON program has also been augmented so as to be able to determine the P2 

conformation of globular proteins.[23] The program, however, performs poorly when 

attempting to estimate fractional contents of proteins with very high β-sheet contents. 

The origin of this lack of performance lies within the proteins that represent the 

reference set from which the SELCON program currently operates and, specifically, 

can be traced to the magnitude of the ellipticity of a pure “infinite” β-sheet being 

much higher than that of a short β-sheet, the kind of which are represented in the 

protein reference set. 

 

V.1.7 The K2D and CDNN Programs 

The third selection method used for estimating protein secondary structure is the 

neural net method and this has been used in generating the K2D and CDNN 

programs.[24; 25] In general, a neural network consists of three different types of 

units, called input, hidden and output units. Input units receive information from the 

external into the network. Hidden units pass information between different layers 

within the network and output units pass information from the network to the external.  

The units are organised into layers and “neurons” connect each unit to other units 
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within the same layer and/or to other units of a different layer. These connections are 

numerically weighted in what is referred to as the “training” or “learning” phase, in 

which the neural net is exposed to the protein reference set, and it is this phase that 

represents the selection step in the analysis.  

The CDNN neural network of Bohm et al. consists of 83 input units, 

corresponding to the CD data at 83 wavelengths between 260 and 178 nm, a single 

hidden layer of 45 units and an output layer of 5 units, representing the α-helix, 

parallel and antiparallel β-sheet, β-turn and remainder conformations.[26] The K2D 

program differs from CDNN in that it relies on a procedure called proteinotopic 

mapping to create a database of weights and then uses a recall program to determine 

the α-helix and β-sheet structures of a test protein. Also, the K2D neural net utilizes 

data only between 240 and 200 nm as input, but it is unable to estimate β-turn content. 

Of all the programs used for estimating the fractional composition of protein 

secondary structure K2D is best able to estimate β-sheet content when only a limited 

wavelength range of data has been acquired. 

 

V.1.8 The Root Mean Square Deviation and Correlation Coefficient  

The general approach taken to assess the performance of a program in correctly 

predicting the fractional composition of a protein’s secondary structure is to analyse 

the ability of the program in estimating the fractional composition of each protein of 

known secondary structure contained within the protein reference set, after that 

protein has been removed from the reference set. The two categories of performance 

indices are the root mean square deviation (RMSD) (δ) and the correlation coefficient 

(r) between the crystal structure and the CD predicted values. The performance 

indices are given separately for each secondary structure estimate (e.g. δα and rα for 

the α-helix prediction) and then again for all estimated secondary structures 

combined, representing an overall performance index. The RMSD and correlation 

coefficients are calculated by the following equations 
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where fi
CD and fi

X are CD and X-ray estimates of secondary structure types of N 

reference proteins, respectively. An exact fit of the sample CD spectrum will return a 

δ value of 0 and an r value of 1. The closeness of each to these ideal values indicates 

the degree of confidence associated with the estimation of fractional composition of 

the sample protein. Confidence in the estimation of the fractional composition of a 

protein is further enhanced if similar results are obtained when analysing the data by 

different methods, and, therefore, analyses should be performed using a variety of 

methods. This, however, assumes that all methods be used with a common protein 

reference set and finding the best reference set is generally a matter of trial and error. 

It should be noted, however, that reference sets that consist of a larger number of 

proteins and represent a larger coverage of characteristic secondary structures, along 

with CD data for each protein extending well into the far-UV, as far as 178 nm, 

generally give superior estimates of fractional composition.  

 

V.1.9 The Protein Reference Sets 

The CDPro software package consists of the CDSSTR, SELCON3, CONTIN/LL and 

CLUSTER programs, and is available online to non-commercial users at 

http://lamar.colostate.edu/~sreeram/CDPro/main.html. There are 10 different protein 

reference sets to choose from when analysing the CD spectrum of a sample protein. 

These are listed as SP29, SP22X, SP37, SP43, SP37A, SDP42, SDP48, CLSTR, 

SMP50 and SMP56. The reference sets labelled with the initials SP consist only of 

soluble native proteins and the number indicates the amount of proteins that make up 

the reference set. Similarly, reference sets labelled SDP and SMP consist of soluble 

proteins along with either denatured or membrane proteins, respectively. The proteins 

are characterised according to their fractional compositions with respect to six 

secondary structures, which have been assigned by the DSSP method for interpreting 

X-ray crystallographic spectra and these represent regular α-helix (αR), distorted α-

helix (αD), regular β-strand (βR), distorted β-strand (βD), β-turns (T) and unordered 

(U) conformations.[27] Exceptions are when the reference set is designed to be able to 



                                Chapter V Quantitative Analysis of Protein Secondary Structure by CD Spectroscopy 

                                                                93 

predict polyproline or 310-helix conformations. Table V.1 lists the fractional 

composition of each of the 56 proteins used by the CDPro software. 

 

V.1.10 The Relative Performance of CONTIN(/LL), SELCON3 and CDSSTR 

Sreerama and Woody have tested the performances of three of the most widely used 

methods for interpreting protein fractional composition from CD spectroscopy, 

namely, CONTIN(/LL), SELCON3 and CDSSTR, using a variety of reference sets 

(Table V.1) and conclude that the performances of all three methods are 

comparable.[3] The performance for each method is gauged by estimating the 

fractional composition of each protein in the reference set, with that protein being 

excluded from the reference set during the analysis, and by then comparing these 

estimates with the X-ray crystal structure and calculating the δ and r values, using 

equations V.2 and V.3. As shown in Table V.2 they found that CDSSTR performed 

the best when a reference set consisting of a smaller number of proteins, but 

containing data over a larger wavelength range was used. When the number of 

reference proteins was increased at the expense of the wavelength range available for 

the analysis it was found that CONTIN/LL performed best. The quality of 

performance for estimating the content of individual secondary structures was found 

to be mixed between the different methods. The authors, therefore, recommend that 

all three methods should be used conjointly when analysing data by any of the three 

methods to improve the reliability of the final result.[3] 
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Protein PDB 
code 

Protein 
class 

Wavelength 
range (nm) 

Reference set ααααR ααααD ββββR ββββD T U 

Myoglobin 4mbn αα 260-178 1,2,3,4,5,6,7,8,9 0.582 0.222 0.000 0.000 0.052 0.144 
Hemoglobin 2mhb αα 260-178 1,2,3,4,5,6,7,8,9 0.537 0.223 0.000 0.000 0.105 0.136 
Hemerythrin 2hmz αα 260-178 1,2,3,4,5,6,7,8,9 0.478 0.197 0.000 0.000 0.111 0.215 
T4 lysozyme 2lzm αα 260-178 1,2,3,4,5,6,7,8,9 0.421 0.244 0.049 0.037 0.116 0.134 

Triose phosphate isomerase 3tim αβ 260-178 1,2,3,4,5,6,7,8,9 0.236 0.210 0.090 0.064 0.124 0.276 
Lactate dehydrogenase 6ldh αβ 260-178 1,2,3,4,5,6,7,8,9 0.277 0.161 0.088 0.073 0.155 0.246 

Lysozyme 1lys αβ 260-178 1,2,3,4,5,6,7,8,9 0.202 0.217 0.016 0.047 0.298 0.221 
Thermolysin 8tln αβ 260-178 1,2,3,4,5,6,7,8,9 0.282 0.133 0.070 0.095 0.215 0.206 

Cytochrome c 5cyt αα 260-178 1,2,3,4,5,6,7,8,9 0.214 0.194 0.000 0.000 0.233 0.359 
Phosphoglycerate kinase 3pgk αβ 260-178 2,3,4,5,6,7,8,9 0.210 0.135 0.043 0.067 0.231 0.313 

EcoRI endonuclease 1eri αβ 260-178 2,3,4,5,6,7,8,9 0.192 0.127 0.098 0.080 0.210 0.293 
Flavodoxin 1fx1 αβ 260-178 1,2,3,4,5,6,7,8,9 0.209 0.108 0.108 0.108 0.264 0.203 

Substilisin BPN′ 1SBT αβ 260-178 2,3,4,5,6,7,8,9 0.171 0.131 0.098 0.080 0.225 0.295 
Glyceraldehyde 3-P 

dehydrogenase 
3gpd αβ 260-178 2,3,4,5,6,7,8,9 0.172 0.102 0.115 0.093 0.217 0.301 

Papain 9pap αβ 260-178 1,2,3,4,5,6,7,8,9 0.137 0.123 0.094 0.075 0.175 0.396 
Substilisin Novo 2SBT αβ 260-178 2,3,4,5,6,7,8,9 0.113 0.102 0.065 0.073 0.295 0.353 
Ribonuclease A 3rn3 αβ 260-178 1,2,3,4,5,6,7,8,9 0.113 0.097 0.218 0.113 0.218 0.242 

Pepsinogen 2psg αβ 260-178 1,2,3,4,5,6,7,8,9 0.051 0.154 0.235 0.151 0.165 0.243 
β-lactoglobulin 1beb αβ 260-178 1,2,3,4,5,6,7,8,9 0.056 0.111 0.287 0.123 0.216 0.207 
α-chymotrypsin 5cha ββ 260-178 1,2,3,4,5,6,7,8,9 0.069 0.045 0.208 0.106 0.200 0.371 

Azurin 5azu αβ 260-178 1,2,3,4,5,6,7,8,9 0.047 0.062 0.141 0.109 0.312 0.328 
Elastase 3est ββ 260-178 1,2,3,4,5,6,7,8,9 0.021 0.087 0.225 0.117 0.208 0.342 

γ-crystallin 4gcr ββ 260-178 2,3,4,5,6,7,8,9 0.006 0.086 0.299 0.161 0.109 0.339 
Prealbumin 2pab ββ 260-178 1,2,3,4,5,6,7,8,9 0.031 0.031 0.307 0.142 0.165 0.323 

Concanavalin A 2ctv ββ 260-178 1,2,3,4,5,6,7,8,9 0.000 0.038 0.329 0.135 0.236 0.262 
Bence-Jones protein 1rei ββ 260-178 1,2,3,4,5,6,7,8,9 0.000 0.028 0.294 0.196 0.229 0.252 

Tumor necrosis factor 1tnf ββ 260-178 2,3,4,5,6,7,8,9 0.000 0.019 0.293 0.140 0.219 0.329 
Superoxide dismutase 2sod ββ 260-178 1,2,3,4,5,6,7,8,9 0.000 0.018 0.248 0.119 0.298 0.316 

α-bungarotoxin 2abx ββ 260-178 2,3,4,5,6,7,8,9 0.000 0.000 0.014 0.095 0.284 0.608 
Trypsin  αβ 260-178 1 0.088 0.031 0.193 0.136 0.140 0.412 

Colicin A 1col αα 240-185 3,4,5,7,8,9 0.529 0.225 0.000 0.000 0.044 0.202 
Rat intestinal fatty acid 

binding protein 
1ifc ββ 240-185 3,4,5,7,8,9 0.053 0.061 0.432 0.152 0.152 0.152 

Green fluorescent protein 1ema ββ 240-185 3,4,5,7,8,9 0.004 0.064 0.347 0.093 0.191 0.301 
Staphylococcal nuclease 2sns αβ 240-190 4,6,7,8,9 0.094 0.101 0.081 0.107 0.289 0.328 

Insulin 4ins αα 240-190 4,6,7,8,9 0.294 0.235 0.020 0.040 0.050 0.361 
Parvalbumin 5cpv αα 240-190 4,6,7,8,9 0.278 0.287 0.000 0.037 0.194 0.204 

Carboxypeptidase A 5cpa αβ 240-190 4,6,7,8,9 0.254 0.127 0.111 0.052 0.212 0.244 
Bovine pancreatic trypsin 

inhibitor 
5pti αβ 240-190 4,6,7,8,9 0.069 0.138 0.172 0.069 0.190 0.362 

Adenylate kinase 3adk αβ 240-190 4,6,7,8,9 0.340 0.206 0.077 0.052 0.012 0.313 
α-chymotrypsinogen 2cga ββ 260-178 3,4,5,6,7,8,9 0.053 0.082 0.210 0.110 0.210 0.335 

Alcohol dehydrogenase 8adh αβ 260-178 3,4,5,6,7,8,9 0.139 0.115 0.139 0.096 0.214 0.297 
Carbonic anhydrase 1ca2 αβ 260-178 3,4,5,6,7,8,9 0.058 0.104 0.170 0.116 0.240 0.312 

Glutathione reductase 3grs αβ 260-178 3,4,5,6,7,8,9 0.188 0.142 0.140 0.096 0.172 0.262 
Rhodanese 1rhd αβ 260-178 3,4,5,6,7,8,9 0.150 0.147 0.041 0.068 0.235 0.359 

Reaction center* 1prc αα 245-185 8,9 0.291 0.186 0.024 0.042 0.194 0.263 
Photosystem I* 1jb0 αα 245-185 8,9 0.363 0.193 0.025 0.029 0.167 0.222 

Reaction center* 1qov αα 245-185 8,9 0.341 0.185 0.035 0.035 0.138 0.263 
Antenna complex* 1nkz αα 245-185 8,9 0.569 0.161 0.000 0.000 0.086 0.183 

Ubiquinol-cytochrome c 
reductase* 

1bgy αα 245-185 8,9 0.355 0.163 0.056 0.034 0.165 0.228 

Cytochrome oxidase* 1occ αα 245-185 8,9 0.434 0.146 0.031 0.022 0.141 0.226 
Rhodopsin* 1f88 αα 245-185 8,9 0.482 0.153 0.012 0.025 0.160 0.166 

Bacteriorhodopsin* 1qhi αα 245-185 8,9 0.605 0.154 0.035 0.017 0.109 0.079 
Ca2+ATPase* 1eu1 αβ 245-185 8,9 0.286 0.154 0.087 0.058 0.203 0.211 

Porin* 2omf ββ 245-185 8,9 0.010 0.035 0.462 0.118 0.223 0.153 
Porin* 2por ββ 245-185 8,9 0.027 0.040 0.462 0.106 0.193 0.172 

Maltoporin* 1af6 ββ 245-185 8,9 0.000 0.028 0.482 0.114 0.159 0.216 
Phosphoporin* 1pho ββ 245-185 8,9 0.000 0.020 0.433 0.115 0.236 0.194 

 
Table V.1. Reference proteins included in the CDPro software suite. The protein reference sets are as 
follows: 1=SP22X; 2=SP29; 3=SP37; 4=SP43; 5=SP37A; 6=SDP42; 7=SDP48; 8=SMP50; 9=SMP56. 
Reference sets 3 and 5 contain the same set of proteins, but differ in the assignment of secondary structures. 
For reference set 5 the secondary structures are redefined as α, β, PII, T and U, for the purpose of being able to 
estimate PII content of sample proteins.  Similarly, the secondary structures of reference set 2 are defined as 
α, 310, β, PII, T and U for the purpose of estimating 310 helical content. The secondary structures of all other 
reference sets are defined as given in the table. Membrane proteins are labelled as *. 
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V.1.11 The Wavelength Dependence of Protein CD 

Comparing the cross referencing of SP29:260-178 with itself and with SP29:240-190 

gives a clear indication of the effect of extending the data acquisition to lower 

wavelengths. It can be seen from Table V.2 that acquisition to 178 nm significantly 

improves the correlation coefficients of all fractions, except that of the regular helix, 

when compared with the same correlation coefficients for data collected to 190 nm. 

The RMSD values show a similar trend when the two sets of performance indices are 

compared. Both trends are reflected in the overall RMSD and correlation coefficients 

for the two wavelength ranges. Cross correlating the reference sets SP29:240-190 and 

SP29:240-200 with both SP43:240-190 and SDP48:240-190 gives similar results, 

further emphasising the importance of collecting data to as short a wavelength as 

possible before attempting an estimation of the secondary structure fractional 

composition of a protein from its CD spectrum. These results were found to be 

independent of the particular method used for the analysis.  

 

V.1.12 The Dependence of Reference Set Size 

Assessing the performance of each method while varying the number of proteins in 

the reference set can be done by comparing the performance indices returned by the 

self correlation of each of the five reference sets used, and in particular those of SP29, 

SP37 and SP43. For both SELCON3 and CONTIN/LL an improvement in 

performance was seen when increasing the number of reference proteins from 29 to 

37. For the same methods, increasing the number of proteins to 43 showed no 

improvement over the case when 37 proteins were used. CDSSTR performed best 

when only 29 proteins were used and showed no difference between using 37 or 43 

proteins. 

Greenfield has gone on to perform a similar analysis on a selection of proteins 

chosen from the SP29 reference set (1αα, 2αβ and 1ββ class2) with a more 

comprehensive selection of analysis methods.[8] Also, the estimates of fractional 

compositions were compared when data was collected to different shorter wavelength 

limits. Table V.3 shows the accuracy that can be expected when using CD 

spectroscopy to estimate protein secondary structure contents.  In general, the 

LINCOMB and MLR methods did a poor job of estimating the fractional 

compositions of the four proteins used, regardless of wavelength lower limit. This 
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could be due to the fact that the polypeptide reference set of Brahms and Brahms was 

used during the analysis.[1] CONTIN showed equal or better performance when 

analysing data collected to 200 nm compared to data collected to 190 nm for all 

proteins except α-chymotrypsin. SELCON gave approximately equally good 

estimates for all four proteins regardless of whether data was collected to 200 or 178 

nm. The same was true of the VARSLC program, which overall did not perform quite 

as well as the SELCON or CONTIN programs. CONTIN, SELCON and VARSLC all 

performed well when estimating the α-helical content of each of the proteins, but 

performed less well when trying to estimate β-sheet content of all but the αα protein 

of myoglobin. In complete contrast, the neural net K2D program performed very well 

when estimating the β-sheet contents of all proteins except for myoglobin. The 

CDNN neural net program also performed excellently well in estimating the fractional 

compositions of each of the four proteins and the pure α-helix polypeptide. CDNN 

performed slightly better when interpreting data collected to 200 nm compared to 180 

nm. It did a poor job in analysing the pure β-sheet polypeptide, underestimating the β-

sheet content and overestimating the α-helix content. 
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Ref. set Method Cross ref. set: wavelength 

range 

δδδδααααR rααααR δδδδααααD rααααD δδδδββββR rββββR δδδδββββD rββββD δδδδT rT δδδδU rU δδδδ r 

SP29: 260-178 0.054 0.946 0.052 0.717 0.087 0.646 0.034 0.742 0.062 0.482 0.101 0.300 0.073 0.795 SELCON3 

SP29: 240-190 0.052 0.949 0.053 0.689 0.102 0.547 0.036 0.709 0.075 0.302 0.118 0.268 0.078 0.773 

SP29: 260-178 0.050 0.955 0.053 0.805 0.079 0.706 0.029 0.810 0.060 0.536 0.099 0.478 0.066 0.836 CDSSTR 

SP29: 240-190 0.059 0.938 0.052 0.785 0.083 0.655 0.030 0.790 0.074 0.337 0.097 0.491 0.070 0.817 

CONTIN SP29: 260-178 0.046 0.960 0.050 0.727 0.099 0.489 0.031 0.783 0.060 0.476 0.100 0.397 0.070 0.812 

SP29: 260-178 0.050 0.952 0.056 0.695 0.099 0.533 0.034 0.734 0.065 0.448 0.103 0.350 0.072 0.802 

SP29 

CONTIN/LL 

SP29: 240-190  0.058 0.936 0.055 0.679 0.102 0.486 0.035 0.719 0.074 0.323 0.103 0.317 0.075 0.784 

SP37:240-185 0.050 0.952 0.043 0.767 0.084 0.705 0.037 0.664 0.056 0.570 0.108 0.154 0.068 0.819 SELCON3 

SP29: 240-190 0.047 0.960 0.050 0.715 0.094 0.638 0.036 0.704 0.063 0.538 0.116 0.142 0.073 0.795 

SP37:240-185 0.055 0.946 0.044 0.830 0.096 0.600 0.028 0.811 0.065 0.448 0.101 0.323 0.070 0.809 CDSSTR 

SP29: 240-190 0.059 0.939 0.047 0.811 0.087 0.648 0.030 0.801 0.066 0.452 0.098 0.413 0.069 0.819 

CONTIN SP37:240-185 0.056 0.940 0.042 0.773 0.101 0.529 0.030 0.787 0.064 0.362 0.087 0.380 0.068 0.814 

SP37:240-185 0.052 0.948 0.047 0.745 0.098 0.577 0.031 0.763 0.066 0.418 0.094 0.279 0.069 0.811 

SP37 

CONTIN/LL 

SP29: 240-190 0.054 0.944 0.052 0.706 0.093 0.624 0.033 0.753 0.066 0.447 0.095 0.328 0.069 0.813 

SP43:240-190 0.053 0.941 0.044 0.776 0.086 0.663 0.031 0.743 0.073 0.367 0.098 0.216 0.068 0.811 

SP29: 240-190 0.051 0.953 0.048 0.747 0.086 0.659 0.034 0.746 0.073 0.382 0.110 0.181 0.072 0.802 

SELCON3 

SP29: 240-200 0.056 0.938 0.044 0.809 0.094 0.550 0.037 0.682 0.074 0.273 0.105 0.256 0.073 0.799 

SP43:240-190 0.065 0.918 0.045 0.771 0.092 0.611 0.028 0.807 0.068 0.463 0.088 0.369 0.068 0.810 

SP29: 240-190 0.064 0.929 0.042 0.792 0.081 0.704 0.028 0.843 0.067 0.462 0.089 0.444 0.065 0.833 

CDSSTR 

SP29: 240-200 0.063 0.933 0.043 0.789 0.088 0.609 0.030 0.804 0.076 0.357 0.088 0.452 0.068 0.820 

CONTIN SP43:240-190 0.059 0.927 0.046 0.753 0.088 0.631 0.029 0.782 0.078 0.213 0.082 0.397 0.067 0.815 

SP43:240-190 0.057 0.930 0.043 0.793 0.087 0.649 0.029 0.774 0.077 0.333 0.089 0.253 0.068 0.814 

SP29: 240-190 0.053 0.942 0.048 0.756 0.084 0.674 0.031 0.781 0.076 0.373 0.096 0.262 0.069 0.817 

SP43 

CONTIN/LL 

SP29: 240-200 0.065 0.920 0.047 0.771 0.084 0.658 0.030 0.793 0.081 0.239 0.097 0.311 0.071 0.805 

SDP42:240-185 0.047 0.956 0.043 0.794 0.082 0.672 0.037 0.690 0.064 0.650 0.140 0.769 0.077 0.873 SELCON3 

SP29: 240-190 0.048 0.957 0.050 0.724 0.091 0.641 0.037 0.694 0.066 0.527 0.125 0.316 0.076 0.798 

SDP42:240-185 0.052 0.950 0.042 0.847 0.093 0.620 0.029 0.819 0.069 0.585 0.140 0.774 0.080 0.864 CDSSTR 

SP29: 240-190 0.059 0.940 0.047 0.813 0.088 0.616 0.029 0.811 0.073 0.343 0.116 0.495 0.074 0.805 

CONTIN SDP42:240-185 0.054 0.940 0.047 0.755 0.095 0.618 0.032 0.769 0.091 0.187 0.157 0.712 0.090 0.712 

SDP42:240-185 0.049 0.950 0.045 0.781 0.088 0.671 0.030 0.799 0.071 0.575 0.120 0.836 0.074 0.885 

SDP42 

CONTIN/LL 

SP29: 240-190 0.055 0.943 0.052 0.711 0.088 0.650 0.031 0.788 0.069 0.401 0.097 0.485 0.069 0.823 

SDP48:240-190 0.052 0.942 0.044 0.806 0.082 0.694 0.034 0.719 0.076 0.505 0.129 0.775 0.076 0.866 

SP29: 240-190 0.053 0.949 0.049 0.746 0.081 0.678 0.034 0.748 0.072 0.431 0.119 0.394 0.073 0.810 

SELCON3 

SP29: 240-200 0.065 0.920 0.045 0.813 0.099 0.505 0.040 0.638 0.076 0.255 0.132 0.281 0.082 0.768 

SDP48:240-190 0.060 0.930 0.047 0.822 0.087 0.640 0.031 0.770 0.078 0.455 0.135 0.766 0.080 0.852 

SP29: 240-190 0.062 0.933 0.051 0.819 0.082 0.664 0.028 0.821 0.074 0.341 0.116 0.500 0.074 0.807 

CDSSTR 

SP29: 240-200 0.056 0.948 0.049 0.825 0.084 0.644 0.033 0.754 0.079 0.322 0.121 0.465 0.076 0.803 

CONTIN SDP48:240-190 0.055 0.934 0.049 0.750 0.091 0.594 0.035 0.685 0.092 0.099 0.154 0.672 0.089 0.814 

SDP48:240-190 0.053 0.941 0.041 0.840 0.081 0.697 0.031 0.765 0.076 0.512 0.114 0.833 0.072 0.884 

SP29: 240-190 0.053 0.946 0.047 0.785 0.078 0.710 0.031 0.780 0.071 0.441 0.093 0.527 0.065 0.843 

SDP48 

CONTIN/LL 

SP29: 240-200 0.066 0.919 0.048 0.769 0.090 0.618 0.033 0.753 0.085 0.139 0.126 0.314 0.080 0.771 

 

Table V.2. The performance of SELCON3, CDSSTR and CONTIN(/LL) programs for analysing 
protein CD spectra when different reference sets are used. The table rows are coloured clear, grey and 
yellow where the reference set is cross correlated with itself, the reference set SP29 with data between 240-
190 nm and the reference set SP29 with data between 240-200 nm, respectively. The latter two performance 
indices are included in order to compare the performance effect with wavelength range and with varying the 
number of proteins in the reference set. (Modified from [3]) 

Table V.3. Comparison of the performances of various methods in estimating the fractional composition 
of 4 proteins and 2 polypeptides.  *The reference set used for the LINCOMB and MLR methods when 
analysing the 4 proteins was that of Brahms and Brahms.[1] The polypeptide reference set of Reed and Reed 
was used for estimating the composition of poly(lys-leu)n and poly-L-lysine.[4] A common reference set from 
the CDPro software was used for all other methods on the 4 proteins. (Reproduced from[8]) 
 

Method  X-ray LINCOMB* MLR* CONTIN SELCON VARSLC K2D CDNN 
λλλλmin (nm)   200 178 200 178 200 190 200 178 200 178 200 200 180 

α-helix 78 96 93 89 97 67 89 73 79 76 74 74 83 84 
β-sheet 0 0 0 0 0 0 0 -3 0 0 0 8 3 2 

Myoglobin 

Turn 10 4 5 8 3 16 0 13 20 4 18 ND 9 9 
α-helix 37 46 40 63 42 46 40 41 39 40 39 55 42 44 
β-sheet 14 21 29 15 33 7 39 12 27 15 28 11 13 10 

Lactate 
dehydrogen
ase Turn 25 15 11 13 9 26 1 22 27 17 13 ND 15 14 

α-helix 10 15 21 33 28 11 9 7 15 24 16 12 19 20 
β-sheet 38 25 14 6 0 16 32 16 26 0 11 33 29 50 

Chymotryp
sin 

Turn 26 10 16 5 9 44 32 13 16 42 39 ND 21 22 
α-helix 3 0 0 0 0 6 0 3 9 14 0 3 13 16 
β-sheet 50 43 40 68 40 42 81 47 34 7 69 50 39 22 

Bence 
Jones 
protein Turn 24 25 29 17 28 25 10 23 40 28 17 ND 22 22 
λmin (nm)   200 190 200 190 200 190 200 178 200 178 200 200 180 

α-helix 0 0 9 0 2 12 9 31 24 31 30 5 34 39 
β-sheet 100 89 65 89 99 73 91 24 39 51 55 89 18 13 

Poly(lys-
leu)n In 0.5 
M NaF, pH 
7 

Turn 0 11 26 7 0 0 0 26 26 1 3 ND 16 13 

λmin (nm)   200 190 200 190 200 190 200 190 200 190 200 190 190 

α-helix 100 97 100 - - 100 100 99 89 100 96 100 92 94 
β-sheet 0 3 0 - - 0 0 0 1 6 18 0 1 1 

Poly-L-
lysine 0.01 
% helical 
form 

Turn 0 0 0 - - 0 0 1 6 13 15 ND 7 7 
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V.1.13 Analysis of Membrane Proteins by CD 

The ability of soluble protein reference sets to analyse the fractional composition of 

membrane proteins has been a topic of some recent debate. Wallace et al. examined 

the performance of the CDPro software in analysing the fractional compositions of 

eight membrane proteins and concluded that the soluble protein reference sets were 

inadequate for estimating the fractional composition of membrane proteins from their 

CD spectra.[28] They suggested that the CD spectra of membrane proteins were in 

some way fundamentally different from those of soluble proteins and that in order to 

be able to solve for their fractional composition a separate membrane protein 

reference set would be required. Sreerama and Woody subsequently created such a 

reference set and incorporated it within the CDPro software.[2] Their analysis of 

membrane proteins, however, suggested no such fundamental difference between 

membrane protein CD spectra and those of soluble proteins. The inclusion of 13 

membrane proteins to the soluble protein reference sets of CDPro enhanced the 

performances of CONTIN, SELCON and CDSSTR for both soluble and membrane 

proteins alike, especially in the estimation of β-sheet content. The authors suggest that 

the enhanced performance in analysing membrane proteins resulted from there being 

a greater number of proteins in the new reference sets, rather than being due to some 

uniqueness of membrane protein CD spectra, since, contrary to the findings of 

Wallace et al., the soluble protein reference sets performed as well when analysing 

both membrane and soluble proteins. Table V.4 compares the performance of the 

soluble reference set with the combined soluble and membrane reference set in 

estimating the fractional compositions of both soluble and membrane proteins. 
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V.1.14 The Effect of Tertiary Structure on Protein Far-UV CD 

It is well understood that protein far-UV CD spectra are not exclusively defined by 

their secondary structural fractional compositions, but are influenced, sometimes 

heavily, by the tertiary structure the protein adopts. As such, any lack of 

representation in the protein reference set of each of the different classes of tertiary 

structure could significantly reduce a method’s performance when estimating 

fractional compositions. Figure V.1 shows the CD spectra of six protein pairs, 

wherein the proteins have similar fractional compositions, but differ in their tertiary 

structures. Another source of error in estimating fractional compositions from CD 

spectra is thought to lie with the accuracy of the X-ray crystal structures assigned to 

each protein within the reference set. Oberg et al. has developed a rationally selected 

basis protein reference set consisting of 50 proteins (RaSP50) in order to account for 

both of these factors.[5] The RaSP50 reference set was constructed in order to 

represent the greatest coverage of tertiary structure fold space, the greatest coverage 

of secondary structure fractional composition space and to include only proteins 

whose crystal structure had been solved to a high degree of accuracy. The condition 

that all of the included proteins be commercially available was also applied.  

On comparing the performance of the RaSP50 basis set with that of the basis 

sets used in the CDPro software for the SELCON3 method, the correlation 

Method Reference set δδδδαααα rαααα δδδδββββ rββββ δδδδT rT δδδδU rU δδδδ r 

SP37: 240-185 0.08 0.94 0.11 0.71 0.06 0.57 0.11 0.15 0.09 0.80 
SP43: 240-190 0.08 0.93 0.11 0.71 0.03 0.37 0.10 0.22 0.09 0.80 

SMP50: 240-185 0.09 0.92 0.11 0.72 0.06 0.50 0.11 0.18 0.09 0.79 
SMP56: 240-190 0.07 0.93 0.10 0.77 0.07 0.44 0.10 0.22 0.09 0.82 
SP37: 240-185 0.10 0.96 0.13 0.93 0.04 0.70 0.07 0.25 0.09 0.92 
SP43: 240-190 0.09 0.97 0.13 0.97 0.04 0.64 0.08 0.26 0.09 0.92 

SMP50: 240-185 0.07 0.97 0.08 0.96 0.03 0.68 0.06 0.25 0.06 0.95 

SELCON3 

SMP56: 240-190 0.09 0.94 0.08 0.97 0.04 0.57 0.06 0.29 0.07 0.95 
SP37: 240-185 0.08 0.93 0.12 0.65 0.07 0.42 0.09 0.28 0.09 0.81 
SP43: 240-190 0.08 0.93 0.11 0.71 0.08 0.33 0.09 0.25 0.09 0.80 

SMP50: 240-185 0.08 0.94 0.11 0.75 0.05 0.58 0.09 0.28 0.09 0.83 
SMP56: 240-190 0.07 0.94 0.10 0.80 0.07 0.40 0.09 0.27 0.08 0.84 
SP37: 240-185 0.10 0.94 0.15 0.81 0.07 0.47 0.10 -0.06 0.11 0.85 
SP43: 240-190 0.10 0.93 0.10 0.96 0.05 0.52 0.08 0.25 0.09 0.91 

SMP50: 240-185 0.09 0.95 0.07 0.96 0.04 0.62 0.08 -0.01 0.07 0.94 

CONTIN/LL 

SMP56: 240-190 0.13 0.88 0.07 0.96 0.05 0.47 0.08 0.12 0.09 0.91 
SP37: 240-185 0.08 0.94 0.12 0.69 0.07 0.45 0.10 0.32 0.09 0.81 
SP43: 240-190 0.09 0.92 0.11 0.71 0.07 0.46 0.09 0.37 0.09 0.80 

SMP50: 240-185 0.09 0.94 0.11 0.75 0.06 0.59 0.09 0.44 0.09 0.84 
SMP56: 240-190 0.09 0.94 0.10 0.76 0.07 0.50 0.09 0.43 0.09 0.84 
SP37: 240-185 0.09 0.96 0.14 0.96 0.04 0.76 0.08 0.09 0.09 0.90 
SP43: 240-190 0.08 0.96 0.10 0.97 0.04 0.64 0.08 0.18 0.08 0.93 

SMP50: 240-185 0.08 0.96 0.08 0.99 0.05 0.75 0.08 0.42 0.08 0.93 

CDSSTR 

SMP56: 240-190 0.09 0.94 0.08 0.99 0.04 0.64 0.07 0.22 0.07 0.93 
 

Table V.4. Performance indices of soluble and membrane proteins by the 
SELCON, CONTIN/LL and CDSSTR methods, with and without the 
inclusion of membrane proteins in the reference set. The greyed data 
corresponds to the performance of the 13 membrane proteins.(Reproduced from 
[2]) 
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coefficients for each structure do not vary considerably, suggesting that neither 

insufficient tertiary structure space coverage nor inaccurate X-ray crystallographic 

data for the CDPro basis sets significantly degrade the estimation of secondary 

structure fractional composition. In light of the spectral differences shown in Figure 

V.1 this is somewhat surprising. Oberg et al. tested the performance of a reduced 

RaSP16 basis set in estimating the structure of a protein occupying a region of tertiary 

structure space outside of that covered by the RaSP16 basis set and concluded that in 

regions where tertiary space coverage was poor for a basis set, the basis set was 

inadequate for accurate fractional composition analysis by CD spectroscopy. This 

result suggests that a study of the tertiary structure space coverage of the basis sets 

within CDPro should be performed and that the software should only be used for 

analysing proteins whose tertiary structures occupy space covered by the basis sets. 
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Figure V.1. The effect of tertiary 
structure on protein far-UV CD 
spectra.  The relative intensities of the 
spectra are proportional to their mean 
residue ellipticities. The protein pairs are 
as follows, where the protein CD 
represented by the solid line is listed first 
and the protein CD plotted as a dotted 
line is listed second and the protein PDB 
codes are also listed: A Ferritin (FTN) 
and Hemoglobin (HBN); B Citrate 
synthase (CSA) and Troponin (TRO); C 
Lipoxygenase (LOX) and 
Phosphoglycerate kinase (PGK); D 
Ubiquitin (UBQ) and Ribonuclease A 
(RNA); E Erabutoxin (BTE) and 
Concanavalin A (CAN); F Avidin (AVI) 
and γ immunoglobulin (IGG). (Modified 
from [5]) 
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V.2 Characterisation of Cuvettes for CD Use 

Considering the optical range over which CD spectra are acquired (260-178 nm) it is 

essential to choose a sample cuvette (cell) composed of material which is transparent 

over this range. SUPRASIL quartz is the most commonly used material used to make 

cells for CD spectroscopy because of its wide wavelength range of transparency, cost 

effectiveness, tolerance of exposure to a range of solvents and relative durability. 

When performing protein CD for the purpose of quantitative analyses of secondary 

structure all spectra must be in units of molar ellipticity. As such, it is essential that 

both the concentration of the sample solution be known to as precise a value as 

possible and that the optical pathlength be precisely known. When purchasing cells of 

pathlengths smaller than 1 mm, however, it is common that there can be as much as a 

50 % difference between the actual and nominal pathlengths. Therefore, it is essential 

that all cells to be used in quantitative analyses of protein secondary structure by CD 

spectroscopy have their pathlengths experimentally verified. Cell pathlength 

determination can be by either the K2CrO4 method or the interference fringe method.  

The K2CrO4 method is used for determining the pathlengths of longer 

pathlength cells and relies on the known extinction coefficient of K2CrO4 at 372 nm 

of 4830 Mol-1 cm-1. By using Beers Law of A = εcl, where A is the absorption at a 

specified wavelength, ε is the extinction coefficient at the same wavelength, c is the 

sample molar concentration and l is the cell pathlength in cm, the cell pathlength can 

be determined from the UV/visible absorption spectrum of a standard solution of 

K2CrO4. The following experiment was performed in order to determine the 

pathlengths of cells of nominal pathlength greater than 0.01 mm. 

 

V.2.1 Method  

Five stock solutions of 0.02 M K2CrO4 were made up by accurately weighing out 

1.9419 g of K2CrO4 and dissolving it in 500 ml of 0.01 M KOH solvent made up with 

deionised water. Serial dilutions of x10 and x100 were then made of these stock 

solutions, producing five K2CrO4 solutions of 0.002 and 0.0002 M, respectively. 

Additionally, five solutions of 0.2 M K2CrO4 were made up by dissolving 1.9419 g of 

K2CrO4 in 50 ml of 0.01 M KOH solvent. Using Hellmanex®II cleaning solution 

(HELLMA UK INC.) and 105 Lens Cleaning Tissue (Whatman®) all cuvettes were 
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thoroughly cleaned and dried, whilst wearing gloves, until they showed up as spotless 

under lighting.  

To determine the pathlengths of the nominal 1, 5 and 10 mm cells the 0.002, 

0.0002 and 0.0002 M K2CrO4 solutions were used, respectively, and the absorption 

spectrum of each recorded on a Cary 50 Conc (Varian) absorption spectrometer 

(Table V.5). For pathlength determination of the nominal 0.1 and 0.01 mm 

demountable cuvettes, the 0.02 and 0.2 M K2CrO4 solutions were used, respectively.  

A 1 ml volume of the 0.02 M K2CrO4 solution was degassed for approximately 10 

minutes and a 40 µl drop was placed onto the bevelled half of the 0.1 mm 

demountable cuvette. The cuvette was assembled by placing the blank half on top of 

the bevelled half with the solution drop in between, being careful to ensure that the 

bevelled volume filled completely, that the cuvette did not overflow and that no gas 

bubbles were present within the cell. The nominal 0.01 mm cuvette was filled with a 

drop of volume 6 µl in a similar manner. In an attempt to prevent leakage from the 

0.01 mm demountable the added precaution of sealing the edges of the assembled cell 

with a thin strip of Parafilm was taken. Beers Law was used together with the 

absorbance at 372 nm and the extinction coefficient of K2CrO4 at 372 nm of 4830 cm-

1M-1 to calculate the value of l according to each of the five solutions for each cell. 

The largest and smallest calculated values of l were ignored and the average of the 

three remaining intermediate values was taken to be the true value of l.  

 

V.2.2 Results 

Table V.5 summarises the results of the determined pathlengths of each of the 

cuvettes to be used in CD spectroscopy according to the K2CrO4 method. With the 

exception of the 0.01 mm nominal cuvette, the determined pathlengths for all cuvettes 

were within 2 % of their nominal values. From Figures V.2, V.3, V.4 and V.5 it can 

be seen that the deviation from the calculated average of the three most similar 

absorption spectra was very small, so that in most cases the absorption spectra of the 

different K2CrO4 solutions almost exactly overlap. 

The variation of the pathlength of the demountable nominal 0.1 and 0.01 mm 

cuvettes due to either evaporation or leakage of solution from the cell can be seen 

from Figures V.4b and V.5, respectively. From the inset in Figure V.4b it seems that 

there occurs an initial loss of solution from the cell and a decrease of the cell 
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pathlength from an initial maximum of 0.1033 mm (corresponding to an absorbance 

of 0.998) to 0.1019 mm, after a time of approximately 20 minutes. This latter 

pathlength is maintained for a period of at least 80 minutes. In contrast, the nominal 

0.01 mm cuvette showed a continual and non-uniform decrease in cell pathlength due 

to solution loss, which can be seen from the decreasing intensity absorption spectra 

with time shown in Figure V.5. The insets in Figure V.5 show that in some cases the 

determined pathlength actually increases between time points. Also, the initial 

absorption spectra for different fills of the nominal 0.01 mm cell with a common 

K2CrO4 solution showed significant variation (data not shown). Figure V.5 shows 

that, although the pathlength cannot be assumed constant for the nominal 0.01 mm 

cell, it does decrease to a final pathlength of approximately 0.013 mm (corresponding 

to an absorbance of 1.28) after a time of 2 hours. Although the application of Parafilm 

to the edges of the cell did not prevent leakage from the cell (Figures V.5c and d) it 

has been seen that it does improve the retention of solution within the cell over very 

long time periods (greater than 3 hours)(data not shown) and so perhaps retards the 

evaporation of solution from the cell.   

For very short pathlength cells the interference fringe method can be used to 

determine the pathlength and Figure V.6 shows the interference spectrum of the 

nominal 0.01 mm cuvette. Using the formula 

( )
( )

1 2

2 12

1000

n W W
W W

 ⋅
 −
 
 
 
 

                                            (V.4) 

where W1 and W2 are the wavelengths of fringe peaks at least ten peaks apart, n is the 

number of fringe peaks separating W1 and W2. When the wavelengths are given in nm 

equation V.4 provides the pathlength in µm. From Figure V.6 the pathlength of the 

nominal 0.01 mm cell is calculated as 15.983 µm.  However, since this is the 

pathlength of the cell when empty, it might be more accurate to use the cell pathlength 

determined by the K2CrO4 method for CD spectroscopy purposes.   
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Figure V.3. Pathlength determination for 
nominal 1 mm and 5 mm pathlength cuvettes by 
the K2CrO4 method. a and b are the absorption 
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solutions using the nominal 1 mm cuvette numbers 
1 and 2, respectively. c is the absorption spectral 
overlay of three different 0.0002 M K2CrO4

solutions using the 5 mm cuvette. 
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Figure V.4. Pathlength determination of the nominal 0.1 mm pathlength cell by the 
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Figure V.5. Pathlength determination of the 0.01 mm nominal pathlength cell by the K2CrO4 method.
Overlay of consecutive absorption spectra of a single 0.2 M solution of K2CrO4 acquired over a time of 
approximately 2 hours, with equal time intervals between each scan. Inset are the variations in absorbance at 
the peak maximum at 372 nm over the time interval. a and b were acquired without the use of Parafilm, while 
c and d were recorded after the cell had been sealed at the edges with Parafilm. 
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A further requirement for cells to be used for CD spectroscopy is that they 

should be strain free and thereby exhibit no intrinsic CD. As such, cells giving rise to 

deviations from the instrument air baseline of more than 5 millidegrees should be 

discarded for CD use, since these cells do not provide equal enough transmission 

between left and right circularly polarised light through the cell. SUPRASIL quartz 

cells certified as strain free by manufacturers are only certified over the recommended 

wavelength range for the use of this material, from 200 to 2500 nm. Because the 

effect of strain becomes more pronounced when working at lower wavelengths, it is 

required that all cells be tested for strain over the entire wavelength range used during 

CD spectroscopy. Furthermore, cells should not exhibit significantly different CD 

signals upon reversal of orientation. Figures V.7 and V.8 show the CD spectra of both 
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Table V.5. Pathlength determination of SUPRASIL quartz 
cuvettes used for CD spectroscopy.  
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the 0.1 and 0.01 mm cuvettes, respectively, in each of the four orientations possible 

for a rectangular demountable cell. The different orientations of both the 0.1 and 0.01 

mm cells show approximately similar CD spectra. While the deviations in ellipticity 

over the wavelength range for protein CD is less than ideal for both cells, the 

requirement that these deviations be less than 5 millidegrees is satisfied. The degree 

of dependence of the cell CD spectrum on its orientation requires that when obtaining 

protein CD spectra the sample and reference spectra should be acquired with the 

cuvette in the same orientation. 
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Figure V.7. CD of 0.1 mm cuvette in each of its four possible orientations. 
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V.3 Calibration of the Model 400 CD Spectrometer 

The calibration of a CD spectrometer involves the standardisation of the spectrometer 

in terms of both its wavelength accuracy and its magnitude sensitivity or ellipticity. 

Instrument calibration is vital when performing CD spectroscopy both to maintain 

internally consistent spectra for the same instrument over a given time span and to 

insure that spectra obtained by one instrument are comparable to those obtained using 

other CD spectrometers. The latter consideration is of special importance when 

performing quantitative analysis of protein secondary structure because of the reliance 

of this procedure on a database of protein CD spectra that have been acquired on 

different CD spectrometers. The level of importance of proper calibration of CD 

spectrometers to the study of protein secondary structure by CD has been emphasised 

by the carrying out of a UK-wide study designed to compare the absolute calibrations 

of 27 CD spectrometers (NPL REPORT DQL-AS 009). A subsequent report based on 

the findings of this comparative study was designed in order to establish a standard 

method for the calibration of CD spectrometers (NPL REPORT DQL-AS 010). Both 

of these reports make use of the data contained within a third report, which was 

carried out by the European Chirality Services (E. C. S.) (TECHNICAL REPORT NO 

43) in order to characterise standards to be used for CD. Table V.6 summarises the 

findings of this report. 

 

 

 

The general standard used for the magnitude calibration of CD spectrometers 

to be used for the far-UV analysis of protein molecules is (1S)-(+)-10-

camphorsulfonic acid, ammonium salt (ACS). ACS is preferred over (1S)-(+)-10-

camphorsulfonic acid (CSA) due to the extreme hygroscopic nature of CSA, while 

ACS does not display any significant level of hygroscopicity. When calibrating CD 

Compound Molar ellipticity 
         (mdeg) 

Molecular weight  
           (g) 

(1S)-(+)-10-camphorsulfonic acid (CSA) +7820 232.30 
(1R)-(-)-10-camphorsulfonic acid (CSA) -7820 232.30 
(1S)-(+)-10-camphorsulfonic acid, ammonium salt (ACS) +7910 249.33 
(1R)-(-)-10-camphorsulfonic acid, ammonium salt (ACS) -7910 249.33 
(R)-(-)-Pantolactone -16160 130.15 
(S)-(+)-Pantolactone +16160 130.15 
Epiandrosterone +10880 290.45 
2(+)D-[Coen3]Cl3•NaCl•6H2O +6431 857.78 
2(-)D-[Coen3]Cl3•NaCl•6H2O -6431 857.78 

Table V.6. Standards for CD magnitude calibration. 
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spectrometers it is important to use calibrants that display optical activity within the 

wavelength range over which the spectrometer is intended to be used because 

calibration can decrease as one moves away from the wavelength of calibration. ACS 

is ideal for protein CD calibration because it displays a band at 290.5 nm and another 

at 192 nm and, therefore, it enables the calibration of the spectrometer over much of 

the wavelength range to be used for protein structural investigation. Ideally, 

calibration should be performed at as many distinct wavelengths as possible and this 

has been shown to be important in the standardisation and comparability of spectra 

obtained on multiple instruments.[29] As such, (R)-(-)-pantolactone is also used as a 

calibrant in addition to ACS, since it produces a CD band centred at 219 nm that 

dissects the two bands produced by ACS.  

The linearity of response of the CD instrument at each of the separate 

wavelengths used for the magnitude calibration as a function of the concentration of 

the calibrant must also be established if the instrument is going to be assumed to 

perform independently of sample concentration. This is also a valuable test for the 

overall stability of the instrument.  

The calibration of the CD spectrometer for wavelength accuracy is done by 

obtaining the CD spectrum of a solution of holmium oxide. Holmium oxide produces 

a series of sharp absorption bands between 680 and 230 nm and the precise 

wavelengths of each of these have been published by The National Institute of 

Standards and Technology (NIST). In addition to this the observed band maxima of 

the magnitude calibrants can be compared to the expected band maxima. 

 

V.3.1 Method 

A 0.029 M stock solution of 1S-ACS (Katayama Chemical) was made up by 

accurately weighing out 144.7 mg of 1S-ACS and dissolving it in 20 ml of deionised 

H2O. Samples of x2, x4 and x8 dilutions were then made from this stock solution. A 

stock solution of approximately 7 mg/ml of 1S-CSA was made by dissolving 700 mg 

of CSA in 100 ml of deionised H2O. The concentration of this stock solution was then 

adjusted such that it had an absorbance value close to 1. Samples of x2, x4 and x8 

dilutions of the CSA stock solution were then made using deionised H2O. A 0.0115 M 

(R)-(-)-pantolactone (Aldrich) stock solution was made up by accurately weighing out 

149.6 mg of pantolactone and dissolving it in 100 ml of deionised H2O. Samples of 

x2, x4, x8 and x16 dilutions were then made from this stock solution. The CD of all 
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samples were recorded consecutively and on the same day as the samples were made 

and all samples were kept in a dark box until being scanned. 

CD spectra were recorded using the 1 mm No.2 SUPRASIL cuvette 

(HELLMA UK). Each of both the 1S-ACS and 1S-CSA samples were scanned over 

the wavelength ranges 188 to 195 nm and 288 to 293 nm. Each of the pantolactone 

samples was scanned over the wavelength range 216 to 222 nm. Scans were acquired 

at a temperature of 23 oC, a bandwidth of 1 nm, an averaging time of 1 second and a 

scan stepwidth of 0.2 nm. Spectra were calculated as an average of between 5 and 20 

scans and in all cases they were background corrected using a deionised water 

background acquired over the same wavelength range, in the same cell and orientation 

and using the same spectral parameters. All spectra were obtained under conditions 

whereby the dynode voltage was below the 600 volt limit. 

The calculation of the expected ellipticities of each solution was performed 

using the equation 

expected 33,000 c lθ ε= ∆ × × ×                                              (V.5) 

where θexpected is the expected ellipticity at the wavelength of interest, ∆ε is the delta 

epsilon differential extinction coefficient value of the substance at the same 

wavelength, c is the molar concentration of the sample solution and l is the sample 

pathlength in cm. The ∆ε values for 1S-CSA at 290.5 nm, ACS at 291 nm and 

pantolactone at 219 nm are 2.37, 2.40 and –4.9 mdeg M-1 cm-1, respectively. The ∆ε 

value for both CSA and ACS at 192 nm is –4.72 mdeg M-1 cm-1. For the CSA 

solutions the concentrations were calculated from the absorption spectra using the 

extinction coefficient of 34.5 M-1 cm-1 at 285 nm and the Beer-Lambert equation 

Abs c lε= × ×                                                                    (V.6) 

where ε is the extinction coefficient, c is the sample molar concentration and l is the 

sample pathlength in cm. Since the No.2 1 mm nominal pathlength cuvette was used 

to record all CD spectra and the No.1 10 mm nominal pathlength cell was used to 

record the CSA absorption spectra. Therefore, the value of l should be taken as 

0.10189 cm when calculating the θexpected values and 1.0140 cm when calculating the 

concentrations of the CSA solutions. 
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V.3.2 Results 

When determining the calibration performance of a CD spectrometer it is important to 

identify the instrument’s calibration both in terms of its wavelength and absorbance 

accuracy. Both of these checks should be carried out over the wavelength region for 

which sample spectra are to be recorded. For protein CD work this region corresponds 

to between 260 and 178 nm.  Furthermore, the absorbance accuracy determination of 

the instrument should be performed at more than one point within this wavelength 

range in order to rule out the possibility of wavelength dependent absorption 

aberrations. When performing the absorption accuracy test the instrument absorption 

should be examined as a function of calibrant concentration at each of the 

wavelengths investigated. When operating correctly there should exist a linear 

relationship between calibrant concentration and spectral absorbance. Due to the 

alteration of the instrument dynode voltage during spectral measurement it is 

important to carefully monitor this value over all wavelengths and ensure that it does 

not exceed the instrument specification of approximately 600 volts, beyond which the 

detector experiences saturation.  

Figures V.9, V.10 and V.11 give the CD spectral overlays for the serial 

dilutions of the 1S-ACS, 1S-CSA and pantolactone CD calibrants, respectively. For 

each overlay the corresponding dynode voltage overlay is also presented. The signal-

to-noise ratios of all spectra can be seen to be good. Since both ACS and CSA exhibit 

well-resolved CD bands of opposite ellipticity and centred at two wavelengths located 

at either end of the wavelength range relevant to protein CD spectroscopy, these 

standards are of particular used when calibrating instruments intended for this 

purpose. The CD spectral overlays are presented for both bands in Figures V.9 and 

V.10, however, due to both ACS and CSA having significantly greater extinction 

coefficient values for the lower wavelength band compared to the higher wavelength 

band, only the two most dilute solutions resulted in spectra having dynode voltage 

values below the 600 volt saturation point for the low-wavelength band. The use of 

pantolactone in conjunction with either CSA or ACS is recommended when 

calibrating the instrument for protein CD work, since it exhibits a band that is 

somewhat intermediate in wavelength between the two bands of these calibrants. As 

such, the recommended three-point calibration of Miles et al. is used here for the 

Model 400 absorbance calibration.[29] 
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Figure V.9. Calibration of the Model 400 using ACS. (a) In descending order, the CD spectral 
overlay of ACS solutions of concentrations 0.029, 0.0145, 0.00725 and 0.003625 M showing the 
positive 290 nm band maximum. (b) In descending order, the CD dynode voltage spectral overlay 
of the respective solutions mentioned in (a). (c) In ascending order, the CD spectral overlay of the 
0.00725 and 0.003625 M ACS solutions showing the negative 192.5 nm band minimum. (d) In 
descending order, the CD dynode voltage spectral overlay of the 0.00725 and 0.003625 M ACS 
solutions, as shown in (c). 

Figure V.10. Calibration of the Model 400 using CSA. a In descending order, the CD spectral 
overlay of a CSA stock solution along with x2, x4 and x8 dilutions showing the positive 290 nm band 
maximum. b In descending order, the CD dynode voltage spectral overlay of the respective solutions 
mentioned in a. c In ascending order, the CD spectral overlay of the x4 and x8 CSA stock solution 
dilutions showing the negative 192.5 nm band minimum. d In descending order, the CD dynode 
voltage spectral overlay of the x4 and x8 CSA stock solution dilutions, as shown in c. 
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The use of both ACS and CSA to calibrate the Model 400 at identical 

wavelengths was intended to make the calibration process somewhat independent of 

the concentration determining steps of each of the serial dilution solutions. The 

concentration of ACS can be determined gravimetrically, however, this method is 

vulnerable to the purity of the compound preparation and the calibration of the scales 

used. In contrast, the determination of the concentration of the CSA solutions must be 

done by absorption measurements, owing to the hygrophobicity of CSA rendering 

gravimetric determination non-feasible. This method is viable because of the accuracy 

with which the extinction coefficient of CSA has been determined, however, it is 

dependent upon the absolute calibration of the absorption spectrometer used in 

recording the solution absorbance values. Figure V.12 shows the absorption overlay 

of each of the serial dilutions of CSA used in the calibration. Using a combination of 

both ACS and CSA calibration was intended to highlight any possible errors in either 

the purity of the ACS or the calibration of the absorption spectrometer. Figure V.13 

shows the linearity-of-response of the absorption spectrometer with concentration. 

The R2 value of 1 combined with a y-axis intercept of –0.0002 suggests that the 

absorption spectrometer displays excellent linearity of absorbance with concentration 

change. 

 

 

 

 

 

 

Figure V.11. Calibration of the CD spectrometer using the calibrant pantolactone.  a In ascending 
order, the CD spectral overlay of a pantolactone solution of concentrations 0.0115, 0.00575, 0.002875, 
0.0014375  and 0.00071875 M. b In descending order, the dynode voltage spectral overlay of the 
respective solutions mentioned in a. 
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Figure V.12. The absorption spectral overlay of the CSA calibrant solutions. The 
stock solution and x2, x4 and x8 dilutions spectra appear in descending order, 
respectively, within the overlay. The water baseline absorption spectrum is also shown 
as a relatively flat line at zero absorbance.  
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Figure V.13. Linearity of response of absorption spectrometer with 1S-CSA 
concentration. The equation of the straight-line fit of the four absorption values of 
the four CSA solutions at 285 nm is shown along with the error of this fit as the R2

value. 



                                Chapter V Quantitative Analysis of Protein Secondary Structure by CD Spectroscopy 

                                                                115 

Tables V.7, V.8 and V.9 show the accuracy to which the Model 400 is 

calibrated in terms of its absorbance by comparing the expected and the experimental 

ellipticity for the relevant bands of the ACS, CSA and pantolactone calibrant CD 

spectra, respectively. At 290 nm, for both the ACS and CSA calibrants, and at 219 

nm, for the pantolactone calibrant, the percent error decreased considerably when 

only a small concentration of the calibrant was used. Because the accuracy of the 

PMT detector decreases at higher ellipticity values, the calibration accuracy of a CD 

instrument should be assessed at magnitudes comparable with the range over which 

samples are to be measured. The most dilute calibrant solutions for each of the 

solutions is most representative of this ellipticity region and so it is from these 

solutions that the Model 400 absolute calibration accuracy should be determined. As 

such, errors of approximately 0.8 and 1.5 % were observed at 290.5 nm for the ACS 

and CSA calibrants, respectively.  

The ratio of the band magnitudes at 192 and 290 nm for either of the ACS and 

CSA calibrants is an important performance indicator of CD spectrometers. Because 

of solvent absorption and reduced short-wavelength lamp intensity effects, the ACS 

and CSA CD short-wavelength spectral bands tend to contain significant amounts of 

noise. Although the number of scans to be averaged was considerably increased the 

averaged spectra still retained some noise contribution. Due to such problems the 

literature is undecided as to the exact expected magnitude of the ACS/CSA short-

wavelength band. Instead it is suggested that a ratio of the long- and short-wavelength 

bands should be greater than 2 for an accurately calibrated CD spectrometer. Table 

V.7 shows that this ratio for the ACS calibrant is consistently greater than 2.  Table 

V.9 shows that the absolute magnitude calibration error at 219 nm of the Model 400 is 

approximately 0.9 %. 

 

 

1S-ACS 
solution 

Relative 
conc. 

Expected 
CD θθθθ290.6 

(mdeg) 

Actual 
CD θθθθ290.6 

(mdeg) 

θθθθ290.6 

Actual/Expected 
Actual        
CD -θθθθ191.5 

(mdeg) 

Actual        
θθθθ191.5/ θ θ θ θ290.6 

 
1 1 237.721 233.648 1.0174 - - 
2 0.5 118.293 116.924 1.0117 - - 
3 0.25 59.324 58.462 1.0147 120.748 2.0354 
4 0.125 29.444 28.231 1.0073 60.287 2.0475 

Table V.7. The Model 400 calibration at 290.5 nm using the 1S-ACS CD calibrant. 
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Figure V.14 reveals the relationship between the response of the Model 400 

with CSA concentration at the 290.5 nm band, as measured by the Abs285 value of 

each solution. At this wavelength the Model 400 was found to show excellent 

linearity of response by virtue of the R2 value being equal to 1. The equation of the 

straight-line fit reveals that it passes almost precisely through the origin and this is as 

expected for an ideal magnitude-concentration instrument response.    

  

 

1S-CSA 
solution 

Relative 
conc. 

Abs286 Expected CD θθθθ290.6 

                (mdeg) 
Actual CD θθθθ290.6 

             (mdeg) 

Actual/Expected 

1 1 0.9899 223.163 230.848 1.0344 
2 0.5 0.4952 111.638 115.571 1.0352 
3 0.25 0.2462 55.503 57.588 1.0376 
4 0.125 0.1250 28.180 28.595 1.0147 

Pantolactone 
solution 

Relative 
conc. 

Expected CD 
-θθθθ219 

(mdeg) 

Actual CD 
-θθθθ219 

(mdeg) 

-θθθθ219 

Actual/Expected 

1 1 189.448 192.208 1.0146 
2 0.5 94.724 94.480 0.9974 
3 0.25 47.362 48.219 1.0181 
4 0.125 23.681 24.161 1.0203 
5 0.0625 11.841 11.943 1.0087 
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Figure V.14. Linearity of response of the Model 400 CD spectrometer at 290.5 nm with 
the CARY 50 CONC absorption spectrometer using 1S-CSA serial dilutions. The equation 
of the straight-line fit of the four data points is shown along with the R2 fit error value. 

Table V.8. The Model 400 spectrometer calibration at 290.5 nm using the 1S-CSA CD calibrant. 

Table V.9. The Model 400 spectrometer calibration at 290.5 nm using the 
pantolactone CD calibrant. 
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In order to assess the linearity of response of the Model 400 ellipticity 

magnitude at 290.5 nm independent from the absorption spectrometer calibration, the 

ACS calibrant was substituted for CSA and the same plot was recreated (Figure 

V.15). Again, the Model 400 demonstrated excellent linearity of response with 

calibrant concentration, as can be seen from the R2 = 1 value. The expected 

interception of the straight-line fit with the origin is again revealed by the line 

equation. 

 

 

 

 

Examining the same concentration response at the wavelength of 219 nm for 

the Model 400 using the pantolactone calibrant resulted in the plot given as Figure 

V.16. As with the response at 290.5 nm, an almost exact response with calibrant 

concentration variation was observed, whereby an R2 value of 1 was achieved for the 

straight-line fit, which passed through the origin, as expected. 
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Figure V.15. Linearity of response of the Model 400 at 290.5 nm using the 1S-ACS CD 
calibrant. The equation of the straight-line fit to the four data points is shown along with the 
R2 fit error value. 
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The wavelength calibration accuracy of the Model 400 is represented by 

Figure V.17 and Table V.10. The instrument calibration is accurate to approximately 

0.5 nm at around 250 nm, but deteriorates considerably at longer wavelengths. Since 

protein CD spectroscopy involves far-UV radiation beyond 250 nm the Model 400 

was optically optimised for use in this region. An accuracy of 0.5 nm is taken as 

within the accepted error for carrying out protein CD.  

 

 

 

 

Band Literature λλλλmax (nm) Model 400 λλλλmax (nm) Model 400 wavelength error 
1 241.12 240.6 0.52 
2 249.89 249.4 0.49 
3 278.13 277.2 0.93 
4 287.22 286.4 0.82 
I  292.8  
5 333.48 332.2 1.28 
6 345.38 343.6 1.78 
7 361.25 359.4 1.85 
8 385.61 383.6 2.01 
9 416.25 414.0 2.25 
10 (a) 450.96 448.2 2.76 
11 467.82 463.2 4.62 
Q  471.8  
12 485.23 481.4 3.83 
13 536.56 532.6 3.96 
14 640.50 635.0 5.50 
U 652.67 649.0 3.67 

Figure V.16. Linearity of response of the Model 400 at 219 nm using the pantolactone CD 
calibrant. The equation of the straight-line fit to the four data points is shown along with the R2

fit error value. 
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Table V.10. Quantification of the wavelength calibration accuracy of the Model 400. 
The peak assignments are as given in Figure IV.10. 
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V.3.3 Discussion 

The absolute magnitude calibration accuracy of the Model 400 over the wavelength 

range applicable to protein CD and at magnitudes comparable to those of protein CD 

sample spectra is approximately to within a 0.8 % error (corresponding to the errors 

of the most dilute calibrant solutions). The higher error value of 1.5 % returned when 

using the CSA calibrant is attributed to a lack of accuracy of the absolute calibration 

of the absorption spectrometer used to determine the concentrations of the CSA 

samples. This conclusion is based on the error agreement measured by both the ACS 

and pantolactone calibrants. Although an absolute magnitude calibration error of 0.8 
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Figure IV.17. Wavelength calibration of Model 400 CD spectrometer. a 
The transmission spectrum of holmium oxide was taken from [7] and 
represents the accepted band positions of each of the labelled bands. b The CD 
dynode voltage of the holmium oxide standard as acquired on the Model 400. 
The precise wavelengths of each of the labelled bands are compared in Table 
IV.10. 
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% is considerable it does lie within the acceptable limits for the performance of 

protein CD spectroscopy.  The wavelength calibration error of the Model 400 was 

found to be approximately 0.5 nm over the wavelength range applicable to protein CD 

and this corresponds to a well-calibrated spectrometer. The response of the Model 400 

ellipticity with sample concentration was found to be very accurate at both 219 and 

290.5 nm. Calibration measurements performed subsequent to the above analysis 

confirm that the Model 400 displays a high level of stability over time (data not 

shown).  

             

 

V.4 Quantitative Secondary Structure Analysis of Standard Proteins 

With the aim of establishing a reliable and validated procedure for performing 

quantitative analysis of secondary structure by CD spectroscopy for novel proteins 

whose crystal structures have not yet been solved, it was first necessary to 

demonstrate that the experimental set-up was capable of accurately predicting the 

secondary structural fractional compositions of proteins with known structures. To 

this end a CD investigation into the structures of myoglobin, hemoglobin, lysozyme 

and α-chymotrypsin was performed. This involved accurately recording the CD 

spectrum of each protein to as low a wavelength as possible while obtaining a precise 

measure of the concentration of the protein within the scanned sample so that its CD 

spectrum could be analysed by the various programs discussed above.  

 

V.4.1 Method 

Samples of myoglobin (sperm whale), hemoglobin (horse), lysozyme (hen) and α-

chymotrypsin (bovine) (Sigma) were prepared by dissolving lyophilised protein in 10 

mM PBS buffer. The protein concentration of each sample was adjusted to a 

minimum value such that when placed in a 0.1 mm cuvette and scanned the resulting 

CD spectrum showed an adequate signal-to-noise ratio. Each sample was then sent for 

concentration determination by quantitative amino-acid (QAA) analysis (Cambridge 

University).  

The CD spectrum of each protein was acquired using a 0.1 mm pathlength 

quartz cuvette. Spectra were acquired over a wavelength range of 250-178 nm, with 

an averaging time of 1 s, a step increment of 0.2 nm, a bandwidth of 1 nm and at a 
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temperature of 23 oC. The step increment for the hemoglobin spectral acquisition was 

1 nm. All spectra represented are an average of between 3 and 6 scans and were 

background corrected by subtracting the CD spectrum of the PBS buffer contained in 

the same 0.1 mm cell. Samples were centrifuged prior to scanning to remove any 

suspended particles and thoroughly degassed to prevent air bubble formation within 

the demountable cell. Spectra were converted to units of ∆ε from the machine units of 

θ by using the following equation: 

MRW

10 lc
ε θ∆ = ×

×
                                                                 (V.7) 

where MRW is the mean residue weight of the protein in g/mol, l is the optical 

pathlength in cm and c is the protein concentration in mg/ml. Quantitative analysis of 

the secondary structure of each of the proteins was performed using the Dichroweb 

server located at http://www.cryst.bbk.ac.uk/cdweb. The SELCON, CONTIN/LL, 

CDSSTR, VARSLC and K2d programs were used to analyse the fractional 

compositions of each protein over a range of protein reference sets (neither the 

VARSLC or K2d programs require a protein reference set). A spectral scaling factor 

value was adjusted such that the NRMSD value for each analysis reached a minimum. 

 

V.4.2 Results 

Figure V.18 shows the concentration determination results for each of the standard 

proteins by the QAA analysis method. The absolute concentrations of each sample 

were computed by fitting the area of each peak and in general the fitting was to better 

than 5 % accuracy for each amino acid. The concentrations of myoglobin, 

hemoglobin, lysozyme and α-chymotrypsin were calculated to be 1.69, 1.42, 1.90 and 

1.54 mg/ml, respectively.  
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Figure V.19 shows the unsmoothed CD spectra of the four standard proteins 

under investigation. The CD error values are shown as overlaid. The signal-to-noise 

ratio for each spectrum can be seen to be very good. The CD error values are for the 

most part negligible, but they do increase slightly towards the shorter wavelength 

regions of each spectrum. From the presence of a band having intense minima at 222 

and 208 nm of comparable magnitude and an intense maximum between 190-195 nm 

in both the myoglobin and hemoglobin spectra (Figures V.19a and b) it is clear that 

these proteins are predominantly α-helical in structure. The absence of a minimum at 

222 nm in the spectrum of α-chymotrypsin reveals a lack of any large presence of α-

helix within its structure (Figure V.19d). Its CD spectrum is somewhat irregular and 

of weak intensity and both of these are characteristic of CD spectra of proteins with 

high β-sheet contents. The CD spectrum of lysozyme displays moderate intensity at 

222 and 190 nm, which is consistent with it having some significant α-helix 

contribution to its structure (Figure V.19c). 
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Figure V.18. The QAA analysis results for the four standard proteins. The amino acid analysis of 
myoglobin, hemoglobin, lysozyme and α-chymotrypsin are shown as a, b, c and d, respectively. 
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Table V.11 shows the fractional compositions of each of the four standard 

proteins as revealed by x-ray crystallography. Tables V.12, V.13, V.14, V.15 and 

V.16 give the quantitative analysis of secondary structure of the standard proteins 

using the SELCON, CONTIN/LL, CDSSTR, VARSLC and K2d programs, 

respectively. The separate analyses for each protein between each reference set (for 

the SELCON, CONTIN/LL and CDSSTR programs) and across all programs were 

very consistent, which suggests that the fitting procedure had been carried out 

successfully in each case. The NRMSD values were within the required limit of 0.25 

given for an acceptable fit in the data presented below. The CDSSTR program was 

unable to perform analyses with reference sets containing data down to 178 nm (ref. 

Sets 1, 2 and 5). For Table V.17 an average of the fit results over all reference sets for 

the SELCON, CONTIN/LL and CDSSTR programs and the fit results of the 

VARSLC and K2d programs were used to calculate the accuracy of each analysis for 

each protein based on its crystal structure.  
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Figure V.19. CD spectra of standard proteins. The CD spectra of myoglobin, hemoglobin, lysozyme 
and α-chymotrypsin are given in units of ∆ε as a, b, c and d, respectively. The CD error bars for each 
wavelength are overlaid within each protein spectrum.  
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The prediction of α-helix content had accuracy to greater than 5 % error for all 

proteins over all five programs and often this accuracy was better than 3 % (Table 

V.17). The error in β-sheet estimation for both of the highly α-helical proteins 

Protein αααα-helix ββββ-sheet ββββ-turn PII Other 
Myoglobin 0.804 0.000 0.000 0.052 0.144 
Hemoglobin 0.760 0.000 0.000 0.105 0.136 
Lysozyme 0.419 0.016 0.047 0.298 0.221 
α-chymotrypsin 0.114 0.208 0.106 0.200 0.371 

Table V.12. Analysis of the secondary structure fractional composition of standard 
proteins using the SELCON program. The various secondary structures are defined as α-
helix (αH), α-helix type 1 (H1), α-helix type 2 (H2), 310-helix (310-H), β-sheet (S), anti-
parallel β-sheet (S1), parallel β-sheet (S2), poly-proline 2 conformation (PII), β-turn (T) and 
unordered (U). The reference sets are numbered as given in the preceding text. Data is omitted 
for fits where the NMRSD value fell outside the 0.25 limit. The 310-helix structure is not 
defined for reference set 5. 

Table V.11. The crystal structure fractional compositions of 
the four standard proteins from x-ray crystallography. 

Protein Ref. set H1 H2 S1 S2 T U Total NMRSD 
1 0.539 0.238 -.017 -.021 0.065 0.180 0.983 0.067 
3 0.507 0.225 0.017 0.013 0.075 0.159 0.995 0.102 
4 0.546 0.226 0.025 0.010 0.022 0.168 0.998 0.090 
6 0.507 0.225 0.017 0.013 0.075 0.159 0.995 0.102 

Myoglobin 

7 0.546 0.226 0.025 0.010 0.022 0.168 0.998 0.091 
1 0.550 0.247 -.020 -.021 0.069 0.149 0.974 0.038 
3 0.535 0.256 0.001 -.009 0.076 0.152 1.011 0.030 
4 0.517 0.239 0.008 0.003 0.096 0.141 1.004 0.034 
6 0.537 0.255 0.005 -.008 0.070 0.148 1.006 0.027 

Hemoglobin 

7 0.517 0.239 0.008 0.003 0.096 0.141 1.004 0.034 
1 0.200 0.156 0.078 0.066 0.209 0.275 0.984 0.189 
3 0.208 0.184 0.049 0.061 0.230 0.260 0.992 0.105 
4 0.213 0.186 0.053 0.062 0.212 0.270 0.996 0.212 
6 0.207 0.181 0.047 0.060 0.228 0.267 0.990 0.113 

Lysozyme 

7 0.201 0.189 0.045 0.059 0.222 0.267 0.982 0.182 
1 - - - - - - - - 
3 - - - - - - - - 
4 0.068 0.051 0.184 0.103 0.203 0.348 0.957 0.082 
6 0.039 0.039 0.168 0.089 0.181 0.452 0.968 0.161 

α chymotrypsin 

7 0.032 0.048 0.175 0.095 0.197 0.409 0.956 0.126 
 ααααH 310H S PII T U Total NMRSD 

2 0.721 0.112 0.000 0.018 0.054 0.109 1.014 0.048 Myoglobin 
5 0.781 - -.001 0.049 0.072 0.100 1.001 0.029 
2 0.720 0.092 -.011 0.015 0.052 0.126 0.994 0.036 Hemoglobin 
5 0.687 - 0.055 0.040 0.112 0.113 1.007 0.089 
2 0.300 0.079 0.116 0.046 0.131 0.321 0.994 0.202 Lysozyme 
5 0.359 - 0.144 0.227 0.083 0.186 0.999 0.226 
2 0.092 0.033 0.180 0.122 0.125 0.437 0.989 0.158 α-chymotrypsin 
5 0.158 - 0.221 0.159 0.211 0.153 0.904 0.118 
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myoglobin and hemoglobin was comparable with that of the α-helix with all 

programs. However, for both lysozyme and α-chymotrypsin the error in β-sheet 

content estimation was considerably higher than it was for the α-helix contents of 

these proteins. In general, the β-sheet estimation error was found to vary considerably 

depending on the program used in the analysis. The error in β-turn estimation was 

relatively consistent across each of the various programs (except in the case of 

myoglobin) and found to be approximately between 5-15 % accurate.  The accuracy 

of PII conformation was found to vary from one protein to another. The estimation of 

myoglobin PII content was to within 2 %, whereas for lysozyme it was around 20 %. 

For hemoglobin and α-chymotrypsin this accuracy was between 5-7 %. The accuracy 

for the estimation of random coil content was almost as good as that for α-helix and 

generally it was within 5 % error for all proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V.13. Analysis of the secondary structure fractional composition of standard 
proteins using the CONTIN/LL program.  The different secondary structures are as 
listed for Table V.12. 

Protein Ref. set H1 H2 S1 S2 T U Total NMRSD 
3 0.56 0.28 0.03 0.01 0.04 0.08 1 0.007 
4 0.55 0.22 0.02 0.01 0.06 0.13 0.99 0.007 
6 0.57 0.29 0.02 0.01 0.05 0.06 1 0.006 

Myoglobin 

7 0.56 0.28 0.02 0.01 0.06 0.08 1.01 0.005 
3 0.55 0.27 0.02 0.00 0.07 0.09 1 0.009 
4 0.53 0.25 0.02 0.01 0.08 0.11 1 0.009 
6 0.55 0.26 0.01 0.00 0.08 0.09 0.99 0.009 

Hemoglobin 

7 0.53 0.30 0.01 0.01 0.10 0.05 1 0.010 
3 0.25 0.18 0.07 0.06 0.20 0.25 1.01 0.011 
4 0.24 0.16 0.08 0.06 0.19 0.26 0.99 0.012 
6 0.25 0.17 0.07 0.06 0.18 0.27 1 0.011 

Lysozyme 

7 0.25 0.18 0.07 0.05 0.18 0.26 0.99 0.010 
3 0.04 0.05 0.23 0.11 0.22 0.35 1 0.026 
4 0.03 0.07 0.19 0.11 0.24 0.34 0.98 0.027 
6 0.03 0.04 0.13 0.07 0.14 0.58 0.99 0.035 

α-chymotrypsin 

7 0.03 0.04 0.17 0.09 0.18 0.47 0.98 0.028 
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Table V.14. Analysis of the secondary structure fractional composition of standard proteins 
using the CDSSTR program.  The different secondary structures are as listed for Table V.12. 

Protein Ref. set H1 H2 S1 S2 T U Total NMRSD 
1 0.531 0.257 0.000 0.000 0.067 0.145 1 0.035 
3 0.515 0.248 0.000 0.001 0.078 0.158 1 0.017 
4 0.522 0.256 0.000 0.000 0.065 0.157 1 0.017 
6 0.522 0.260 0.000 0.006 0.106 0.106 1 0.017 

Myoglobin 

7 0.524 0.270 0.000 0.007 0.100 0.100 1.001 0.017 
1 0.569 0.278 0.000 0.000 0.053 0.100 1 0.042 
3 0.499 0.253 0.000 0.000 0.114 0.134 1 0.021 
4 0.478 0.263 0.000 0.008 0.100 0.152 1.001 0.021 
6 0.495 0.245 0.000 0.000 0.096 0.164 1 0.021 

Hemoglobin 

7 0.478 0.270 0.000 0.012 0.117 0.123 1 0.021 
1 0.246 0.163 0.081 0.054 0.199 0.258 1.001 0.068 
3 0.236 0.162 0.088 0.060 0.202 0.252 1 0.022 
4 0.234 0.173 0.088 0.058 0.187 0.260 1 0.026 
6 0.232 0.144 0.065 0.046 0.160 0.353 1 0.022 

Lysozyme 

7 0.240 0.153 0.055 0.038 0.132 0.383 1.001 0.026 
1 0.077 0.105 0.175 0.085 0.217 0.341 1 0.048 
3 0.067 0.098 0.181 0.094 0.217 0.344 1.001 0.052 
4 0.051 0.095 0.179 0.102 0.216 0.358 1.001 0.043 
6 0.058 0.067 0.142 0.072 0.149 0.513 1.001 0.045 

α-chymotrypsin 

7 0.061 0.069 0.136 0.075 0.144 0.515 1 0.046 
 ααααH 310H S PII T U Total NMRSD 

2 0.681 0.102 0.000 0.010 0.065 0.141 0.999 0.026 Myoglobin 
5 0.757 - 0.001 0.047 0.090 0.099 0.999 0.026 
2 0.691 0.095 0.000 0.016 0.065 0.133 1 0.037 Hemoglobin 
5 0.748 - 0.000 0.051 0.103 0.098 1 0.044 
2 0.296 0.091 0.093 0.069 0.131 0.319 0.999 0.095 Lysozyme 
5 0.363 - 0.173 0.099 0.229 0.137 1.001 0.050 
2 0.108 0.043 0.168 0.115 0.136 0.429 0.999 0.057 α-chymotrypsin 
5 0.166 - 0.222 0.186 0.229 0.195 0.998 0.073 

 

Protein ααααH S1 S2 T Other Total 
Myoglobin 0.76 -0.03 0.01 0.11 0.14 1.01 
Hemoglobin 0.76 -0.06 0.00 0.09 0.12 0.96 
Lysozyme - - - - - - 
α-chymotrypsin 0.11 0.30 0.01 0.20 0.40 1.02 
 

Table V.15. Analysis of the secondary structure fractional 
composition of standard proteins using the VARSLC 
program.  The different secondary structures are as listed for 
Table V.12. The VARSLC program failed to adequately analyse 
the lysozyme CD spectrum. 

Table V.16. Analysis of the secondary structure fractional 
composition of standard proteins using the K2d program.  
The different secondary structures are as listed for Table V.12. 

Protein ααααH S U NMRSD 
Myoglobin 0.81 0.00 0.19 0.057 
Hemoglobin 0.79 0.00 0.21 0.056 
Lysozyme 0.37 0.16 0.47 0.106 
α-chymotrypsin 0.09 0.35 0.56 0.115 
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V.4.3 Discussion 

The accuracy of the quantitative secondary structural analysis for each of the proteins 

studied serves to validate the experimental set-up and procedure as capable of reliably 

analysing novel proteins in terms of their secondary structure fractional compositions. 

It should be noted that the superior accuracy of estimates of secondary structure 

content in the above experiment, relative to the correlation coefficients for each 

program, most likely arises from the fact that the reference sets used in the analyses 

contain each of the proteins studied above. CD spectroscopy has been seen to be an 

excellent technique for analysing protein secondary structure, particularly in terms of 

its α-helix and random-coil content. It is a little less suited for analysing both β-sheet 

and β-turn content and this arises from the weakness in intensity of these bands in the 

CD spectrum and the lack of uniformity of these structures within proteins, giving rise 

to non-uniform CD bands. During the fitting procedure the test spectra were scaled in 

order to return the lowest NMRSD value. The accuracy of the estimates at this lowest 

NMRSD qualifies this parameter as a good gauge of the success in estimating a 

protein’s secondary structure composition and this is consistent with the findings of 

Table V.17. The prediction error of the fractional composition of the standard proteins from their CD 
spectra. For SELCON, CONTIN/LL and CDSSTR the errors were calculated based on the average structure 
predicted over all protein reference sets. The errors are given as + or – based on whether the programs over or 
under predicted the amount of each secondary structure, respectively. 

Protein Program αααα-helix 
error 

ββββ-sheet 
error 

ββββ-turn 
error 

PII error Other error 

SELCON -0.049 0.013 0.055 -0.019 0.005 
CONTIN/LL -0.041 0.002 0.082 0.005 -0.015 

CDSSTR 0.024 0.033 0.053 - -0.057 
VARSLC -0.044 -0.02 0.11 - -0.004 

Myoglobin 

K2d 0.006 0.00 - - -0.006 
SELCON -0.003 0.002 0.082 -0.070 0.003 

CONTIN/LL -0.008 0.012 0.093 -0.072 -0.007 
CDSSTR 0.050 0.020 0.083 - -0.051 
VARSLC 0.00 -0.06 0.09 - -0.016 

Hemoglobin 

K2d 0.03 0.00 - - -0.031 
SELCON -0.050 0.104 0.141 -0.162 0.043 

CONTIN/LL -0.042 0.112 0.130 -0.214 0.059 
CDSSTR 0.001 0.114 0.140 - 0.039 
VARSLC - - - - - 

Lysozyme 

K2d -0.049 0.144 - - 0.049 
SELCON -0.004 0.048 0.081 -0.060 -0.017 

CONTIN/LL 0.032 0.025 0.081 -0.050 0.014 
CDSSTR -0.032 0.067 0.089 - 0.064 
VARSLC -0.004 0.102 0.094 - 0.029 

α-chymotrypsin 

K2d -0.024 0.142 - - -0.011 
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Miles et al. in their investigation into the correlation of the NMRSD value and the 

accuracy of the estimated protein secondary structure content.[30] 
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Chapter VI 

Secondary Structure Analysis of Standard Proteins 

by FTIR Spectroscopy 

 

VI.1 Introduction 

The performance of protein FTIR spectroscopy is by no means straightforward and 

much practise and experimental adjustment is needed before a reliable procedure is 

obtained which is capable of routinely analysing the precious and expensive protein 

samples prepared by biological researchers. In satisfying this requirement it is 

essential to optimise all experimental procedures using standard proteins of known 

secondary structure, since such proteins have previously been investigated using FTIR 

spectroscopy by other researchers and so they provide a standard by which one can 

develop and validate ones own experimental setup and technique. This approach also 

makes economic sense, since standard proteins are commercially available and can be 

relatively inexpensive. The following work was performed for these reasons and, also, 

to take account of the various considerations, advantages and disadvantages involved 

with using alternative applications of FTIR spectroscopy in investigating protein 

secondary structure. The main disadvantage of the FTIR method is the large amounts 

of protein required. 

The four well-ordered proteins selected for FTIR analysis are those 

highlighted in the CD study, namely myoglobin, hemoglobin, lysozyme and α-

chymotrypsin. These proteins were selected so as to provide a broad coverage of 

secondary structure protein types to be analysed. Myoglobin and hemoglobin both 

contain very high levels of α-helix conformation and are absent of β-sheet content. 

Myoglobin has an important difference from hemoglobin, however, in that myoglobin 

is monomeric while hemoglobin is a tetramer consisting of four subunits.  Lysozyme 

is also a predominantly α-helical protein that has considerably less α-helix content 

than either hemoglobin or myoglobin, but it does contain a small amount of β-sheet 

structure. In contrast, α-chymotrypsin is a predominantly β-sheet protein and has only 

a minor amount of α-helix content.  
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VI.2 Method 

Samples of myoglobin, hemoglobin, lysozyme and α-chymotrypsin (Sigma) were 

made up to concentrations of approximately 15 mg/ml by weighing out 1.5 mg of 

each protein and dissolving each in 100 µl of 10 mM PBS made up with double 

processed tissue culture water (Sigma). These samples were used directly for ATR-

FTIR analysis, while samples to be analysed by transmission FTIR were made by 

taking 50 µl of each ATR sample and diluting it with 150 µl of 10 mM PBS. Stock 

solutions of 5 mg/ml concentration were made up for each protein using a 10 mM 

PBS buffer prepared in D2O solvent. Prior to spectral analysis all samples were 

centrifuged at 9000 RPM for 2 minutes, were thoroughly degassed and were kept at 4 
oC. 

Transmittance FTIR spectra were acquired using a temperature controlled 

AquaSpec™ accessory (Bruker) on a Bruker TENSOR 27 FTIR spectrometer. 

Spectral parameters were set as follows: a temperature of 23 oC, an aperture of 1.5 

mm, a resolution of 4 cm-1 and as an average of 100 scans. Spectra were acquired in 

absorbance mode and, as such, were background corrected by taking the transmission 

spectrum of the solution in which the samples were made up. Before the acquisition 

of transmittance spectra the sealed cell was repeatedly cleaned with Hellmanex ® II 

detergent (Hellma UK) alternated with continuous rinsing using tissue culture water. 

To help prevent the occurrence of gas bubbles forming within the cell it was filled at 

the optimal filling rate of 5-10 µl per second using a 50 µl glass syringe (Hamilton). 

As a check for the presence of any interfering gas bubbles within the filled cell prior 

to spectral acquisition a transmission spectrum of the cell over the wavenumber range 

3200-3600 cm-1 was taken. Spectral acquisition was only performed if over this range 

the sample was fully absorbing - a condition which can only occur in the absence of 

any trapped air bubbles in the cell. The AquaSpec accessory was continually purged 

with dry air from a gas purifier both before and during spectral acquisition. 

ATR-FTIR spectra were acquired using a temperature controlled BioATR II™ 

accessory (Bruker) on a TENSOR 27 FTIR spectrometer with the following spectral 

parameters: a temperature of 23 oC, an aperture of 3 mm, a resolution of 4 cm-1 and as 

an average of 100 scans. The ATR-FTIR spectra were acquired in absorbance mode 

by background correcting each spectrum using the transmission spectrum of the 

solution used to make the sample. Between each measurement the silicon ATR wafer 
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was cleaned 3 times with a 3 M guanidine/HCl solution, alternated with thorough 

rinsing with deionised H2O. Prior to spectral acquisition the silicon wafer was 

checked for cleanness by recording the transmission spectrum over the wavenumber 

range 2700-3000 cm-1 of the empty sample compartment to ensure that it was free 

from any CH-stretching vibrations. The BioATR II accessory was continually purged 

with dry air both before and during spectral acquisition. 

For both ATR- and transmittance FTIR absorption spectra the appropriateness 

of the background transmission spectrum to that of the sample was ensured by 

applying the condition that the absorption spectrum in the wavenumber range 1715-

1750 cm-1 correspond approximately to a flat line at zero absorbance. Spectral post-

processing consisted of zeroing all absorption spectra between 1750 and 1800 cm-1. 

To remove any interfering water vapour lines an atmospheric correction procedure 

was applied to each protein absorption spectrum. The line narrowing procedure of 

taking the spectral 2ND derivative was applied to all spectra in the amide-I region 

between 1600 and 1700 cm-1. In some cases the alternative line narrowing procedure 

of taking the Fourier self-deconvolution was also performed using a bandwidth of 52 

nm and a noise reduction factor of 0.25. When comparing the transmittance and ATR-

FTIR spectra of each protein as spectral overlays, both spectra were normalised such 

that the area beneath the amide-I absorption band between 1600 and 1700 cm-1 was 

set to 1. 

Standard protein temperature melt experiments were performed using the Bio-

ATR II accessory. Temperature melts were performed by incrementally ramping the 

temperature from low to high temperatures while taking scans at pre-specified 

temperatures. A corresponding temperature ramp of the sample reference solution was 

performed in order to take account of the temperature effect on the transmission 

spectrum of water.  

The myoglobin melt experiment was measured at a protein concentration of 20 

mg/ml dissolved in tissue culture water. The start temperature was 20 oC and the final 

temperature was 90 oC. The temperature was stepped at 5 oC with an equilibration 

time of 2 minutes before beginning spectral acquisition. 
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The hemoglobin melt experiment was measured at a protein concentration of 

10 mg/ml dissolved in tissue culture water. The start temperature was 10 oC and the 

final temperature was 90 oC. Two temperature ramps were used to cover this range 

with the first ramping at 2 oC increments between 10 and 60 oC and the second 

ramping at 5 oC between 60 and 90 oC. A temperature equilibration time of 2 minutes 

was used across both ramps before the beginning of spectral acquisition. 

The α-chymotrypsin melt experiment was performed at a protein 

concentration of 15 mg/ml. The start temperature was 20 oC and the end temperature 

was 90 oC. Three temperature ramps were used within this region: from 20 to 35 oC in 

increments of 5 oC and with a temperature equilibration time of 2 minutes: from 35 to 

65 oC in increments of 1 oC and with an equilibration time of 1 minute: and from 65 to 

90 oC in increments of 5 oC and with an equilibration time of 2 minutes.  

The lysozyme melt experiment was performed at a protein concentration of 10 

mg/ml. The temperature was varied from 18 to 51 oC and stepped at 3 oC intervals. A 

temperature equilibration time of 2 minutes was used once the sample had reached the 

scan temperature. 

Spectral post-processing for each of the standard protein melt experiments 

consisted of atmospheric correction for water vapour and CO2 bands, along with 

offset correction at a wavenumber between 1700 and 1750 cm-1, area normalisation of 

the amide-I band and subsequent 2ND derivative analysis within the amide-I region of 

each absorption spectrum.  

The T1/2 value of each protein was measured by constructing a model designed 

to quantify the relative degree of aggregation at each temperature. This was done by 

taking the 2ND derivative spectrum of the aggregation band between 1615 and 1630 

cm-1 of the spectrum at the start and end temperatures of the melt experiment and 

giving these a numeric value of 0 and 100 % aggregation, respectively. Each 

individual model created for each protein was then used to analyse the aggregation 

content of the protein at temperatures intermediate to these extremes in terms of the 

percent aggregation at a given temperature. The ability of each model to analyse the 

test spectra is reflected in a quantity known as the Mahanalobis distance.[1] A 

Mahanalobis limiting distance of 0.5 defines whether or not the model is capable of 
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evaluating each of the test spectra. Only spectra having Mahanalobis distances within 

the 0.5 limiting value are presented below for analysis. 

 

VI.3 Results 

VI.3.1 Transmittance FTIR of Standard Proteins 

Table VI.1 gives the secondary structure fractional composition of four standard 

proteins, as determined by x-ray crystallography, and Figure VI.1 gives cartoon 

illustrations of their secondary structures in terms of α-helix, β-sheet and random coil 

contents. The secondary structures of these proteins have been interpreted according 

to α-helix, β-sheet, β-turn, PII-helix and other, with the ‘other’ class being 

approximately equivalent to that of randomly coiled structure. The β-sheet class 

represents both parallel and anti-parallel β-sheet structures. From the x-ray data both 

hemoglobin and myoglobin are understood to be highly α-helical and contain no β-

sheet or β-turn regions. Lysozyme is also a predominantly α-helical protein, but it has 

considerably less α-helix content than either hemoglobin or myoglobin, having 

approximately half the α-helix content of myoglobin. It also has a minor amount of β-

sheet and β-turn structure. In terms of its secondary structure, lysozyme’s most 

distinct difference from hemoglobin and myoglobin is that it has a considerable PII-

helix contribution to its secondary structure. α-chymotrypsin, on the other hand, is a 

predominantly β-sheet protein, although it does have some amount of α-helix. It is, 

therefore, referred to as a mixed αβ-protein, while hemoglobin, myoglobin and 

lysozyme are known as α-proteins.  

 

 

 

 

 

 

 

 

Protein αααα-helix ββββ-sheet ββββ-turn PII-helix other 
Myoglobin 80.4 0.0 0.0 5.2 14.4 
Hemoglobin 76.0 0.0 0.0 10.5 13.6 
Lysozyme 41.9 1.6 4.7 29.8 22.1 
α-chymotrypsin 11.4 20.8 10.6 20.0 37.1 

Table VI.1. The x-ray crystal structures of standard proteins. The relative 
amounts of each characteristic secondary structure within each protein are given 
as a percentage.  
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Figure VI.2 shows the absorption spectrum of myoglobin, as acquired using 

transmission FTIR. The amide-I band maximum occurs at 1654 cm-1, which 

corresponds to the amide-I of the α-helix conformation. The distinctly lorenztian 

bandshape - especially to the higher wavenumber side of the band maximum – also 

agrees well with the characteristic α-helix amide-I. The approximate flat line shape of 

the spectrum past 1700 cm-1 indicates the accuracy with which the water band has 

been referenced out of the absorption spectrum. The Fourier deconvolution of the 

myoglobin amide-I band (Figure VI.2b) has the effect of resolving the composite 

protein amide-I band into its constituent characteristic secondary structure 

components. The Fourier-deconvoluted amide-I band has its band maximum at 1656 

cm-1, as expected. The minor random coil content of myoglobin predicted from its x-

ray crystal structure is observable as the band shoulder to the lower wavenumber side 

of this band maximum and centred at 1645 cm-1, at the expected location of the 

random coil amide-I band maximum. The shoulder occurring with a band centre of 

a b

c d

a b

c d

Figure VI.1. Crystal structures of standard proteins. The crystal structures of myoglobin, 
hemoglobin, lysozyme and α-chymotrypsin are represented as a, b, c and d, respectively. α-
helix protein regions are shown as ribbons and β-sheet regions are shown as yellow arrows, 
with the orientation of each β-sheet given by the direction of the arrow. (Generated using the
PyMol Molecular Viewer program (http://pymol.org/)) 
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1638 cm-1, and also the small band at 1682 cm-1, is evidence for the presence of some 

β-sheet content to the myoglobin sample. The band centred at 1627 cm-1 reveals that a 

small level of aggregation was present within the sample, with the minor aggregation 

band also visible at 1695 cm-1. A small band at 1672 cm-1 suggests a minor presence 

of β-turn structure. The 2ND derivative of the transmission myoglobin amide-I band 

reveals the same spectral features as that observed using Fourier deconvolution 

(Figure VI.2c). The main difference between the two, however, is that 2ND derivative 

analysis does not clearly resolve the α-helix and random coil bands, although the 

presence of both spectral features is clear from the shape of the main band in the 2ND 

derivative spectrum centred at 1655 cm-1. A residual aggregate band is again 

represented by a band centred at 1627 cm-1, along with the expected minor band at 

1692 cm-1. The presence of a small amount of β-sheet in the myoglobin sample is 

represented as a small shoulder to the aggregation band located at 1638 cm-1. The β-

turn band at 1672 cm-1 is also evident within the 2ND derivative spectrum. 

 

 

 

 

 

Figure VI.2. Myoglobin secondary structure analysis from transmission FTIR spectroscopy. a
The transmission FTIR spectrum of myoglobin. b The Fourier-deconvoluted myoglobin 
transmission FTIR spectrum. c The 2ND derivative spectrum of the unconvoluted transmission FTIR 
spectrum. 
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Figure VI.3a shows the amide-I and –II bands of the hemoglobin FTIR 

absorption spectrum acquired using transmission FTIR. The band maximum of the 

amide-I band is at 1656 cm-1 and is consistent with that of a predominantly α-helical 

protein. The bandwidth of the hemoglobin amide-I band is somewhat broader than 

that of myoglobin, reflecting the smaller α-helical content of the former. A flat 

baseline beyond 1700 cm-1 confirms accurate subtraction of the background water 

band. Figure VI.3b shows the hemoglobin Fourier-deconvoluted amide-I band. The 

amide-I band can be seen to be resolved into a number of component bands, most 

prominent amongst them being the α-helix band centred at 1656 cm-1. A shoulder 

band centred at 1642 cm-1 is attributable to the random coil secondary structure. The 

extent of protein aggregation within the sample is indicated by the band centred at 

1625 cm-1 and the band shoulder at approximately 1692 cm-1. The occurrence of 

bands at around 1666 and 1678 cm-1 indicates a certain amount of β-turn present 

within the structure and bands occurring at 1618 and 1612 cm-1 are likely the result of 

side-chain absorption overlapping the amide-I band. All of the above bands identified 

by the Fourier-deconvolution procedure were also revealed by using 2ND derivative 

analysis of the amide-I band (Figure VI.3c). The relative intensities of the 

deconvoluted bands, however, were found to be different when using 2ND derivative 

analysis versus that of Fourier deconvolution, the most notable difference between the 

two being the higher relative intensity of the α-helix amide-I contribution to those of 

other secondary structures, for instance that of the random coil band centred at 1641 

cm-1, within the 2ND derivative spectrum. 
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The FTIR absorption spectrum of lysozyme acquired using transmission FTIR 

in the amide-I and –II band region is shown in Figure VI.4a. The band maximum of 

the amide-I band was found at 1652 cm-1, as expected for a predominantly α-helical 

protein. Figure VI.4b shows the lysozyme amide-I band Fourier-deconvolution. The 

prominent deconvoluted band centred at 1652 cm-1 corresponds to that of the α-helix 

amide-I band. To shorter wavenumbers there appears a broad shoulder, which is most 

likely a result of both random coil and β-sheet structure. A minor band shoulder at 

around 1627 cm-1 can be safely assigned to the residual presence of protein 

aggregates, while shoulders at 1669 and 1677 cm-1 are probably a result of 310-helix 

and β-turn structures, respectively. The shoulder occurring around 1688 cm-1 is 

predominantly from β-sheet structure, with some contribution form the residual 

aggregates present. The shoulder around 1616 cm-1 can be understood as amino-acid 

side-chain absorption overlapping the amide-I band. The same bands as mentioned 

above are identified using 2ND derivative analysis (Figure VI.4c) as compared to 

Fourier-deconvolution of the lysozyme amide-I band. However, the 2ND derivative 

Figure VI.3. Hemoglobin secondary structure analysis from transmission FTIR spectroscopy. a
The unconvoluted transmission FTIR spectrum of hemoglobin. b The Fourier-deconvoluted 
hemoglobin transmission FTIR spectrum. c The 2ND derivative spectrum of the unconvoluted 
transmission FTIR spectrum. 

 

140014501500155016001650170017501800

Wavenumber cm-1

0.
00

00
0.

00
10

0.
00

20
0.

00
30

0.
00

40
A

bs
or

ba
nc

e 
U

ni
ts

160016201640166016801700

-0
.0

00
02

5
-0

.0
00

01
5

-0
.0

00
00

5
0.

00
00

05

A
bs

or
ba

nc
e 

U
ni

ts

160016201640166016801700

Wavenumber cm-1

0.
00

0
0.

00
1

0.
00

2
0.

0
03

0
.0

04
0

.0
05

0.
00

6
0.

00
7

A
bs

or
ba

n
ce

 U
ni

ts

a b

c 

 Wavenumber (cm-1) 



Chapter VI Secondary Structure Analysis of Standard Proteins by FTIR Spectroscopy 

 141 

spectrum achieves superior resolution of the α-helix band from its shoulder at lower 

wavenumbers, in contrast to the case of myoglobin (Figures VI.2b and c). The effect 

of this is to shift the α-helix band maximum to the expected position of 1656 cm-1, 

while revealing the band maximum of the shoulder to be approximately 1642 cm-1. 

This allows the confident assignment of this shoulder to the random coil structure. 

The β-turn bands occurring between 1670 and 1680 cm-1 are also present within the 

2ND derivative spectrum. 

 

 

 

 

Figure VI.5a shows the amide-I and –II bands of the α-chymotrypsin FTIR 

absorption spectrum acquired using transmission FTIR. The irregular shape of the 

amide-I band suggests an even mixture of conformations contributing to the 

secondary structure of α-chymotrypsin. Figure VI.5b shows the Fourier-deconvoluted 

α-chymotrypsin amide-I band, revealing significant contributions from a number of 

component bands summing to form the composite protein amide-I band. The most 

intense band component was found to be centred at 1632 cm-1 and can be assigned to 

the β-sheet conformation. The band intensity between 1680 and 1690 cm-1 is 

Figure VI.4. Lysozyme secondary structure analysis from transmission FTIR spectroscopy. a
The unconvoluted transmission FTIR spectrum of lysozyme. b The Fourier-deconvoluted lysozyme 
transmission FTIR spectrum. c The 2ND derivative spectrum of the unconvoluted transmission FTIR 
spectrum. 
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sufficient to allow for the presence of the required minor β-sheet band in order to 

make this assignment. Of almost equal intensity to the β-sheet band is a component 

centred at 1643 cm-1. This can be safely assigned to random coil content within the α-

chymotrypsin secondary structure. Such a significant level of random coil 

conformation gives an explanation for the relatively broad amide-I bandshape, since 

the random coil amide-I band is very much gaussian in shape. The occurrence of a 

component band at 1654 cm-1 reveals the presence of a small but significant level of 

α-helix present in α-chymotrypsin. The band centred at 1666 cm-1, along with its 

shoulder at 1672 cm-1, are clear indications of β-turn content to the α-chymotrypsin 

secondary structure. The absence of any component band between 1620 and 1625 cm-

1 is evidence for their being no appreciable degree of aggregation within the protein 

sample. Side-chain absorption overlapping the amide-I band can be seen by the 

presence of bands at 1610 and 1618 cm-1. The 2ND derivative of the α-chymotrypsin 

amide-I band reveals similar bands to those identified using Fourier-deconvolution 

(Figure VI.5c). The main difference in using 2ND derivative analysis over Fourier-

deconvolution is the relative intensity of the β-sheet component with respect to other 

conformation component bands, particularly that of random coil. As such, the 

intensities of the major and minor β-sheet bands located at 1636 and 1683 cm-1, 

respectively, dominate the α-chymotrypsin amide-I 2ND derivative spectrum. The 

random coil, α-helix and β-turn components are readily identifiable within the 2ND 

derivative spectrum at 1643, 1656 and 1672 cm-1, respectively. 
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VI.3.2 ATR-FTIR of Standard Proteins 

Figure VI.6a shows the amide-I and -II bands of the myoglobin FTIR absorption 

spectrum acquired using ATR-FTIR spectroscopy. The accuracy with which the water 

background has been referenced out when generating the absorption spectrum is 

revealed by the closeness of the spectral shape to a flat line at zero absorption beyond 

1700 cm-1. A very small negative deviation to this ideal seen in Figure VI.6a, 

described as a negative water signal, is an undesirable effect and arises from their 

being a higher “water concentration” within the reference compared to that present in 

the sample solution. (This is a result of the necessity of using high protein 

concentrations when working with ATR-FTIR spectroscopy. The effect of having 

different water concentrations for the reference and sample solutions on the amide-I 

bandshape is considerable and so any difference should be kept to an absolute 

minimum.) The Fourier deconvolution of the myoglobin ATR amide-I band is shown 

in Figure VI.6b. The principal component band to the myoglobin amide-I band can be 

seen centred at 1652 cm-1, corresponding to the α-helix conformation. To the lower 

wavenumber side of this band there occurs a shoulder at approximately 1641 cm-1, 

Figure VI.5. αααα-chymotrypsin secondary structure analysis from transmission FTIR 
spectroscopy. a The unconvoluted transmission FTIR spectrum of α chymotrypsin. b The Fourier-
deconvoluted α chymotrypsin transmission FTIR spectrum. c The 2ND derivative spectrum of the 
unconvoluted transmission FTIR spectrum. 
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which is attributable to the random coil conformation. A band located at 1625 cm-1 

reveals the presence of aggregates within the protein sample. Side-chain absorption is 

evident from the bands located at 1618 and 1611 cm-1. A band at 1678 cm-1 suggests 

the presence of β-turn content within the myoglobin secondary structure. The 2ND 

derivative of the myoglobin ATR amide-I band accentuates the α-helical component 

over that of the random coil, with the latter being only recognisable as a slight 

shoulder to the lower wavenumber side of the α-helix band centred at 1654 cm-1 

(Figure VI.6c). β-turn content is revealed by the occurrence of a band at 1678 cm-1, 

while the presence of aggregation within the protein sample can be seen from the 

small band at 1624 cm-1. Side-chain absorption is again evident by bands at 1618 and 

1610 cm-1.  

 

 

 

The hemoglobin ATR-FTIR absorption spectrum showing the amide-I and –II 

bands is shown in Figure VI.7a. The very slight presence of a negative water band is 

apparent at wavenumbers beyond 1700 cm-1. The lorenztian character to the amide-I 

band, along with its band maximum of 1654 cm-1, suggests that the hemoglobin 

protein sample is predominantly α-helical in structure. Figure VI.7b shows the 

Fourier-deconvoluted amide-I band. The component band at 1654 cm-1 is as expected 

Figure VI.6. Myoglobin secondary structure analysis from ATR-FTIR spectroscopy. a The 
unconvoluted ATR-FTIR spectrum of myoglobin. b The Fourier-deconvoluted myoglobin ATR-FTIR 
spectrum. c The 2ND derivative spectrum of the unconvoluted ATR-FTIR spectrum. 
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for a largely α-helical protein. The band at 1642 cm-1 of almost equal intensity is 

evidence for a considerable amount of random coil to the protein structure, while the 

higher wavenumber shoulder at 1672 cm-1 suggests β-turn content. Bands at 1634 and 

1685 cm-1 are evidence that β-sheet structure is present within the protein secondary 

structure. Aggregation within the protein sample can be seen from the band at 1625 

cm-1. Side-chain absorption results in the bands appearing at 1610 and 1618 cm-1. 

Figure VI.7c shows the hemoglobin ATR-FTIR amide-I 2ND derivative spectrum. 

Compared to the Fourier deconvolution analysis, the relative intensity of the α-helix 

component at 1656 cm-1 of the amide-I band is significantly increased, with respect to 

the other structural components, particularly when compared to that of the random 

coil component at 1642 cm-1 (Figure VI.7c) . The aggregation band is again present at 

1625 cm-1 as are the β-sheet and β-turn bands at 1636 and 1672 cm-1, respectively. 

The side-chain absorption can be seen at 1610 cm-1. 

 

 

 

 

 

Figure VI.7. Hemoglobin secondary structure analysis from ATR-FTIR spectroscopy. a The 
unconvoluted ATR-FTIR spectrum of hemoglobin. b The Fourier-deconvoluted hemoglobin ATR-FTIR 
spectrum. c The 2ND derivative spectrum of the unconvoluted ATR-FTIR spectrum. 
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The lysozyme ATR-FTIR absorption amide-I and –II bands are shown in 

Figure VI.8a. A very small positive water band can be seen from the spectrum at 

wavenumbers longer than 1700 cm-1. The result of this was most likely a less than 

completely clean ATR surface for the acquisition of the reference transmission 

spectrum. The consequence of this would be to very marginally reduce the amount of 

water sampled by the IR beam in collecting the reference. The effect is, however, 

small enough to be of little significance to the amide-I bandshape. The amide-I band 

maximum of 1653 cm-1 suggests that there is a large amount of α-helix present within 

the lysozyme secondary structure. However, the reasonably broad amide-I bandshape 

indicates the presence of other component structures to the overall protein structure. 

Figure VI.8b shows the ATR-FTIR absorption Fourier-deconvoluted amide-I band, 

revealing that the main component band is, as expected, that of the α-helix at 1652 

cm-1, while the only slightly less intense band at 1643 cm-1 is that arising from 

random coil content. The pronounced band at 1632 cm-1 indicates a substantial level 

of β-sheet to the protein conformation and this is corroborated by the presence of an 

expected accompanying minor band at 1685 cm-1. The band at 1666 cm-1 is evidence 

for the presence of β-turn content, while side-chain absorption can be clearly seen 

from bands located at 1618 and 1610 cm-1. There does not appear to be significant 

levels of aggregates within the protein sample from the absence of a band of any real 

intensity around 1625 cm-1. The lysozyme ATR-FTIR amide-I band 2ND derivative 

spectrum is shown as Figure VI.8c. This differs from that of the Fourier-deconvoluted 

spectrum in that it accentuates the intensity of the α-helix component relative to that 

of other conformations. All of the bands present within the Fourier-deconvoluted 

spectrum are, however, again clearly evident in the 2ND derivative spectrum. 
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Figure VI.9a shows the amide-I and –II bands of the ATR-FTIR absorption 

spectrum of α-chymotrypsin. A small negative water band occurs to higher 

wavenumbers than 1700 cm-1. The amide-I band maximum at around 1640 cm-1 

suggests a large contribution of β-sheet to the protein secondary structure. Figure 

VI.9b shows the Fourier deconvolution of the α-chymotrypsin ATR-FTIR amide-I 

band. The band of highest intensity is that centred at 1632 cm-1 and corresponds to the 

major β-sheet amide-I component, with the minor β-sheet component present at 1682 

cm-1. The higher wavenumber shoulder to this band is also likely a result of β-sheet 

structure. A lower wavenumber shoulder to the highest intensity band, centred at 1625 

cm-1 indicates a degree of aggregation within the protein sample and the minor 

aggregation band located at 1692 cm-1 corroborates this. The broad band between 

1655 and 1665 cm-1 can be attributed to PII-helix conformation. Bands at 1645 and 

1672 cm-1 most likely result of random coil and β-turn content, respectively. A side-

chain absorption band can be seen at 1612 and 1602 cm-1. The 2ND derivative ATR-

FTIR amide-I spectrum is shown in Figure VI.9c. The intense β-sheet component 

band at 1636 cm-1 and its minor counterpart at 1682 cm-1 are again evident and a 

slight shoulder to the lower wavenumber side of this band indicates the presence of 

Figure VI.8. Lysozyme secondary structure analysis from ATR-FTIR spectroscopy. a The 
unconvoluted ATR-FTIR spectrum of lysozyme. b The Fourier-deconvoluted lysozyme ATR-FTIR 
spectrum. c The 2ND derivative spectrum of the unconvoluted ATR-FTIR spectrum. 
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protein aggregates. The random coil, PII-helix, and β-turn components are present at 

1646, 1658 and 1672 cm-1, respectively The side-chain absorption bands at 1612 and 

1602 cm-1 can also be seen in the 2ND derivative spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI.3.3 Quantitative Analysis of Secondary Structure from Protein FTIR Spectra 

The ability of the protein reference set to account for the structures of the test 

proteins, along with the suitability of the mathematical model used to relate the 

structures present within the reference set to those of the test spectra is given by the 

Mahanalobis distance parameter. The closer this value is to zero the better is the 

secondary structure fitting procedure and the greater is the degree of confidence to be 

had in the estimation. A failed result is returned when the Mahanalobis distance 

exceeds the acceptable limit of 0.12. The component value density is a measure of the 

number of calibration spectra within the protein reference set that have values close to 

that of the test spectrum. For example, a component value density of 2 for the 

prediction of a protein’s β-sheet content indicates that 2 proteins within the reference 

set have similar β-sheet content to that of the protein being analysed. A higher value 

Figure VI.9. αααα chymotrypsin secondary structure analysis from ATR-FTIR spectroscopy. a The 
unconvoluted ATR-FTIR spectrum of α chymotrypsin. b The Fourier-deconvoluted α chymotrypsin 
ATR-FTIR spectrum. c The 2ND derivative spectrum of the unconvoluted ATR-FTIR spectrum. 
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of the component density value indicates a greater ability of the reference set to 

interpret the spectrum of the test protein. 

Table VI.2 presents the results for the estimation of the α-helix and β-sheet 

content of the four standard proteins from their transmission FTIR spectra. By 

comparing the estimated structural contents of each protein with its x-ray crystal 

structure it can be seen that β-sheet estimation is accurate to within 10 %. The 

accuracy for the estimation of α-helix content is roughly the same as that of β-sheet 

except when attempting to estimate the helical content of highly α-helical proteins, 

such as myoglobin and hemoglobin. Transmission FTIR tends to substantially 

underestimate the α-helical fractional compositions of such proteins with high α-helix 

contents. 

 

 

VI.3.4 Comparison of the ATR and Transmission Techniques for Protein FTIR  

Figure VI.10 overlays the amide-I and –II bands of each of the four standard proteins 

when either the transmission or ATR techniques of acquiring the FTIR absorption 

spectrum of each of the proteins were used. The most noticeable difference between 

the transmission and ATR spectra is the relative intensities of the amide-I and amide-

II bands. Transmission FTIR represents the true relative intensities of these bands and 

it can be seen from Figure VI.10 that the amide-I band is always of higher intensity 

than that of the amide-II band. An effect of using the ATR accessory is that radiation 

of lower frequency penetrates to a greater extent beyond the crystal surface and into 

the contacting sample solution than does radiation of higher frequency. This produces 

an effect whereby the sample pathlength is not uniform, but rather is a function of the 

irradiating frequency. As such, bands occurring at lower frequencies experience an 

intensity increase relative to those located at higher frequencies. This effect can be 

Protein Structure x-
ray 

Prediction 
(%) 

Error Mahanalobis 
distance 

Component value 
density 

α helix 10 9.19 -0.81 0.019 0.88 α chymotrypsin 
β sheet 34 33.944 -0.056 0.024 0.56 
α helix 75 54.01 -20.99 0.057 0.12 Hemoglobin 
β sheet 0 9.66 9.66 0.02 0.59 
α helix 36 43.36 7.36 0.022 1.63 Lysozyme 
β sheet 9 2.45 -6.55 0.052 0.71 
α helix 80.4 62.99 -17.41 0.099 0.15 Myoglobin 
β sheet 0 5.78 5.78 0.035 0.33 

Table VI.2. The prediction of protein secondary structure by transmission FTIR spectroscopy. 
A Mahanalobis distance limit of 0.12 defines whether predictions are to be taken as valid.  
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seen in the altered relative intensities of the amide-I and –II bands for the ATR-FTIR 

spectra of the standard proteins shown in Figure VI.10. The amide-I bandshape is 

consequently altered in the ATR absorption spectra for each of the four proteins 

studied due to the overlap between the amide-I and –II bands, in that the amide-I band 

intensity is increased at lower frequencies, in the region of this overlap, relative to its 

intensity at higher frequency, where there exists no overlap between the amide-I and -

II bands. This effect can be clearly seen for each of the overlays in Figure VI.10. 

 

 

 

Figure VI.11 makes a similar comparison, but instead the 2ND derivative 

spectra are compared in order to examine possible protein structural variation 

associated with using ATR-FTIR spectroscopy. From the decrease in intensity of the 

bands at approximately 1655 cm-1 the total amount of α-helix structure present within 

each of the proteins can be seen to decrease upon adsorption of each protein to the 

ATR crystal surface, relative to that seen using transmittance FTIR. The emergence of 

prominent bands at 1632 cm-1 for both hemoglobin and lysozyme is evidence that 

both proteins experience pronounced increases in their β-sheet content upon 
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Figure VI.10. A comparison of protein transmission and ATR FTIR spectra. The amide-I, -II 
and –III bands are compared for both transmission (green) and ATR (red) FTIR techniques for the 
proteins myoglobin, hemoglobin, lysozyme and α−chymotrypsin as given by a, b, c and d, 
respectively. (Normalisation of the amide-I band area was carried out between 1700 and 1600 cm-1

for each spectrum.) 
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adsorption to the ATR surface, with the expected minor β-sheet bands at 1682 cm-1 

also present in both spectra. Similarly, the ATR 2ND derivative spectrum of α-

chymotrypsin shows an increased level of β-sheet content relative to that of the 

transmittance equivalent, as seen by the increase in the intensity of the band at 1636 

cm-1. For the highly α-helical proteins of myoglobin and hemoglobin, it appears that 

both proteins become substantially more randomly coiled when adsorbed onto the 

ATR crystal surface. The red-shifting of the main band in the myoglobin 2ND 

derivative spectrum from 1656 cm-1 in transmittance mode to 1652 cm-1 in ATR 

mode, along with a band broadening effect in the ATR spectrum, can be understood 

as an increase in the random coil content of myoglobin. For hemoglobin the effect is 

even more striking, with a marked increase in the random coil band, along with a 

blue-shift to a more characteristic location of 1643 cm-1 for this band. No significant 

increase in the extent of aggregate formation was observed upon protein adsorption to 

the crystal surface, as can be seen from the 2ND derivative overlays in the frequency 

range of between 1625 and 1620 cm-1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure VI.11. Comparison of transmittance and ATR 2ND derivative amide-I FTIR absorption 
spectra of standard proteins. The amide-I band absorption FTIR 2ND derivative spectral overlay of 
myoglobin, hemoglobin, lysozyme and α-chymotrypsin when using either transmittance (green) or 
ATR (red) spectroscopic techniques are shown as a, b, c and d, respectively. 
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VI.3.5 Protein FTIR in D2O Solvent 

Figure VI.12 shows the amide-I bands of the four standard proteins myoglobin, 

hemoglobin, lysozyme and α-chymotrypsin when dissolved in D2O solvent. The peak 

maxima of between 1650 and 1655 cm-1 and the overall amide-I bandshapes for both 

myoglobin and lysozyme are as expected for predominantly α-helical proteins (Figure 

VI.12a and c). The amide-I band maximum of 1638 cm-1 for the α-chymotrypsin 

spectrum is as expected for a predominantly β-sheet protein (Figure VI.12d). The 

amide-I band maximum of hemoglobin in D2O solvent is found to be located at 

approximately 1645 cm-1, demonstrating the sizable shift in vibrational frequency that 

can occur upon isotopic substitution of peptide hydrogen atoms with deuterium 

(Figure VI.12b).[2]  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.13 compares the 2ND derivative spectra of the amide-I bands of each 

of the four standard proteins when dissolved in D2O versus H2O solvent. A general 

feature of the D2O protein 2ND derivative bands with respect to their H2O counterparts 

is that superior band resolution is achieved when analysing proteins in D2O solvent, as 

evident from Figure VI.13a, c and d. The expected red-shift in the amide-I band 

maximum for predominantly α-helical proteins when dissolved in D2O versus H2O is 

Figure VI.12. The amide-I bands of standard proteins in D2O solution. The amide-I bands of 
myoglobin, hemoglobin, lysozyme and α-chymotrypsin are shown as a, b, c and d, respectively. 
The FTIR absorption spectra were acquired using transmittance FTIR. 
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apparent from the 2ND derivative spectral overlays of myoglobin, hemoglobin and 

lysozyme (Figure VI.13a, b and c, respectively). From Figure VI.13a it can be seen 

that the secondary structure of myoglobin is unaltered when moving from an aqueous 

to D2O solvent. Figure VI.13c reveals that lysozyme retains all of its native band 

components when moving from H2O to D2O, however, a considerable increase in 

band intensity at 1636 cm-1 is observed in D2O solvent. Also, a dramatic increase at 

the same wavenumber is seen in moving from H2O to D2O solvent for the 

predominantly β-sheet protein α-chymotrypsin (Figure VI.13d). Hemoglobin displays 

a considerable decrease in the intensity of the helical band when dissolved in D2O 

compared to H2O solvent (Figure VI.13b). Residual aggregation bands are again 

present in the D2O spectra of both myoglobin and hemoglobin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.13. The amide-I band 2ND derivative spectra of standard proteins in H2O versus D2O
solution. The amide-I band 2ND derivative spectral overlays of H2O (green) and D2O (black) solutions 
of myoglobin, hemoglobin, lysozyme and α-chymotrypsin are shown as a, b, c and d, respectively. All 
FTIR absorption spectra were acquired using transmittance FTIR. 
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VI.3.6 Protein Melts and Two-Dimensional FTIR Spectroscopy 

Figure VI.14a shows the absorption spectral overlay of the myoglobin amide-I band 

variation as a function of temperature. From Figure 14a and b myoglobin can be seen 

to demonstrate high stability of secondary structure content up to a temperature of 45 
oC, illustrated by the blue coloured spectra. Beyond 45 oC there occurs a marked 

degree of degradation of α-helicity, as can be seen by the decrease in intensity of the 

amide-I band at the α-helix band maximum of 1655 cm-1, shown by the green 

coloured spectra. The decrease in α-helix content at higher temperatures accompanies 

an increase in amide-I band intensity in the aggregation band regions of between 1620 

to 1628 cm-1 and 1690 to 1695 cm-1. There is also a considerable increase in band 

intensity in the amide-I region corresponding to 310-helix and β-turn conformation 

between 1660 and 1682 cm-1.  

The variation of the 2ND derivative myoglobin amide-I spectra gives more 

precise insight into the structural changes brought about by increasing temperature 

(Figure VI.14b). The decrease in the band centred at 1655 cm-1 corresponds to the loss 

of α-helix structure with increased temperature. The major and minor aggregation 

bands at 1622 and 1696 cm-1, respectively, have clear temperature dependence. The 

emergence of a band centred at 1666 cm-1 with increasing temperature is evidence that 

myoglobin acquires 310-helix content at elevated temperatures. The myoglobin 2ND 

derivative spectra used for generating its aggregation profile (Figure VI.14d) is shown 

in Figure VI.14c and the calculated T1/2 value of 68 oC is consistent with it being a 

very temperature-stable protein.  

Figure VI.15 shows the two-dimensional (2D) correlation analysis of the 

myoglobin amide-I band for the melt experiment shown in Figure VI.14. Figure 

VI.15a shows the synchronous plot revealing an intense positive auto peak at the α-

helix band position of approximately 1650 cm-1. The asynchronous plot is shown as 

Figure VI.15b and features a number of cross peaks. Cross peaks occurring at the 

coordinates (1655, 1632), (1655, 1663) and (1655, 1678) correlate a decrease in the 

spectral intensity at 1655 cm-1 with increases in spectral intensities at 1632, 1663 and 

1678 cm-1, respectively. This correlates the loss of α-helix content to the gain of β-

sheet, 310-helix and β-turn content, respectively, for myoglobin when subjected to 

increasing temperature variation. The lack of a significant cross peak correlating the 

aggregation band at 1623 cm-1 with any other secondary structure in the asynchronous 
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map suggests that aggregation formation in myoglobin occurs in-phase with other 

structural changes. It can, therefore be assumed that loss of α-helix structure occurs 

simultaneous to the formation of protein aggregates. 

 

 

 

 

The negative sign of the cross peaks at (1655, 1632) and (1655, 1663) reveal 

that both β-sheet and 310-helix secondary structures, respectively, are formed before 

the loss of α-helix content and, therefore, that these newly formed structures are from 

residues not originally involved in forming the native helix domains. The positive 

sign of the cross peak at (1655, 1678) suggests that β-turn structures are formed after 

the loss of α-helix content and, therefore, most likely involve those residues which 

originally had formed the α-helix protein domains. 

 

 

Wavenumber (cm-1) 

Wavenumber (cm-1) 

Figure VI.14. Myoglobin ATR-FTIR melt experiment. a Myoglobin amide-I absorption band 
spectral overlay with varying temperature. The spectra coloured blue, green and red correspond to the 
temperature ranges 20-45, 50-65 and 70-85 oC, respectively. b Myoglobin amide-I 2ND derivative 
spectral overlay. c The 2ND derivative spectra over the wavenumber range used in generating the model 
for determining the aggregation profile of myoglobin. d The myoglobin aggregation profile showing the 
T1/2 value as 68 oC. 
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Figure VI.16a and b show the amide-I absorption and 2ND derivative overlays, 

respectively, of the hemoglobin melt experiment. Spectra coloured blue, green and red 

represent the temperature ranges 10-36, 38-52 and 52-90 oC, respectively. The blue 

coloured spectra represent the temperature range over which hemoglobin is 

predominantly stable with respect to its secondary structure. Some variation in the 

spectral intensity at 1655 cm-1 corresponding to the α-helix amide-I signal is evident, 

but overall the protein appears to retain its native secondary structure. The green 

spectra represent the temperature range over which hemoglobin begins to unfold and, 

subsequently, aggregate. Red spectra represent the complete unfolding and intense 

aggregation of hemoglobin. Band decreases at 1655 and 1638 cm-1, representing loss 

of α-helix and β-sheet content, respectively, and increases at 1622 and 1693 

(aggregation), 1666 (310-helix) and 1678  cm-1 (β-turn) with increasing temperature 

can clearly be seen in Figure VI.16b. The T1/2 value for hemoglobin was calculated as 

54 oC as shown in Figure VI.16d, defining it as a reasonably temperature-stable 

protein. 

Figure VI.15. Two-dimensional correlation analysis of myoglobin from ATR-FTIR 
spectroscopy. The myoglobin synchronous and asynchronous 2D correlation spectra are shown as 
a and b, respectively. 
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Figure VI.17 shows the 2D correlation analysis of the hemoglobin melt 

experiment given in Figure VI.16. The synchronous and asynchronous plots are 

shown as Figure VI.17a and b, respectively. Similar to myoglobin, the synchronous 

plot contains one major auto peak at the α-helix band location of 1655 cm-1. The 

asynchronous plot shows cross peaks correlating the intensity variation at 1655 cm-1 

with that at both 1620 and 1678 cm-1. The negative cross peaks at coordinates (1655, 

1620) and (1655, 1678) suggest that the formation of aggregate and β-turn structures, 

respectively, occur predominantly before the loss of α-helix content. This is the 

reverse of that observed for myoglobin, where it was found that aggregation and β-

turn formation occurred either simultaneous to or after the loss of α-helix secondary 

structure. 

 

 

 

Wavenumber (cm-1) 

Figure VI.16. Hemoglobin ATR-FTIR melt experiment. a The hemoglobin amide-I absorption 
spectral overlay. The spectra coloured blue, green and red were acquired over the temperature ranges 
20-34, 35-39 and 40-85 oC, respectively. b The 2ND derivative spectral overlay. c The 2ND derivative 
spectral overlay for the wavenumber range used in generating the model for determining the T1/2 value 
of hemoglobin. d Hemoglobin aggregation profile showing the T1/2 value as 54oC . 

 C:\Documents and Settings\Plall\Desktop\Extracted spectra\R-Hemo_10mgml_C-10-90_extract.0          Hemo_10mgml_C          Aqueous

160016201640166016801700

-0
.0

00
12

-0
.0

00
08

-0
.0

00
04

0.
00

00
0

0.
00

00
4

A
bs

or
ba

nc
e 

U
ni

ts

16001620164016601680170017201740

Wavenumber cm-1

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

A
bs

or
ba

nc
e 

U
ni

ts

16161618162016221624162616281630

-0
.0

00
08

-0
.0

00
06

-0
.0

00
04

-0
.0

00
02

0.
00

00
0

A
bs

or
ba

nc
e 

U
ni

ts

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60 70 80 90

Temperature (oC)

%
 A

g
g

re
g

at
io

n

T1/2 = 54 oC

a b

c d

 C:\Documents and Settings\Plall\Desktop\Extracted spectra\R-Hemo_10mgml_C-10-90_extract.0          Hemo_10mgml_C          Aqueous

160016201640166016801700

-0
.0

00
12

-0
.0

00
08

-0
.0

00
04

0.
00

00
0

0.
00

00
4

A
bs

or
ba

nc
e 

U
ni

ts

16001620164016601680170017201740

Wavenumber cm-1

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

A
bs

or
ba

nc
e 

U
ni

ts

16161618162016221624162616281630

-0
.0

00
08

-0
.0

00
06

-0
.0

00
04

-0
.0

00
02

0.
00

00
0

A
bs

or
ba

nc
e 

U
ni

ts

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60 70 80 90

Temperature (oC)

%
 A

g
g

re
g

at
io

n

T1/2 = 54 oC

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60 70 80 90

Temperature (oC)

%
 A

g
g

re
g

at
io

n

T1/2 = 54 oC

a b

c d



Chapter VI Secondary Structure Analysis of Standard Proteins by FTIR Spectroscopy 

 158 

 

 

 

 

 

 

 

 

 

 

Figure VI.18 shows the melt experiment of α-chymotrypsin. Over the 

temperature range 20-34 oC the β-sheet content of α-chymotrypsin becomes 

somewhat reduced, as can be seen for the blue spectra from the decreasing intensity of 

the amide-I band at approximately 1635 cm-1. No other structural variation is 

observed over this temperature range. Spectra recorded over the temperature range 

35-39 oC are coloured green and reveal an increased loss of β-sheet content over this 

range. The red spectra acquired from 40-85 oC reveal a further loss of β-sheet content 

along with the accumulation of protein aggregates, as revealed by the emergence of a 

band at 1626 cm-1. The less than complete loss of β-sheet content is reflected in the 

maximum of the aggregation band being slightly blue-shifted from its expected 

location of 1622 cm-1, as can be seen from Figure VI.18b. The transition from native 

intra-molecular β-sheet conformation to inter-molecular β-sheet aggregate formation 

with increasing temperature can also be seen from the decrease in the minor inter-

molecular β-sheet band at 1680 cm-1 and the growth of the minor intra-molecular β-

sheet band at 1693 cm-1 (Figure VI.18b). An increase in helix and/or random-coil 

content seems evident from the increase in the 2ND derivative spectral intensity 

between 1645 and 1665 cm-1 with increased temperature. The α-chymotrypsin T1/2 

value of 55 oC is characteristic of that of a reasonably temperature-stable protein. 

Figure VI.17. Two-dimensional correlation analysis of hemoglobin ATR-FTIR spectroscopy. The 
hemoglobin synchronous and asynchronous 2D correlation spectra are shown as a and b, respectively. 
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The 2D correlation analysis of α-chymotrypsin is shown in Figure VI.19. A 

single auto peak at 1638 cm-1 can be seen in the synchronous plot and corresponds to 

the intensity change brought about by the loss of native β-sheet structure with 

increasing temperature (Figure VI.19a). The most prominent feature of the 

asynchronous plot is the cross peak at (1638, 1626), correlating the loss of β-sheet 

structure with the gain of protein aggregates (Figure VI.19b). The positive sign of this 

cross peak indicates that the β-sheet structure is lost before the protein aggregates 

appear, as is apparent from Figure VI.18. Smaller cross peaks at (1640, 1664) and 

(1640, 1678) indicate a correlation between the loss of β-sheet content and the 

increase in 310-helix and β-turn content, respectively. The negative sign of these cross 

peaks suggest that both of these structures are formed before the loss of the native β-

sheet content and so that neither of these structures are formed from residues involved 

in forming native β-sheets. Two other cross peaks located at identical wavenumbers 

to the former two, but correlated to the aggregation band at 1626 cm-1 appear as cross 

peaks at (1626, 1664) and (1626, 1678). These cross peaks relate the decrease of 

spectral intensity at 1664 and 1678 cm-1 to the growing of the aggregation band at 

Figure VI.18. αααα-chymotrypsin ATR-FTIR melt experiment.  a The amide-I absorption spectral 
overlay of α-chymotrypsin. Blue, green and red spectra represent the temperature ranges 20-34, 35-39 
and 40-90 oC, respectively. b The 2ND derivative spectral overlay of the absorption spectra shown in a. c
The 2ND derivative absorption spectral overlay over the wavenumber region used to generate the model 
for calculating the α-chymotrypsin T1/2 value. d The aggregation profile of α-chymotrypsin. 
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1626 cm-1. The positive sign of these cross peaks suggest that both 310-helix and β-

turn conformations form before the completion of protein aggregation. 

 

 

 

 

 

 

 

 

 

 

 

Despite repeated attempts to monitor the aggregation process of lysozyme the 

temperature dependence of lysozyme’s secondary structure was only achieved up to a 

temperature of 51 oC. From Figure VI.20b it appears that considerable variation of the 

α-helix content of lysozyme occurs over this temperature from the magnitude of the 

band at 1655 cm-1. Similarly, the non-uniform behaviour of a small band between 

1640-1635 cm-1 indicates a variation of β-sheet content. A slight increase in band 

intensity can be seen at approximately 1680 cm-1, indicating a small increase in the β-

turn content of lysozyme over this temperature range. The apparent onset of 

aggregation can be seen in Figure VI.20b from a band emerging at approximately 

1620 cm-1 in the red coloured spectrum acquired at 51oC. This is accompanied by a 

further reduction in α-helix content. The failure to successfully acquire well-behaved 

spectra beyond 51 oC for lysozyme is most likely related to anomalous behaviour of 

the protein at the ATR-crystal surface at higher temperatures during spectral 

acquisition. The non-uniform behaviour towards the loss or formation of particular 

secondary structures makes lysozyme a troublesome protein for the performance of a 

2D correlation analysis over this temperature range. 

Figure VI.19. Two-dimensional correlation analysis of αααα-chymotrypsin ATR-FTIR 
spectroscopy. The α-chymotrypsin synchronous and asynchronous 2D correlation spectra are 
shown as a and b, respectively. 
.  
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VI.4 Discussion 

VI.4.1 Quantitative Analysis of Secondary Structure from Protein FTIR 

One of the most challenging problems when working with FTIR spectroscopy for 

studying protein secondary structure is achieving the high protein concentrations 

necessary for this technique while at the same time preventing protein aggregation. 

FTIR protein spectroscopy routinely demands protein concentrations of between 5 

and 20 mg/ml. Since proteins do not remotely approach these concentrations in vitro 

this exposes them to higher risks of interacting with each other and forming 

aggregates. Despite careful steps to reduce the risks of aggregates being present 

within the sample, a small amount of aggregation was unavoidable for some of the 

proteins studied. Particularly sensitive to this effect were the highly α-helical proteins 

of myoglobin and hemoglobin (Figures VI.2 and VI.3). This likely contributed to a 

decrease in performance when trying to estimate the α-helix and β-sheet contents of 

these proteins. Where aggregation was found not to occur to large extents, as in the 

Figure VI.20. The ATR-FTIR melt experiment of lysozyme. a and b show the 
amide-I absorption band and 2ND derivative spectral overlays, respectively. The 
blue and red spectra were acquired at 18 and 51 oC, respectively. Spectra taken at 
intermediate temperatures are coloured grey. 
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case of lysozyme and α-chymotrypsin, the estimation of both α-helix and β-sheet was 

found to be very good (Table VI.2). 

Although no exact attempt at solving for the fractional composition of random 

coil within the proteins studied was made, the intensity of bands centred between 

1640 and 1645 cm-1 correlates well with the extent of random coil expected for each 

of the proteins studied (Figure VI.11). Of the proteins studied, α-chymotrypsin has 

the largest band at 1643 cm-1, followed by lysozyme, hemoglobin and myoglobin. The 

relative intensities of these bands to other bands present in the amide-I 2ND derivative 

spectrum are in good agreement with the expected fractional compositions from x-ray 

crystallographic data (Table VI.1), which define the random coil content of 

myoglobin, hemoglobin, lysozyme and α-chymotrypsin as 14.4, 13.6, 22.1 and 37.1 

%, respectively, of the total protein structure. Also, the presence of the expected β-

turn fractional content within lysozyme and α-chymotrypsin of 4.7 and 10.6 %, 

respectively, agrees well with the intensities of bands present at 1672 cm-1 in both 

transmission FTIR 2ND derivative spectra (Figures VI.4 and VI.5). 

 

VI.4.2 Fourier-deconvolution versus 2ND derivative analysis 

The composite nature of a protein’s amide-I band, representing all of the secondary 

structures present within the protein, is clear from the FTIR spectra presented above. 

From the unprocessed amide-I band it is difficult to distinguish the different 

secondary structures present within a particular protein. To this end the band-

narrowing techniques of Fourier-deconvolution and 2ND derivative analysis were 

employed and their individual and relative effectiveness can be seen above. Both 

techniques were seen to be highly effective in deconvoluting the individual secondary 

structure components from the composite amide-I absorption band, in that the 

locations of all deconvoluted bands correspond well to the expected locations of the 

characteristic secondary structural motifs. In examining the relative performance of 

Fourier-deconvolution and 2ND derivative procedures in deconvoluting the 

overlapping bands of the composite protein amide-I band it was found that both 

techniques performed approximately equally well. The most difficult bands to 

accurately resolve are those arising from the α-helix and random coil conformations. 

This results from the closeness of the peak maxima of the amide-I bands of each 

(1660-1650 cm-1 for α-helix and 1645 cm-1 for random coil), but also from the broad 
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bandshape of the random coil amide-I. Fourier-deconvolution showed itself to be 

slightly superior to 2ND derivative analysis for resolving the α-helix and random coil 

band components, particularly in the case of myoglobin (Figure VI.2b and c). The 

reason for this is the apparent bias 2ND derivative analysis has for the α-helix 

component, which tends to dominate other close lying components, and the source of 

this bias is most likely attributable to the distinctly lorentzian bandshape of the α-

helix amide-I.  

 

VI.4.3 H2O versus D2O solvent for Protein FTIR 

Performing FTIR analysis of aqueous protein samples is very challenging due to the 

overlapping water band with the protein amide-I band. Since there are many more 

water molecules than protein molecules, the OH bending vibration mode from the 

water within the sample absorbs far more strongly than the protein amide vibrational 

modes. The extreme temperature dependence of the energy of the water OH bending 

vibration adds a further complication to performing aqueous FTIR spectroscopy of 

protein molecules. In order to successfully reference out the water background from 

the protein absorption spectrum the preservation of a constant pathlength between 

reference and sample acquisitions is essential, along with accurate thermostating of 

the cell. The need to disassemble and reassemble demountable transmission cells 

between collecting the reference and sample transmission spectra introduces a 

pathlength uncertainty, making demountable cells unsuitable for aqueous protein 

FTIR spectroscopy. This pathlength uncertainty is accentuated by the need to use very 

small pathlengths, of the order of 5 to 8 µm, when working with aqueous protein 

samples in order that the sample doesn’t become fully absorbing due to the water 

content of the sample. Demountable cells are also unsuitable for aqueous protein 

FTIR because the necessary precise regulation of temperature between sample and 

reference is difficult to achieve. The transmittance FTIR spectra presented above 

were, therefore, acquired with a non-demountable sealed cell.  

The manufacture of sealed cells with very small pathlengths is a challenging 

process and, therefore, such cells are quite costly. The main difficulty lies in the 

injection of the aqueous sample into the very thin cavity of the cell without having to 

apply extreme pressures that would be liable to break the cell windows. The 

AquaSpec cell addresses this problem by sealing the two windows with an expandable 
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material that allows the cell to be filled by expanding the distance between the 

windows and then, once the cell is filled, the material contracts to its original 

dimension, thus reducing the pathlength to the required distance of approximately 6 

µm.  

The reliable relationship between a protein’s amide-I band and its secondary 

structure has been used extensively for analysing proteins over the past twenty years. 

However, because of the relatively recent development of small pathlength 

temperature-regulated FTIR cells and their associated cost, most of the literature 

concerning protein FTIR is for proteins in D2O solvent. Given the widely 

acknowledged sensitivity of protein secondary structure to solvent effects, the 

question of the effect on a protein’s secondary structure of exchanging the native H2O 

solvent with non-native D2O is an important one. Comparing the amide-I bands of the 

four standard proteins used above in H2O versus D2O sheds light on this effect.  

Figure VI.13 shows the effects of exchanging H2O with D2O solvent on the 

secondary structures of the four standard proteins studied herein. The well ordered 

secondary structure regions of myoglobin, lysozyme and α-chymotrypsin all appear 

stable with respect to solvent exchange. However, for the lysozyme and α-

chymotrypsin amide-I spectra in D2O there appears a considerable increase in band 

intensity at 1636 cm-1. This is consistent with observations made with the nicotinic 

acetylcholine receptor upon substitution of H2O with D2O and the authors attribute 

this effect as predominantly arising from the sizable frequency shift of the random 

coil amide-I band upon H-D isotopic substitution, which occurs rapidly for the solvent 

exposed residues comprising the random coil protein content.[2] The authors also site 

the possibility that the increase in band intensity at this position may result from β-

sheet regions having increased spectral absorption when dissolved in D2O compared 

to H2O. The considerable reduction in intensity of the helix band for hemoglobin in 

the H2O versus the D2O spectrum is difficult to explain, but is likely related to the 

broadening of the band width that may result from the significant red-shift of the 

random coil amide-I band (Figure VI.13b). Again, this effect has been seen for the 

nicotinic acetylcholine receptor.[2] In conclusion, therefore, D2O may be used with 

some confidence for studying proteins by FTIR. It should be noted, however, that the 

large shift of the random coil amide-I band from being located close to the helix 

amide-I in H2O to directly overlapping the β-sheet amide-I in D2O should be taken 
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into account when studying proteins that contain significant levels of random coil 

secondary structure. The considerable red-shift of the random coil amide-I upon H-D 

isotopic substitution can be used as an effective means of quantifying the degree of 

protein random coil content, especially since the random coil amide-I band is located 

very close to the helix amide-I in aqueous solution and it can be difficult to resolve 

the two bands. Once this shift is taken into account, the spectra presented in Figure 

VI.13 indicate that protein secondary structure is largely unaffected by exchanging 

H2O with D2O solvent.  

The extensive overlap between the water and amide-I band introduces an 

unwanted artefact into the FTIR absorption spectrum, which results from a difference 

between the concentration of the water in the reference and sample solutions. This 

concentration difference is as a result of the high concentration of protein molecules 

within the sample solution, which acts to decrease the concentration of water. 

Therefore, the intensity of the water transmission band will be greater for the 

reference than for the sample and if this difference is large enough it can result in a 

deformed amide-I absorption band and improper determination of protein secondary 

structure. In order to minimise this effect it is desirable to have the protein 

concentration within the sample solution at close to the minimum level from which a 

reproducible absorption spectrum may be achieved. In order to protect against 

inappropriate referencing when generating the absorption spectrum a condition that 

the protein absorption spectrum have a flat line appearance between 1700 and 1750 

cm-1 is standard. Inspecting the absorption spectra presented above, it can be seen that 

the flat line appearance of the spectra beyond 1700 cm-1 is well maintained, especially 

for absorption spectra acquired in transmittance mode, for which the protein 

concentration is less than that needed for the ATR mode. The occurrence of very 

small negative water bands can be seen in some of the ATR data presented above and 

is a result of having to use higher protein concentrations when working with ATR 

spectroscopy. 

 

VI.4.4 Removal of Water Vapour from Protein FTIR Spectra 

A common mistake made when performing protein FTIR spectroscopy is to neglect to 

remove the water vapour lines from the protein amide-I band before analysing it for 

its secondary structure components. Unless considerable effort is taken to remove 
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every trace of water vapour from the beam path, it is inevitable that some water gas-

phase lines will be present in the protein spectrum. Any water vapour bands present in 

the protein spectrum are extremely detrimental to the secondary structural analysis of 

the protein because it happens that certain water vapour bands are located at 

wavenumbers matching those of all secondary structural elements. To illustrate the 

possible error introduced by water vapour bands to the protein amide-I band, Figure 

VI.20 overlays the same protein spectrum of lysozyme both before (red) and after 

(blue) the performance of the water vapour removing post-processing step, carried out 

for each of the protein spectra presented above. Despite continuous purging of the 

sample compartment with dry air it can be seen that some water vapour bands are 

present in the original spectrum. Within the amide-I band region water vapour signals 

can be seen at approximately 1615, 1620, 1627, 1636, 1643, 1653, 1675 and 1682 cm-

1. Since an approximate coincidence to the band positions of all of the secondary 

structural elements exists, a common mistake is to assign the water vapour bands to 

secondary structure components. It is obvious that this would lead to serious errors in 

the prediction of the secondary structural fractional composition of the protein being 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.20. The effect of water vapour bands to the protein amide FTIR spectrum. The 
ATR-FTIR absorption spectrum of lysozyme in the region of the amide-I and –II bands both 
before (red) and after (blue) the performance of the water vapour removing post-processing 
procedure. 
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VI.4.5 Transmission versus ATR for Protein FTIR Spectroscopy 

Comparing the absorption spectra of the standard proteins acquired with transmission 

versus ATR-FTIR spectroscopy reveals a clear shift in the relative intensities of the 

amide-I and –II bands. Since only the amide-I band is used for protein structural 

analysis this does not seem to be of immediate importance. However, spectral overlap 

between the two bands results in this change in amide-I and –II relative intensity 

leading to a change in the bandshape of the amide-I band. Also, the ATR effect of 

making the absolute optical pathlength dependent on the radiation frequency 

continues to apply over the wavenumber range defining the amide-I band and, 

therefore, not only alters the relative intensities of the neighbouring amide-I and –II 

bands, but also changes the amide-I bandshape itself. This might be reflected by a 

comparison of the amide-I bandshapes of the standard proteins involved in this 

investigation when acquired by either ATR or transmission FTIR spectroscopy. 

However, in practise this comparison is difficult to achieve, since other effects 

occurring at the ATR surface are likely to make a like-with-like comparison of ATR 

and transmission spectra non-feasible when trying to measure this effect. 

The viability of using ATR-FTIR spectroscopy as an effective replacement for 

transmittance FTIR spectroscopy is examined above. As previously mentioned, the 

problem of having to use increased protein concentrations when working with ATR 

compared to transmittance FTIR spectroscopy is potentially troublesome due to the 

possibility of increased aggregation at higher protein concentrations. The extent of 

this problem is revealed in Figure VI.11, which overlays the 2ND derivative 

deconvoluted amide-I of both transmission and ATR FTIR spectra of each of the 

standard proteins. From this it can be seen that aggregation levels do not significantly 

increase for any of the proteins studied when prepared at the higher concentrations 

needed for ATR-FTIR, relative to the samples used for transmission FTIR. It would, 

therefore, seem that the increased protein concentration requirements for ATR over 

transmission FTIR spectroscopy are not of the order to rule it out as an alternative 

technique and that protein aggregation levels are comparable when using either 

technique.  

Another factor to consider when working with ATR-FTIR spectroscopy is the 

possible effect adsorption of the protein to the ATR surface might have on its 

secondary structure. The ratio of adsorbed protein molecules to protein molecules in 
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solution that are sampled by the irradiating light beam as it passes through the 

BioATR-II accessory is dependent on the penetration depth of the evanescent wave 

(between 1 and 2 µm for the BioATR-II accessory) beyond the ATR crystal surface 

into the contacting sample solution. This ratio is of crucial importance to the overall 

effect on the amide-I bandshape that will be caused by any structural perturbation that 

occurs upon protein adsorption to the ATR-crystal surface. In order to gain insight 

into the approximate scale of protein adsorption the AavLEA1 protein’s adsorption 

profile with increasing temperature was examined (Figure VI.21). The AavLEA1 

protein was chosen for this test due to its lack of structural perturbation and 

consequent protein precipitation with temperature variation. As such, the change in 

the amide-I band intensity with temperature increase should be exclusively related to 

the adsorption process onto the ATR crystal surface. A comparison of this intensity 

variation with the initial amide-I band intensity gives an idea as to the level of 

contribution made to the amide-I band intensity by protein molecules adsorbed onto 

the crystal surface. From Figure VI.21 it can be seen that the amide-I band intensity 

approximately doubles due to the temperature dependent adsorption of AavLEA1. 

This is clear evidence that the penetration depth of the IR beam into the sample 

solution when using the BioATR II is such that most of the protein molecules sampled 

are either adsorbed onto or lie extremely close to the ATR crystal surface. Therefore, 

any protein structural perturbation introduced by the process of surface adsorption is 

likely to be highly represented in the ATR spectrum and represents a serious 

consideration when using ATR spectroscopy for studying protein secondary structure. 

The effect of protein structural variation upon surface adsorption was 

investigated by Sethuraman and Belfort, by examining the structural perturbation and 

aggregation effects on globular proteins such as lysozyme when adsorbed onto 

monolayer surfaces.[3] They observed a conformational shift from α-helix to β-turn 

and/or random coil and an overall increase in β-sheet content within the secondary 

structures of proteins adsorbed onto monolayer surfaces at room temperature. 

Comparing the transmittance and ATR amide-I 2ND derivative absorption spectra for 

each of the standard proteins examined above yields information about any such 

changes that result from adsorption to the ATR crystal surface (Figure VI.11). It can 

be seen that the ATR-FTIR protein spectra display decreased α-helix and increased β-

sheet band intensities with respect to their transmission counterparts. Therefore, it 
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would seem that a marked drop in the stability of α-helices and an increase in the 

stability of β-sheets occurs as a result of protein adsorption to the ATR crystal surface 

for each of the proteins studied. The random coil content of highly α-helical proteins 

is also increased upon surface adsorption. In general, adsorption of a protein to an 

ATR surface leads to non-native secondary structure conformation for that protein 

and, as such, ATR-FTIR spectroscopy should be used with caution for estimating the 

secondary structure contents of proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI.4.6 Protein Aggregation Analysis from ATR-FTIR 

Studying protein aggregation processes from temperature melt experiments is 

impractical using transmission FTIR with a sealed cell because the formation of 

aggregates within the cell cause it to become blocked, which is a serious problem for 

a sealed cell that cannot be disassembled for cleaning and which relies on an easy 

flow of liquid for effective gas-bubble-free sample delivery. Another problem with 

using sealed cells for melt experiments is that the material creating the cell seal often 

experiences dimensional changes (either expanding or contracting) with temperature 

variation. Such variations can be difficult to reproduce from one temperature ramp to 

Figure VI.21. Protein adsorption to the ATR crystal surface with increased temperature. The 
temperature was ramped from 20-90 oC using the AavLEA1 protein, which shows little structural 
variation with temperature. 
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another and this creates a problem when attempting to subtract the water background 

in generating the protein absorption spectra over a series of discrete temperatures. 

Therefore, the ATR-FTIR approach is most often taken when performing protein melt 

experiments because the ATR cell can easily be cleaned of aggregated sample and the 

technique offers high temperature stability of pathlength between the collection of the 

background and sample temperature spectral series. This latter advantage can be seen 

in the melt experiments presented above by the absence of either positive or negative 

water signals for each of the temperature series absorption spectra of the four standard 

proteins studied.  

A note of caution should be made, however, when using ATR-FTIR for 

studying protein melt experiments in that proteins routinely vary in their adsorption to 

the ATR crystal surface with temperature variation and, as seen from Figure VI.21, 

this can have a profound effect on the intensity of the amide-I band. This intensity 

variation with temperature increase can be exacerbated by the occurrence of protein 

precipitation at elevated temperatures, which has the effect of increasing the 

concentration of protein close to the ATR crystal surface if a horizontal crystal 

assembly is used. Therefore, for ATR protein melt experiments a band-intensity-

normalising procedure must be performed in order to correct for these effects. 

However, such normalising procedures are prone to introducing relative errors into 

the spectral data series since they rely on the approximation that the extinction 

coefficients of all band components within the composite amide-I band are equal. 

Combining this approximation with the potential for structural variation of proteins 

when adsorbed onto the ATR surface and the variation of this adsorption process with 

temperature detracts from the sensitivity of the ATR technique for analysing protein 

melt experiments. As such, ATR-FTIR should only really be used for investigating 

relatively large structural shifts that occur during melt experiments, such as protein 

aggregation. 

ATR-FTIR spectroscopy was successful in studying the aggregation 

behaviours of three of the four standard proteins studied above. Both α-chymotrypsin 

and hemoglobin were found to display approximately equal temperature stability and 

they returned T1/2 values of 55 and 54 oC, respectively. Myoglobin was discovered to 

be considerably more temperature stable and its T1/2 value was measured as 68 oC. 
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 The acquisition of high quality data for the temperature melt experiments for 

myoglobin, hemoglobin and α-chymotrypsin allowed for the use of 2D correlation 

analysis to try to understand the sequence of events involved in the unfolding and 

aggregation processes of each of the proteins. The question of whether proteins 

become aggregated in their premolten globule form - whereby they retain most of 

their secondary structure and adopt a more flexible tertiary conformation - or whether 

the aggregation process is primarily stimulated by the loss or denaturation of protein 

secondary structure is of considerable interest to biologists studying protein 

aggregation behaviours. Since 2D correlation analysis is capable of determining 

whether secondary structure is lost before or after the onset of aggregation it should 

provide a valuable tool for investigating protein aggregation phenomena.  

For the myoglobin 2D asynchronous plot there occurs no well defined cross 

peak correlating the loss of α-helix structure with the onset of aggregation (Figure 

VI.15b). Since from Figure VI.14 it is clear that aggregation proceeds at the expense 

of α-helix band intensity the two processes must, therefore, occur simultaneously. 

The positive sign of the cross peak in the α-chymotrypsin asynchronous 2D plot 

correlating the loss of native β-sheet content with the accumulation of protein 

aggregates means that the β-sheet content is lost before protein aggregates are formed 

(Figure VI.19b). In contrast, the negative sign of the cross peak correlating the 

spectral intensity change at the α-helix wavenumber with that at the aggregate band 

wavenumber in the hemoglobin asynchronous 2D plot is evidence that the native α-

helix secondary structure is lost predominantly after the formation of protein 

aggregates (Figure VI.17b). From the 2D spectral data it seems that in proteins where 

there exist high levels of tertiary structure, such as hemoglobin, disruption of this 

tertiary structure can lead to the aggregation of the premolten globule protein form of 

the protein. Whereas in proteins containing low levels of tertiary structure a 

denaturation of secondary structural conformation is necessary to initiate the 

aggregation process. 
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VI.5 Protein Concentration Determination by FTIR Spectroscopy 

VI.5.1 Introduction 

The accurate determination of protein concentration within a sample of soluble 

protein is of crucial importance when using CD spectroscopy to determine secondary 

structure content. The most popular method used in biology labs for protein 

concentration determination is the Bradford technique, but this is unsatisfactory 

because of the relatively high degree of error involved.[4] The determination of 

protein concentration by UV absorption spectroscopy, whereby a protein absorption 

spectrum is produced from the absorption properties of its aromatic residues 

phenylalanine, tyrosine and tryptophan, is less than ideal, since the absorption 

extinction coefficient of each of the aromatic residues depends upon its environment 

within the protein and so a protein’s overall extinction coefficient can only be 

calculated with approximate accuracy from the protein’s primary sequence. It is 

considered that the most accurate methods for determining protein concentrations are 

by quantitative amino acid (QAA) analysis, which usually returns values that are 

accurate to within 5-10 %, or the determination of peptide backbone concentration by 

the measurement of biuret [5] or by that of total nitrogen [6].[7] The performance of 

each of these procedures, however, requires specialized equipment and this presents a 

practical barrier for accurate protein concentration determination. 

The use of FTIR spectroscopy for protein concentration determination may be 

feasible, since the intensity of a protein’s amide-I band may not be dependent on its 

secondary or tertiary structures, but rather solely upon the protein’s concentration and 

size – i.e. the total amount of peptide backbone CO groups. As such, it may be 

possible to generate a concentration calibration curve in terms of protein mg/ml that 

would be applicable to a protein of any size or structure. From this curve the molar 

concentration of a protein may be calculated by taking account of the protein’s 

molecular weight. Of course, the absolute concentrations of the protein samples used 

to generate such a curve would have to be first established by one of the above 

methods, but the need to continually employ such methods to achieve accurate protein 

concentration determination could be averted by creating a standard calibration curve. 

The following work was carried out to investigate the possibility of creating an 

accurate and reliable protein concentration calibration curve by FTIR spectroscopy.  
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VI.5.2 Method 

Concentrated stock solutions of α-chymotrypsin, lysozyme and myoglobin were made 

up using 10 mM PBS buffer in D2O solvent and aliquots of these were sent for 

concentration determination by QAA analysis. Serial dilutions were made from each 

protein stock solution using 10 mM PBS buffer in D2O solvent and the concentration 

of each dilution was calculated from the initial concentration of the stock solution and 

the dilution factor used. FTIR spectra were acquired using two 13 mm CaF2 windows 

separated by a 100 µm Mylar spacer (Harrick) to create a demountable cell and placed 

in a DCL-M13 Demountable Liquid Cell (Harrick) sample holder. Spectra were 

acquired at room temperature, at a resolution of 4 cm-1, using an aperture of 1 mm, 

over a wavenumber range of between 4000-1000 cm-1 and as an average of 50 scans. 

Absorption spectra were generated by subtracting the transmission spectrum of 10 

mM PBS buffer in D2O solvent from each sample transmission spectrum. The y-

coordinate of each sample within the concentration calibration curve plots were 

calculated by integrating each spectrum between 1600-1700 cm-1 to obtain its amide-I 

band area and this was then plotted along with the sample’s concentration in mg/ml.  

 

VI.5.3 Results 

Figure VI.22 shows the FTIR amide-I spectral overlays for each of the serial dilutions 

of each protein. The differences in secondary structure between each of the three 

proteins used to generate the concentration calibration curve are revealed by 

comparing their amide-I bands (Figure VI.22a). The highly α-helical myoglobin 

amide-I band (red) is distinctly Lorentzian and has a νmax of approximately 1650 cm-1. 

The moderately α-helical lysozyme amide-I (green) has a decreased Lorentzian 

bandshape relative to myoglobin and has an α-helical νmax of approximately 1655 cm-

1. Also present in the lysozyme amide-I band is a shoulder at about 1640 cm-1, which 

reflects the considerable proportion of random coil within its structure. The amide-I 

band of α-chymotrypsin (blue) displays a νmax of around 1638 cm-1, which is 

characteristic for β-sheet secondary structure. The minor β-sheet band is just about 

visible as a slight shoulder around 1685 cm-1. Small discrepancies can be seen in the 

protein FTIR spectra of Figure VI.22b, c and d in the departure from a straight-line 
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appearance of the spectra at zero intensity at wavenumbers beyond 1750 cm-1. This is 

not thought to have a large effect on the protein amide-I band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.23 shows the concentration calibration curve generated by the 

spectra of Figure VI.22. A straight-line fit of the data points for each of the three 

proteins was carried out and the equations of these lines are shown in Figure VI.23. 

The R2 values for each line are all better than 0.996 and, therefore, there is a very 

reliable relationship between each protein’s amide-I band area and the sample’s 

protein concentration. From each equation it can be seen that the y-intercept was very 

close to zero for each of the fits, as should be the case. Inspection of Figure VI.23 

reveals a close similarity between all three fits and this is evidence that the amide-I 

band area is largely independent of protein secondary and tertiary structure.  

 

 

 

Figure VI.22. The protein amide-I FTIR spectra used to generate the concentration calibration 
curve. An overlay of the amide-I bands of myoglobin (red), lysozyme (green) and α-chymotrypsin 
(blue) recorded from the stock solutions of each is shown in a. The serial dilution amide-I overlays of 
myoglobin, lysozyme and α-chymotrypsin are shown as b, c and d, respectively. 
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Figure VI.24 shows the straight-line fit of all the data points shown in Figure 

VI.23, where the y-intercept has been forced through the origin, and represents the 

final concentration calibration curve. The R2 value of 0.9949 once again illustrates the 

independence of amide-I band area upon protein structure. By using the equation 

c = A/1.5841                                                             (VI.1) 

where c is the protein concentration in mg/ml and A is the amide-I band area, it is 

possible to accurately calculate the concentration of any protein solution from its 

FTIR absorption spectrum, provided the spectrum is acquired under the same 

conditions as those used to generate Figure VI.24. 

 

 

 

Figure VI.23. Protein amide-I concentration calibration curve. The concentration 
calibration curve for myoglobin, lysozyme and α-chymotrypsin is shown as the red, green 
and blue straight-line fits to their data points, respectively. The equations for each are 
shown in the same colour. 
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VI.5.4 Discussion 

When using demountable cells for protein FTIR there is a real concern for being able 

to reproduce the same pathlength for the sample and reference transmission spectrum. 

This concern is compounded by the weakness of the amide-I absorption band. Where 
1H2O is used as a solvent, the solvent absorption band directly overlaps that of the 

protein amide-I and very small pathlengths must be used to prevent spectral saturation 

in the amide-I region. Achieving adequate pathlength reproducibility for such small 

pathlengths, where the pathlength is of accentuated consequence due to the strength of 
1H2O absorption in the amide-I region, is not possible using a demountable cell and so 

a 1H2O solvent could not be used for this study. The vibrational absorption band of 

D2O becomes shifted to lower frequencies relative to that of the 1H2O band, with the 

result that it no longer directly overlaps the amide-I band absorption. The effect is to 

increase the maximum sample pathlength that can be used before spectral saturation 

in the amide-I 1700-1600 cm-1 wavenumber range occurs. In moving to higher 

pathlength demountable cells, the fractional pathlength error becomes ever smaller 

and, therefore, the pathlength reproducibility is improved. Also, because D2O 

absorption intensity in the amide-I region is considerably less than that of 1H2O, there 
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Figure VI.24. Averaged concentration calibration curve. The data points for the 
myoglobin, lysozyme and α-chymotrypsin concentration calibration curves were used to 
generate an average concentration calibration curve straight-line fit, where the y-intercept was 
set to zero. 
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is less stringency to the pathlength reproducibility requirement and accurate protein 

spectra can be achieved in cases where there is only a slight discrepancy between the 

pathlength of the sample and the reference.  

The results show that their exists no significant dependence of amide-I band 

area on protein structure. Therefore, accurate protein concentration determination can 

be achieved using FTIR spectroscopy, once an accurate concentration calibration 

curve has been established for the particular experimental system. The data above was 

generated using a 100 µm pathlength cell and well-behaved protein FTIR spectra 

could only be obtained above a concentration of 2.5 mg/ml. Although by protein 

solution standards this corresponds to a high sample concentration, another calibration 

curve could be generated using a longer pathlength, which would allow for the 

acquisition of well-behaved protein FTIR to lower sample concentrations.  

From the biological standpoint, the problem of only being able to determine 

protein concentrations in D2O by FTIR might appear very limiting, since it is the 

aqueous properties of a protein that are of most immediate biological interest. 

However, it is possible to combine FTIR and UV spectroscopy to accurately 

determine the UV extinction coefficient at a particular wavelength of a given protein 

in D2O solution and, since most protein’s secondary structures only change slightly 

when in D2O versus 1H2O solution, the UV extinction coefficient should be very 

similar in both cases. Therefore, the protein concentration of subsequent samples 

prepared in 1H2O could be accurately determined from their UV spectra using the 

D2O sample extinction coefficient. 

While the concentration calibration curve calculated above contains an 

inherent error from the QAA analysis that was used to determine the concentrations of 

the stock solutions of the three proteins used, the practice of using FTIR to calculate 

protein concentrations need not be limited in this way. For example, it is possible to 

purchase proteins in lyophilised form that are almost 100 % pure and, from these, 

stock solutions of known concentration could be created and used to generate a 

concentration calibration curve. Therefore, in theory FTIR should be able to offer an 

improvement over QAA analysis for protein concentration determination. In the 

interests of accuracy it may be desirable to obtain FTIR spectra over a wider range of 

proteins for a more comprehensively averaged concentration calibration curve. 
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Chapter VII 

Spectroscopic Investigations into the Structure of 

AavLEA1 

 

VII.1 Introduction 

One of the most basic tenants of biology is that water is essential for all living 

organisms. It has long been known, however, that certain organisms are capable of 

surviving the absence of water by entering into a dormant phase for an indefinite 

period of time and, upon contact with water, they can reactivate and continue along 

their lifecycles. Such an ability of suspended animation is known as anhydrobiosis 

and organisms that are capable of this are said to be anhydrobiotic. Anhydrobiotic 

organisms have been discovered in all of the biological kingdoms and a familiar 

example is that of a plant seed, which requires the presence of water for 

germination.[2-4] Less familiar and more surprising anhydrobiotic organisms are to 

be found within the animal kingdom in organisms as complex as nematodes, one such 

example being Aphelenchus avenae. Over the past fifteen years there has been much 

research into anhydrobiosis and in particular into nematode anhydrobiosis. 

At the sub-cellular level there are many problems associated with 

anhydrobiosis. Within the cell all of the organelles and other components are 

suspended in a water matrix. The entire structural integrity of the cell is reliant on the 

positive pressure exerted by its water content on the semi-permeable outer cell 

membrane. At the molecular level still more complications are associated with 

anhydrobiosis. Because water is a polar solvent molecules that are soluble in water 

must also be somewhat hydrophilic. If the water is removed from within the cell the 

likelihood of dissolved molecules interacting with each other electrostatically would 

be considerable, since these molecules would be unstable with respect to charge. 

Also, the chances of them coming into contact with each other would be increased by 

decreasing the cell water content.  

The molecular structure of many macromolecules depends to a large extent on 

the solvent shell surrounding the molecule and this is especially the case when the 

molecule contains charged groups. Where molecular structure is essential to the 
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cellular function of the molecule, for example, as occurs with most proteins, this 

represents a serious obstacle for anhydrobiosis. This is particularly the case, since 

electrostatic interactions tend to be strong in nature and, therefore, tend to be 

irreversible. In this situation rehydration of a desiccated cell would not be sufficient to 

restore the molecular structures of molecules that have been distorted by the removal 

of their solvent shells and subsequent bonding of their various charged regions. 

It is known that cells in preparation for entering into a desiccated state greatly 

increase their concentrations of disaccharides.[3; 5] Plant cells accumulate sucrose, 

while animal cells generally increase their levels of trehalose. It has been theorised 

that the function of high concentrations of these disaccharides is to form a glassy 

matrix that might replace the lost water matrix and, thereby, retain the structural 

integrity of the cell while distancing molecules from one another within the cell.[6; 7] 

If the primary condition for anhydrobiosis is the preservation of the cell’s protein 

molecules upon dehydration and rehydration, since neither trehalose nor sucrose alone 

appear to directly stabilise protein molecules against the effects of desiccation, it 

would seem that any possible protein stabilising effect must be indirect, such as the 

formation of a glassy matrix. That both trehalose and sucrose readily form stable 

glasses upon dehydration when present at concentrations found in predesiccation cells 

of anhydrobiotic organisms highlights the possible importance of the production of 

such glasses to anhydrobiosis. The glassy matrix mechanism is now widely accepted 

as being the most likely mechanism through which anhydrobiosis becomes possible. 

Important in the anhydrobiotic process is the upregulation of certain genes in 

anhydrobiotic organisms in situations of water-stress. Since glass formation can occur 

irrespective of cellular protein content, where sufficiently high disaccharide levels 

exist, these anhydrobiotic proteins would seem to be providing some function other 

than glass formation to the desiccating cell. Common features of many anhydrobiotic 

proteins are that they contain large amounts of charged residues and that they have no 

distinct secondary structure. They also generally have high pI values and so exist as 

charged molecules in aqueous solution.[8]  

An effect of desiccation is to remove from intracellular molecules their water 

solvent shells and, as discussed above, this exposes such molecules to damaging 

effects. If some way could be found to re-establish molecular solvent shells it would 

likely be of tremendous benefit towards facilitating anhydrobiosis. Possible 
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candidates for replacing macromolecular solvent shells are the anhydrobiotic proteins. 

These proteins display a large degree of plasticity, since they are without rigid 

secondary structure, and they also exhibit the necessary polarity to be able to 

electrostatically interact with other soluble polar molecules when forming the solvent 

shell. If anhydrobiotic proteins were to provide this function they would fit in nicely 

with the glassy matrix model of the anhydrobiotic mechanism, in that the two 

functions of water, as providing a cellular matrix maintaining the cell’s structure and a 

solvent shell that maintains the structure of intracellular molecules, can be replaced by 

anhydrobiotic proteins surrounding important, previously dissolved macromolecules, 

where both are contained within a sugar glass matrix. 

In studying the nematode Aphelenchus avenae it was discovered that the 

anhydrobiotic protein AavLEA1 was produced by the upregulation of the Aav-lea-I 

gene upon desiccation.[9] The 18 kDa 143 residue AavLEA1 protein has been 

classified as belonging to the group 3 of a class of proteins known as the late 

embryogenesis abundant (LEA) proteins and its primary sequence is given in Figure 

VII.1. These proteins are relatively small, having low sequence complexity and 

containing the repeat consensus 11-mer TAE/QAAKE/QKAXE in plants, or more 

broadly ΦΦE/QXΦKE/QKΦXE/D/Q (where Φ and X represent a hydrophobic and 

random residue, respectively), along with their being over-expressed in the late 

embryonic phase of maturing seeds or in other desiccating environments. In contrast, 

group 2 LEA proteins have repeats of either or both of DEYGNP and EEKK, with 

most containing a poly-serine stutter.  

 

 

 

In general, Group 3 LEA proteins have yet to be well characterised in terms of 

their secondary structures. Figure VII.1 shows the results of seven different programs 

used to predict the secondary structure of AavLEA1 from its primary sequence. In 
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Figure VII.1. AavLEA1 secondary structure predictions. Beneath the AavLEA1 primary sequence are 
given the different secondary structure predictions according to various predicting programs, which are 
labelled with initials to the left. α-helix, random coil and β-sheet are represented as black, red and blue 
dashes, respectively. The secondary structure prediction listed JOI is a “winner takes all” sum of the 7 
predictions above it (Modified from [1]) 
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contrast to the general understanding of LEA proteins being predominantly randomly 

coiled, the bottom “winner takes all” prediction of AavLEA1 predicts it to be 

predominantly α-helical in nature. Across all seven programs a large α-helical content 

is predicted for AavLEA1. According to this evidence, AavLEA1 would seem an 

unlikely candidate to replace the solvent shells of dissolved proteins, since it would 

lack the necessary plasticity required to carry out this function.  

Dure has shown by using a computer modelling program that group 3 LEA 

proteins are predicted to adopt a right-handed dimeric coiled-coil structure that have a 

periodicity defined by the 11-mer repeat motif that characterises this.[10] Such coiled-

coils have been observed experimentally in a surface layer protein from 

Staphylothermus marinus.[11] The MultiCoil program was used to predict the 

structure of a Group 3 LEA-like wheat protein and returned a trimeric coiled-coil 

structure.[12] In the case of AavLEA1, the MultiCoil program predicts a 40 % 

probability of coiled-coils, although in this case the structure is predicted to be the 

more usual left-handed orientation.[1] From this evidence it is possible that in the 

absence of water AavLEA1 might form a network of reinforcing fibrils to the sugar 

glass matrix, thus giving it an added stability.  

A D-7 LEA protein from pollen has been shown by Wolkers et al. to stabilize 

sugar glasses in vitro by means of FTIR spectroscopy.[13] By monitoring the 

wavelength maximum of the OH stretching band at around 3360 cm-1 it is possible 

determine the transition temperature (Tg) at which the glass goes from a solid phase to 

a liquid phase. The Tg temperature can then be used as an indicator as to the density of 

a sugar glass. It was observed that a glass produced by drying solutions of sucrose, 0.5 

mg D-7 LEA/ mg sucrose, and 0.8 mg D-7 LEA/ mg sucrose had Tg temperatures of 

60, 69 and 79 oC, respectively. Therefore, the conclusion to be made is that D-7 LEA 

protein produces denser and more stable sucrose glasses than sucrose alone and the 

stabilising effect of D-7 LEA increases with increased relative concentration to 

sucrose. This data suggests that LEA proteins may indeed form reinforcing coiled-coil 

fibril structures. In addition to this, gel electrophoresis experiments reveal that 

AavLEA1 readily produces both dimer and trimer bands, in addition to the more 

intense monomer band, and this is consistent with the formation of both dimeric and 

trimeric coiled-coil fibrils.[1]  
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In contrast to both the structural results of the prediction programs and any 

evidence suggesting that AavLEA1 might form coiled-coil structures in the presence 

of water are the results of hydrodynamic experiments performed on AavLEA1.[1] A 

single boundary was observed across a range of sample protein concentrations, 

suggesting that there is only one species present – that of the monomer. A 

sedimentation coefficient of 1.20 for AavLEA1 indicates unusually high drag forces 

for an 18 kDa molecule. The frictional ratio of 2.28 was calculated for AavLEA1, 

which suggests either that AavLEA1 exists as an unstructured, highly hydrated 

swollen protein or that it has a highly extended structure and this is evidence that 

AavLEA1 is more likely to function in solvent shell replacement rather than as a 

reinforcement to sugar glass matrices. 

In view of the uncertainty concerning the actual structure of AavLEA1, a 

comprehensive investigation into the structure of the protein was carried out using 

CD, FTIR and luminescence spectroscopic techniques. 

 

VII.2 Method 

VII.2.1 Protein Expression and Purification 

The Aav-lea-1 sequence was amplified by polymerase chain reaction (PCR) using 

oligonucleotides containing engineered NdeI and BamHI restriction sites. The PCR 

product was cloned into a pCR2.1-TOPO vector (Invitrogen), cut out with the 

appropriate restriction enzymes and ligated into the pET15b vector (Novagen). The 

plasmid was transformed into E. coli BL21(DE3) cells. His-tagged recombinant 

AavLEA1 protein was produced in BL21(DE3) cells in the following manner. A 

single bacterial colony was used to inoculate 3 ml of Luria Bertani (LB) medium 

containing 50 µg/ml carbenicillin (Sigma) and grown at 37 oC and 250 rpm until the 

OD600 reached 0.5. This culture was then used to inoculate 100 ml of LB plus 

antibiotic (50 µg/ml carbenicillin). At an OD600 of 0.6 the culture was split and 50 ml 

was induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG) (Sigma) for 

4 h at 37 oC. Cells were harvested by centrifugation at 10,000 g for 10 min at 4 oC. 

Bacterial pellets were lysed with Bugbuster extraction reagent (Novagen) and 1KU/ml 

rLyzozyme (Novagen). The cell suspension was incubated at room temperature for 20 

min and centrifuged at 16,000 g for 20 min at 4 oC. The supernatant was filtered 
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through a 0.45 µM filter (Sarstedt AG  & Co.) before being mixed with Ni-NTA bind 

slurry (Novagen) with gentle shaking at 4 oC for 60 min. The mixture was poured into 

a HisּBind column (Novagen) and washed with Ni-NTA wash buffer (50 mM sodium 

phosphate buffer, 300 mM NaCl, 20 mM imidazole). The AavLEA1 His-tagged 

recombinant protein was removed from the column by adding an elution buffer and 

collected as a separate fraction. The purified fraction was analysed by SDS-PAGE gel 

electrophoresis with Coomassie blue staining. A buffer exchange was performed by 

passing the purified fraction through a PD-10 size-exclusion column (Sigma) and 

eluting with 10 mM PBS buffer solution. 

Site directed mutagenesis (SDM) of the pET15b plasmid containing the Aav-

lea-1 gene was carried out using an SDM kit (QuikChange TM kit, Stratagene) to 

produce two mutated strains: L37C and L132C AavLEA1. The plasmids containing 

these genes were transformed into E. coli BL21(DE3) cells and protein expression and 

purification were carried out in the same manner as that of the wild-type AavLEA1. 

 

VII.2.2 Protein Fluorescent Labelling 

The mutated AavLEA1 proteins were labelled by adding molar equivalents of the 

IAEDANS or CPM fluorophores and allowing the protein solution to sit at 4 oC 

overnight. In the case of CPM, the CPM had to be first dissolved in 100 µl of 

dimethyl sulfoxide (Fluka) before addition to the protein solution. Unbound 

fluorophore was removed using size-exclusion chromatography (Sephadex G-25 spin 

columns (Sigma)) and repeat separations were performed when necessary.  

 

VII.2.3 CD spectroscopy 

All CD spectra were acquired on an Aviv Model 215 CD spectrometer. Spectra were 

acquired in quartz cuvettes of pathlengths of either 0.1, 1 or 10 mm and with spectral 

parameters of 1 nm bandwidth, at least 1 S averaging time, a stepwidth of between 0.2 

and 1 nm, as an average of at least 3 scans and at a temperature 23 oC. Each spectrum 

was background corrected by subtracting the spectrum of the buffer solution as 

acquired in the same cuvette, held in the same orientation and scanned using identical 

spectral parameters. For pH, and titration experiments spectra were acquired while the 

sample was continually stirred at a quarter the instruments maximum stir rate, by 

means of a stir-bar placed within the cuvette. The concentration of the AavLEA1 
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sample solution was determined using quantitative amino acid analysis (QAAA) 

(Cambridge, Peter Sharratt) and the analysis was checked for reproducibility. The CD 

spectrum of AavLEA1 was then plotted in terms of molar ellipticity. 

The AavLEA1 dependence on pH was determined by adding volumes of no 

greater than 10 µl of either standard solutions of HCl or NaOH of varying 

concentrations between measurements to the sample solution that was contained 

within a 10 mm quartz cuvette by using a 10 µl adjustable pipette. The pH was 

recorded after each addition using a microelectrode coupled to a pH meter that was 

inserted into the cuvette and out of the beam path during each measurement. Each pH 

dependence experiment was performed twice as a check for reproducibility. 

The AavLEA1 temperature dependence experiment was performed using a 1 

mm pathlength cuvette. A temperature equilibration time of 1 minute was set once the 

desired temperature had been reached and temperatures of 20, 40, 55, 75 and 95 oC 

were investigated. The ellipticity at 222 nm was taken and used to measure the 

relative helicity of AavLEA1 at each temperature. 

The effect of cation concentration on the CD spectrum of AavLEA1 was 

measured by titrating a sample of AavLEA1 within a 10 mm cuvette with a standard 

solution of a 100 mM AlCl3. The titration was performed by adding the titrant in 3 µl 

additions and a total of 8 such additions were made over the course of the experiment. 

An equilibration time of 1 minute was allowed under continuous stirring between 

each addition before spectral acquisition. The relative helicity of AavLEA1 over the 

course of the experiment was determined by plotting the ellipticity as a function of 

AlCl3 concentration. The experiment was run twice to check for reproducibility. 

The effect of trifluoroethanol (TFE) (Sigma) to the secondary structure of 

AavLEA1 was examined by recording the spectra of AavLEA1 solutions of uniform 

approximate concentration of 2.75 mg/ml in volume per volume TFE concentrations 

of 15, 30, 37 and 45 %. The CD spectrum of each solution was recorded using a 

cuvette of pathlength 0.1 mm and then calculated in terms of its molar ellipticity. The 

AavLEA1 helix formation with TFE concentration was determined by plotting the 

ellipticity at 222 nm against TFE concentration. 
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VII.2.4 FTIR spectroscopy 

FTIR spectra were acquired on a Tensor 27 FTIR spectrometer equipped with a mid-

IR nitrogen-cooled MCT detector. AavLEA1 spectra were acquired as ATR-FTIR 

transmission spectra, using the temperature regulated BioATR-II accessory and then 

converted to absorption spectra by subtracting the transmission spectra of the buffer 

solution, as acquired under identical spectral parameters as that of the sample. Both 

reference and sample spectra were acquired in single-sided mode, as an average of 

100 scans, over a frequency range of 4000-1000 cm-1, with a Norton-Beer apodization 

function, a zero-filling factor of 8, at a resolution of 4 cm-1, using an aperture size of 6 

mm and held at a constant temperature. The N2 MCT detector was allowed to cool for 

at least 45 minutes before scanning and the sample compartment and BioATR-II 

accessory were continually purged with dry air. All solutions were thoroughly 

degassed prior to being placed within the BioATR-II accessory. Protein kinetic 

measurements were performed at a temperature of 54 oC with a time interval of 5 

minutes between scans and over a duration of 8 h. Reverse protein melt experiments 

were performed over a temperature range of 20-90-20 oC, at 5 oC increments and with 

an equilibration time of 2 minutes for each temperature increment.   

Post processing of spectral data included atmospheric correction for any water 

vapour vibrational bands appearing in the absorption spectrum. Also, a computer 

algorithm included in the OPUS software was used to correct the absorption spectra 

for an effect arising from a small difference in water concentration between the 

sample and buffer solutions. Spectra were offset corrected at a wavenumber between 

1700 and 1750 cm-1 and then normalised according to the amide-I band area. The 

second derivative of absorption spectra was calculated as a band narrowing technique 

and a mild band smoothing procedure accompanied this procedure. Between 

measurements the BioATR-II silicon wafer surface was thoroughly cleaned using a 3 

M guanidine HCl solution alternated with deionised water rinsing for a total of three 

cycles. The cleanness of the silicon surface was inspected prior to scanning and the 

absence of any residual adsorbed protein from previous scans was confirmed by 

acquiring the spectrum of the empty BioATR-II sample region after cleaning and 

making sure that no CH stretching bands were present between 3000 and 2800 cm-1. 
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VII.2.5 Luminescence Spectroscopy 

Absorption spectra were acquired using a Spectronic Array 3000 (Milton Roy) 

absorption spectrometer and a 1 cm quartz cuvette. Steady-state and time-resolved 

luminescence spectra were acquired using a pulsed laser source (a TDL-90 dye laser 

(equipped with a rhodamine 590 dye (Exciton)) pumped by a YG-980E Nd:YAG 

solid-state laser (Quantel)), a 0.3 metre SpectraPro®-300i monochromator (Acton 

Research) equipped with diffraction gratings, having 150 grooves and blazed at 300 

and 500 nm, and an intensified-gated charge coupled device (iCCD) (Andor). The 

excitation wavelength of 282.5 nm was achieved by frequency-doubling of the output 

of Rodamine 590 emission of 565 nm. Steady-state emission spectra were acquired 

using a gate-pulse delay of 74 ns, a gate-pulse width of 30 ns, an exposure time of 

0.017 s and as an average of 50 scans. The same spectral parameters were used for 

collecting time-resolved emission spectra, except that the gate width was reduced to 3 

ns.  Excitation spectra were acquired using a tungsten/deuterium light source (Acton 

Research) and by passing the exciting radiation through a SpectraPro® 0.3 metre 

monochromator (primary) controlled by an NCL spectral measurement system (Acton 

Research). Radiation was channelled into a sampling compartment (Acton Research) 

containing a 1 cm quartz cell in which the sample was placed. A SpectraPro® 0.5 

metre monochromator (secondary) was positioned such that it collected radiation 

emitted by the sample at right angles from the excitation beam, which had passed 

through a focusing lens. This monochromator was fixed at the emission radiation 

wavelength of interest and radiation was detected using a single photon counting 

R928-P photon multiplier tube (Hamamatsu). Slit-widths of 2 mm were set for both 

the primary and secondary monochromators. A stepwidth of 0.1 nm and an integration 

time of 500 ms were used during acquisition of excitation spectra. 

In designing a FRET experiment considerable attention must be paid to 

selecting appropriate donor and acceptor fluorophores. A number of spectroscopic 

requirements that must be satisfied for FRET to be possible. The most immediate of 

these is that there should exist extensive overlap between the emission band of the 

donor molecule and the absorption band of the acceptor. It is desirable that both the 

donor and acceptor molecules exhibit a large stokes-shift such that the spectral 

features of each are clearly resolved. Ideally, there should occur minimal overlap 

between the donor and acceptor absorption bands, as this allows for the selective 
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excitation of the donor molecules and, consequently, the detection of FRET is much 

simplified as simply any emission intensity of the acceptor molecule resulting from 

excitation at a wavelength of donor absorption. Where overlap does occur between 

the donor and acceptor absorption bands it is necessary to use either excitation or 

time-resolved spectroscopy to determine whether FRET has occurred. For the range 

of fluorophores available for use in biological systems this is most commonly the case 

and the donor-acceptor pairs used in this experiment do have some absorption band 

overlap. An additional consideration for FRET systems is that both fluorophores 

should have high extinction coefficients and quantum yields if the occurrence of 

FRET is to be detectable. Lastly, the Forster distance parameter defining the distance 

over which FRET is possible for certain donor-acceptor combinations should be on a 

scale suited for the experiment in question. 

The usual way to site-specifically label a protein with a fluorescent tag is to 

make use of the thiol group of cysteine residues by attaching a thiol-specific acceptor 

tag, as represented in Figure VII.2 for the CPM and IAEDANS fluorophores. 

However, the AavLEA1 protein does not contain any cysteine residues and so it was 

necessary to perform SDM to prime the protein for labelling with the fluorophores 

given in Figure VII.2. Although this involves extra work, the end product of a protein 

with a single tryptophan donor molecule and a single CPM or IAEDANS acceptor 

molecule is very useful for FRET measurements. In addition the locations of both the 

donor and acceptor molecules on the protein would be precisely known and the 

distance between these could be varied by introducing the cysteine mutation at 

different points on the AavLEA1 protein. 
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Figure VII.2. Protein site-specific fluorescent labelling. The reaction schemes for labelling of a protein 
with CPM and IAEDANS thiol-specific fluorophores is shown in a and b, respectively.  
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VII.3 Results 

VII.3.1 Protein purity 

Figure VII.3 shows an SDS-PAGE gel of a batch synthesis of wild-type AavLEA1. 

The purified AavLEA1 fraction was run in lane 3, in which there can be seen an 

intense band at approximately 18 kDa, according to the ladder in lane 1. This is as 

expected for the AavLEA1 protein and is taken as confirmation of a successful 

protein synthesis. Upon close inspection very faint additional bands can be seen in 

lane 3 at higher molecular weights of Figure VII.3, suggesting the possibility of very 

minor contamination of the AavLEA1 sample, but it also possible that these bands are 

the result of overflow of material from the loading of lane 2. In any event, by protein 

purification standards, the AavLEA1 sample analysed in Figure VII.3 would be 

regarded as highly purified. The structural investigation of AavLEA1 required that 

many batches of protein be produced and Figure VII.3 shows the SDS-PAGE analysis 

of only a single batch. However, for each batch of either wild-type or mutant 

AavLEA1 protein a separate gel was run and the protein was only passed fit for 

structural analysis if the gel was of equal quality to that shown in Figure VII.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.3 SDS-PAGE gel of wild-type AavLEA1. The protein ladder, 
unpurified cell lysate and purified AavLEA1 fraction were run in lanes 1, 
2 and 3, respectively. The sizes of the bands of the protein ladder are listed 
on the left. 
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VII.3.2 The Structure of AavLEA1 from CD Spectroscopy 

The concentration of the AavLEA1 sample solution that was used to generate the 

spectrum presented in Figure VII.4 was determined by QAAA to be 67.22 

nanomoles/ml, as shown in Table VII.1. The similarity of the results of experiment 1 

and 2 to one another suggests that the concentration determination was accurate. The 

good agreement between the numbers of amino acids found during QAAA and those 

predicted by the primary sequence of AavLEA1 indicate that the sample was mostly 

free from biological impurities. 

The CD spectrum of AavLEA1 presented in Figure VII.4 is characteristic of a 

random coil secondary structure protein, with an intense negative band centred at 

approximately 200 nm and no pronounced negative bands between 210 and 230 nm or 

positive bands at wavelengths shorter than 195 nm, both of which are an indication 

for the presence of α-helical or β-sheet ordered secondary structure. The magnitude of 

the smoothing residuals to lower wavelengths than 195 nm decreases the confidence 

that can be placed in the accuracy of the CD spectrum in this range, although it is 

evident from the spectrum that there is an absence of any bands of significant 

intensity in this wavelength range. The presence of some small spectral intensity at 

222 nm suggests that there exists a very minor degree of α-helix content within 

AavLEA1. 
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Amino acid Found Amino Acids 

Expected Experiment 

1 

Experiment 

2 

Average Std 

Dev 

Closeness of fit 

Cysteine 0 0.00 0.00 0.00 0.00 - 

Asparigine 9 8.51 8.49 8.50 0.01 Within 5-10 % 
Threonine 7 8.02 8.13 8.07 0.08 >10 % out 

Serine 6 8.99 8.97 8.98 0.01 >10 % out 

Glutamic acid 42 38.99 39.08 39.04 0.06 Within 5-10 % 

Glycine 13 14.26 14.16 14.21 0.07 Within 5-10 % 

Alanine 19 17.55 17.41 17.48 0.10 Within 5-10 % 

Valine 3 3.43 3.45 3.44 0.01 >10 % out 

Methionine 4 4.29 4.26 4.28 0.02 Within 5-10 % 

Isoleucine 1 1.07 1.10 1.08 0.02 Within 5-10 % 

Leucine 4 4.75 4.78 4.76 0.02 >10 % out 

Tyrosine 2 1.85 1.89 1.87 0.03 Within 5-10 % 

Phenylalanine 2 1.93 1.93 1.93 0.00 Better than 5 % 
Histidine excluded - - - - - 
Lysine 17 15.06 15.06 15.06 0.01 >10 % out 

Arginine 9 9.30 9.30 9.30 0.00 Better than 5 % 
Proline 0 0.00 0.00 0.00 0.00 - 

Tryptophan excluded - - -  
Total sample  24.20 µµµµg 24.06 µµµµg 24.13 µµµµg 0.10 

Concentration 67.22 
nmoles/ml 
(1209.92 
µg/ml) 

66.83 
nmoles/ml 
(1203.02 
µg/ml) 

67.03 

nmoles/ml 

(1206.47 

µµµµg/ml) 

0.27 
(4.88) 
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Figure VII.4. The CD spectrum of AavLEA1. The smoothing residuals are overlaid. 

Table VII.1. Concentration determination of AavLEA1 by QAA analysis. 

 



Chapter VII Spectroscopic Investigations into the Structure of AavLEA1 

 190 

 

VII.3.3 Temperature Dependence of AavLEA1 Secondary Structure from CD  

Figure VII.5 shows the AavLEA1 CD spectral overlay when recorded over a range of 

temperatures. With increasing temperature there occurs an increase in the negative 

magnitude of the AavLEA1 CD spectrum at 222 nm and a correlated decrease in 

negative magnitude at the band minimum located at approximately 200 nm. Taken 

together, this behaviour suggests that with increasing temperature an overall increase 

in the α-helix content of AavLEA1 occurs accompanied by a decrease in the random 

coil content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.4 AavLEA1 Structural Variation in the Presence of Cations 

The ability of AavLEA1 to potentially sequester potentially deleterious cations and 

the effects of any such process on its secondary structure can be seen by observing the 

AavLEA1 CD in response to cation concentration (Figure VII.6). The AavLEA1 CD 

is significantly altered upon the introduction of Al3+ cations to the sample solution 

and this change can be seen to depend on the cation concentration. An increase in the 
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Figure VII.5. AavLEA1 CD spectral overlay with temperature increase. Smoothing residuals 
are shown as overlaid. 
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negative amplitude of the AavLEA1 CD at 222 nm suggests that AavLEA1 

experiences an increase in α-helical content as a function of increased cation 

concentration. AavLEA1 CD spectra could not be accurately acquired to wavelengths 

lower than 205 nm when in the presence of AlCl3 due to the strong absorbance of the 

chloride ions at these wavelengths. Therefore, the expected corresponding decrease in 

the negative CD amplitude at approximately 200 nm, as random coil protein regions 

become α-helical in structure, could not be confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.5 The Potential for AavLEA1 to Adopt Ordered Secondary Structure 

The potential for AavLEA1 to adopt significant levels of ordered secondary structure, 

which would be a likely prerequisite for it to interact with ligands within the cell, and, 

thereby, carry out its function in desiccation tolerance by virtue of this newly acquired 

structure was tested by observing the response of the AavLEA1 CD as a function of 

the helix inducing reagent TFE (Figure VII.7).  The increase in the negative 

AavLEA1 CD amplitude at 208 and 222 nm and the emergence of a positive band 
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Figure VII.6. AavLEA1 CD with varying cation concentration. Smoothing residuals are shown as 
overlaid. 
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centred at 192 nm when the concentration of TFE is increased indicate that AavLEA1 

adopts significant α-helix content with the addition of TFE. The ratios of the 

magnitudes of the bands at 222 and 192 nm indicate that AavLEA1 becomes almost 

completely α-helical at TFE concentrations of 45 % v/v. This is corroborated by the 

complete disappearance of the characteristic random coil band centred at 

approximately 200 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.6 AavLEA1 Secondary Structure Variation with pH 

Figure VII.8 summaries the AavLEA1 helix formation with environmental change, as 

discussed above. In addition, the effect of pH upon the helix content of AavLEA1 is 

presented. Under acidic conditions AavLEA1 can be seen to increasingly become 

more α-helical as the pH is reduced, while exposure to basic conditions appears to 

have no effect on the α-helical content. 
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Figure VII.7. The effect of TFE on the secondary structure of AavLEA1. Overlaid are the 
smoothing residuals for each of the smoothed CD spectra.  
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VII.3.7 Temperature Dependence of AavLEA1 Secondary Structure from FTIR 

Figure VII.9 shows the analysis of AavLEA1 by ATR-FTIR spectroscopy. The broad 

Gaussian-shaped amide-I band centred at approximately 1645 cm-1 is evidence that 

AavLEA1 is a predominantly an unstructured protein (Figure VII.9a and b). The 

effect of trehalose on the secondary structure of AavLEA1 is investigated in Figure 

VII.9b and the protein appears to be unaltered in the presence of trehalose. The 

temperature dependence of AavLEA1 secondary structure is shown in Figure VII.9c 

and d, where the temperature was consecutively increased from 20 to 90 oC and 

decreased from 90 to 20 oC, respectively. The amide-I band is expected to experience 

some degree of red-shift with increasing temperature and blue-shift with decreasing 

temperature. Notwithstanding this, the degree to which the amide-I band can be seen 

to shift in Figure VII.9c and d is significantly greater than what would be expected 

from the temperature effect. It can also be seen from Figure VII.9c and d that the 

amide-I bandwidth decreases with increasing temperature and this is reflected in the 

amide-I band having a more intense band maximum with increased temperature, since 

Figure VII.8. The change in helicity of AavLEA1 as a function of environmental change, as 
measured by CD222. The change in the AavLEA1 CD222 as a function of temperature, pH, cation 
concentration and TFE is presented as a, b, c and d, respectively.  
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the amide-I band for all temperatures was area-normalised. Both the frequency shift 

and decrease in bandwidth of the amide-I band in moving to higher temperatures can 

be explained by AavLEA1 adopting a larger α-helical content with increased 

temperature, since the band maximum of the helix amide-I is of higher frequency than 

the random coil amide-I and the bandwidth of the random coil amide-I is larger than 

that of the helix. From Figure VII.9d, it can be seen that this structural shift is fully 

reversible. 

Inspection of Figure VII.9c and d reveals that AavLEA1 is unusual in that it 

does not experience any aggregation effect when heated to a temperature of 90 oC. 

This is confirmed by an absence of an aggregate amide-I band at approximately 1620 

cm-1 in the higher temperature spectra and the general reversibility of the variation in 

the amide-I band with temperature. This is convenient for investigating the possible 

protein anti-aggregation properties of AavLEA1 by ATR-FTIR, since any 

contribution to the amide-I band by aggregated proteins must arise from the protein 

whose aggregate formation characteristics are being investigated, and not from 

AavLEA1. 
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Figure VII.9. ATR FTIR spectral analyses of AavLEA1. a AavLEA1 amide-I and -II bands, centred at 
approximately 1650 and 1540 cm-1,  respectively. b Overlay of area-normalised, offset-corrected (1720 
cm-1) AavLEA1 amide-I band, both with (black) and without (blue) 0.375 M trehalose. b and d Offset-
corrected (1720 cm-1) AavLEA1 amide-I band overlay as recorded consecutively over temperature ramps 
of 20-90 and 90-20 oC, respectively, and with a ∆T of 5 oC. Bands recorded at 20 and 90 oC are shown in 
blue and red, respectively. Spectra presented above were acquired using a protein concentration of 
approximately 3 mg/ml. 
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VII.3.8 AavLEA1 Antagonism of Heat-Induced Aggregation of Cytochrome c 

The possible stabilising effect that AavLEA1 might have on other proteins was 

investigated using a host of standard proteins by heating them both in the presence 

and absence of AavLEA1 and comparing the aggregation profiles in both cases. 

AavLEA1 was shown to confer no added stability to myoglobin, hemoglobin, 

lysozyme and α-chymotrypsin when subjected to FTIR melt experiments (data not 

shown), either alone or together with trehalose. The presence of trehalose alone also 

had no effect on the stabilities of these proteins.  This is somewhat in contrast to the 

findings of Goyal et al., who found that AavLEA1 and trehalose acted synergistically 

to prevent the heat-induced aggregation of citrate synthase.[14] However, in 

agreement with this study were the results of the aggregation behaviour of 

cytochrome c when heated to a temperature of 54 oC (Figures VII.10 and VII.11). 

Figure VII.10 shows the amide-I absorption spectra of cytochrome c when in the 

presence and absence of both trehalose and AavLEA1, alone and together. The 

spectra are coloured according to the time at which they were acquired, with the 

chronological sequence being blue, pink, tan, green, orange and black.  

Figure VII.11 shows the second derivative analysis of the spectra shown in 

Figure VII.10. From a band at 1620 cm-1 in Figure VII.11a it can be seen that 

cytochrome c suffers a moderate and gradual degree of aggregation at 54 oC. This 

same band evolution can be seen in Figure VII.11b and, in contrast to the findings of 

Goyal et al. this demonstrates the inability of trehalose alone to retard protein 

aggregation at increased temperatures. Figure VII.11c shows a possible reduction in 

the intensity of the emerging aggregation band and is evidence that AavLEA1 alone 

may have some small stabilising influence on other proteins with respect to 

temperature-induced aggregation. When both AavLEA1 and trehalose are added to 

the cytochrome c sample, however, the emergence of an aggregation band at 1620 cm-

1 is almost completely suppressed at 54 oC (Figure VII.11d) and this is in agreement 

with the findings of Goyal et al. and their study of the aggregation profile of citrate 

synthase. 
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The helix stabilising properties of AavLEA1 and trehalose for the case of 

cytochrome c can be understood by examining the intensity variations of the α-helix 

band at approximately 1655 cm-1 as a function of time at 54 oC. Figure VII.11a shows 

a gradual loss of helix content with time when cytochrome c is held at 54 oC. In 

contrast, Figure VII.11b shows an initial loss of helicity followed by a subsequent 

gain in the helix content of cytochrome c. This is perhaps evidence for a role of 

trehalose in providing a helix-stabilising effect for proteins at increased temperature. 

The effect of introducing AavLEA1 on its own to the cytochrome c sample was also 

to suppress the level of helix degradation (Figure VII.11c). Where both AavLEA1 and 

trehalose were added (Figure VII.11d) the helix content varied in a manner similar to 
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Figure VII.10. The aggregation process of cytochrome c at 54 
o
C measured by ATR-FTIR. Spectra 

were recorded at intervals of 5 minutes over a total time of 8 hours. Cytochrome c in 10 mM PBS buffer 
aggregation profile was recorded alone, in the presence of 500 mM trehalose, with an equimolar 
AavLEA1 sample and with both an equimolar AavLEA1 solution and in the presence of 500 mM 
trehalose, the results of which are shown in spectral overlay as a, b, c and d, respectively. The 
concentration of cytochrome c was kept constant at approximately 10 mg/ml over the four different 
samples. The times at which spectra were recorded during each of the kinetic experiments are colour 
coded, with the start to finish sequence being blue, pink, tan, green, orange and black. 
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the case were trehalose alone was added, in that there was an initial loss of helix 

content followed by a subsequent gain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.9 FRET for Fluorescently Labelled BSA by Steady-State Luminescence 

Spectroscopy 

Before proceeding with the SDM of AavLEA1 it was first desirable to check whether 

FRET could be demonstrated for the commercial and inexpensive BSA protein using 

the IAEDANS and CPM fluorophores and the spectroscopic instrumentation to be 

used in the investigation of AavLEA1. BSA was a good candidate for this validation 

procedure because it is abundant in both tryptophan and cysteine residues and, as 

such, should exhibit FRET when fluorescently labelled. Figure VII.12 reveals the 

extent to which BSA’s luminescent properties are determined by the tryptophan 

residues it contains. The suitability of the IAEDANS and CPM fluorophores for 

energy transfer from tryptophan is revealed by the steady-state luminescence profiles 

of BSA, IAEDANS and CPM, and these are given in Figures VII.12, VII.13 and 

VII.14, respectively. More explicitly, the overlay of the emission bands of both BSA 
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Figure VII.11. Cytochrome c aggregation analysis by 2nd derivative ATR-FTIR spectroscopy. The 
2nd derivatives of the respective spectra presented in Figure VII.9 are shown as a, b, c and d. The time-
colour correlation is as given in Figure VII.9.   
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and AavLEA1 with the absorption bands of IAEDANS and CPM show the degree of 

donor-emission/acceptor-absorption band overlap (Figure VII.13). From Figures 

VII.13 and VII.14 it can be seen that both IAEDANS and CPM both have a minimum 

of absorption at around 280 nm. Therefore, exciting a labelled protein with radiation 

around 280 nm should preferentially, but not specifically, excite the tryptophan donor 

molecules. Crucially, although a small number of acceptor molecules will experience 

direct excitation when irradiating with 280 nm light, most will remain in their ground-

states and be available to receive energy from the excited tryptophan molecules via 

FRET. 
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Figure VII.12. Steady-state luminescence of tryptophan and BSA. The absorption spectrum of 
tryptophan (dashed) and BSA (solid) is shown in blue and the emission spectrum of tryptophan 
(dashed) and BSA (solid) with excitation at 282.5 nm is in red. 
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Figure VII.13. Steady-state luminescence of IAEDANS. The absorption spectrum is shown 
in blue and the emission spectrum with excitation at 282.5 nm is in red. 
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Figure VII.14. Steady-state luminescence of CPM. The absorption spectrum is shown in blue 
and the emission spectrum with excitation at 282.5 nm is in red. 
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Figure VII.16 shows the emission spectrum of IAEDANS-labelled BSA when 

excited at 282.5 nm. Two distinct bands are clearly present, corresponding to the 

tryptophan emission at around 350 nm and the IAEDANS emission at around 480 nm. 

This assignment can be made based upon the emission bands shown in Figures VII.12 

and VII.13 when exciting at the same wavelength. Overlaid in Figure VII.16 are the 

excitation spectra acquired while monitoring emission at both the tryptophan (blue) 

and IAEDANS (red) band maxima. The blue excitation spectrum shows bands located 

around 295 and 275 nm. Tryptophan displays bands at both these wavelengths and 

inspection of Figure VII.12 allows this band to be safely assigned to the tryptophan 

absorption. The red excitation spectrum shows three distinct bands. Both the low and 

high wavelength bands are present in the IAEDANS absorption spectrum (Figure 

VII.13) and are, therefore, assigned to IAEDANS absorption. The in-between band 

located at around 295 nm is not present in the IAEDANS absorption spectrum and 

corresponds almost exactly in both location and bandshape to that assigned to the 

tryptophan absorption in the blue excitation spectrum. This is evidence that at least 

Figure VII.15. Donor-acceptor absorption/emission overlap. The blue absorption spectra of 
IAEDANS (solid line) and CPM (dashed line) overlap the red emission spectra of both BSA (solid 
line) and LEA (dashed line) when excited at 282.5 nm. 
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some of the emission intensity at the band maximum of the IAEDANS acceptor 

resulted from excitation of the tryptophan donor by the process of FRET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.17 shows the steady-state luminescence profile of CPM-labelled 

BSA. The emission spectrum (red) contains two distinct bands centred at 

approximately 340 and 460 nm. The band at 340 nm is assigned as tryptophan 

emission and by inspection of Figure VII.14 the 460 nm band can be seen to arise 

from CPM emission. The relative intensities of the two emission bands are consistent 

with the higher quantum yield of the CPM acceptor over that of the tryptophan donor. 

The familiar tryptophan absorption band dominates the excitation spectrum recorded 

while monitoring emission at 342 nm (black). This is as expected and confirms the 

assignment of the 340 nm emission band to tryptophan fluorescence. The excitation 

spectrum generated through the monitoring of emission at 461 nm reveals the 

presence of at least three distinct bands. The broadest and high wavelength band 

centred at around 380 nm is identifiable from Figure VII.14 as representing CPM 

absorption. The low wavelength band centred at around 260 nm is also present in the 
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Figure VII.16. Steady-state luminescence of IAEDANS-labelled BSA. The black spectrum is 
the emission of the labelled BSA when excited at 282.5 nm. The red and blue spectra are the 
excitation spectra recorded while monitoring emission at 473 and 340 nm, respectively.  
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CPM absorption spectrum, however, due to its intensity it leads to saturation of the 

spectrometer detector and for this reason it does not appear in Figure VII.14. The 

middle band at around 295 nm does not appear in Figure VII.14 and so cannot reflect 

CPM absorption. It is, however, present in the tryptophan absorption spectrum (Figure 

VII.12) and, therefore, the occurrence of this band is evidence for the excitation of the 

CPM acceptor via energy transfer from the tryptophan donor via FRET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.10 FRET for Fluorescently Labelled BSA by Time-Resolved Luminescence 

Spectroscopy 

An alternative method for detecting the presence of FRET is by performing time-

resolved emission spectroscopy to monitor the decay time of the donor excited state. 

The occurrence of FRET has the effect of creating an alternative relaxation pathway 

for the excited donor molecules and, therefore, the average decay time for the many 

excited state donor molecules should become decreased in the presence of FRET. 

Figures VII.18 and VII.19 show the time-resolved emission spectrum of BSA and 

IAEDANS-labelled BSA when excited at 282.5 nm. The laser exciting radiation is 

represented in both spectra as a sharp band at this wavelength. An emission band 

Figure VII.17. Steady-state luminescence of CPM-labelled BSA. The emission spectrum with 
excitation at 282.5 nm is shown in red. The excitation spectra while monitoring emission at 342 and 
461 nm are shown as black and blue, respectively. 
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centred at approximately 340 nm is also present in both spectra and arises from the 

decay of excited state tryptophan molecules. An additional emission band centred at 

approximately 470 nm is present in Figure VII.19 and this is created by the radiative 

decay of excited IAEDANS molecules. Figure VII.20 compares temporal slices taken 

at 340 nm from both Figures VII.18 and VII.19, which correspond to the BSA 

tryptophan decay profiles in both the non-labelled (red triangles) and IAEDANS-

labelled (black squares) conditions, respectively. From Figure VII.20, the greater 

slope of the IAEDANS-labelled tryptophan decay profile beyond the emission 

maximum relative to the case of the non-labelled tryptophan decay is clear. The only 

explanation for this decrease in the decay time of the BSA tryptophan residues within 

the IAEDANS-labelled BSA is that energy transfer from excited tryptophan residues 

to ground state IAEDANS molecules has provided an additional relaxation pathway, 

resulting in a decrease in lifetime of the tryptophan excited state. 
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Figure VII.18. Time-resolved luminescence of BSA. Emission was recorded after excitation at 
282.5 nm. 
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Figure VII.19. Time-resolved luminescence of IAEDANS-labelled BSA. Emission was recorded 
after excitation at 282.5 nm. Note the prompt emission of the tryptophan at 340 nm and the delayed 
emission of IAEDANS at 480 nm.  

Figure VII.20. Overlay of the emission intensity temporal profiles at 340 nm for the 
BSA and IAEDANS-labelled BSA. The rise and decay of the tryptophan emission of BSA 
is shown on a semi-log plot for unlabelled (red) and labelled (black) BSA after excitation at 
282.5 nm. 
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Figure VII.21 shows the time-resolved emission spectrum of CPM-labelled 

BSA with excitation at 282.5 nm. The tryptophan emission band is again present, but 

with low intensity at 340 nm, along with the exciting laser radiation at 282.5 nm. The 

more intense band centred at approximately 460 nm is from radiative relaxation of 

excited stated CPM molecules. Figure VII.22 compares a temporal slice taken through 

the tryptophan emission band at 340 nm of Figure VII.21 with that of Figure VII.18. 

In Figure VII.22 the blue stars represent the decay time profile of tryptophan residues 

within non-labelled BSA and the black stars show the same tryptophan decay time 

profile within CPM-labelled BSA. As in the case of the IAEDANS-labelled BSA, the 

increased slope of the tryptophan decay profile beyond the emission maximum 

relative to that of the non-labelled tryptophan decay is again clear. Similarly, the 

explanation for this is the occurrence of FRET between the tryptophan donor and 

CPM acceptor molecules. 
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Figure VII.21. Time-resolved emission of CPM-labelled BSA. Emission was acquired with 
excitation at 282.5 nm. The tryptophan emission at 340 nm is almost entirely quenched in this 
spectrum. 
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VII.3.11 Steady-State Luminescence and Time-Resolved Emission of AavLEA1  

Having established that our technique for engineering the conditions for FRET arising 

from tryptophan excitation and that our methods for detecting this event were both 

valid for the BSA protein, the procedure was then transferred to the AavLEA1 

mutants L37C, S38C and L132C. While expression of the L132C mutant was very 

successful, both the L37C and S38C mutants expressed at considerably lower levels 

than that of the wild-type protein. Although this did not prevent investigation of both 

the L37C and S38C mutants for the occurrence of FRET, it did restrict the 

examination to either the IAEDANS or CPM fluorophores, and not both. Also, it was 

decided that of the two techniques of steady-state and time-resolved spectroscopy for 

detecting FRET, the latter was superior for use in the AavLEA1 system, since it 

allowed for the determination of distance between the donor and acceptor molecules 

where both are singly present, as in the AavLEA1 case. Therefore, only the 

investigation of FRET within mutants of AavLEA1 using time-resolved emission 

spectroscopy is presented below. 
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Figure VII.22. Time profile of tryptophan in native and CPM-labelled BSA. The rise and 
decay in emission intensity at 342 nm, following excitation at 282.5 nm, of both native and 
CPM-labelled BSA is shown as blue and black stars, respectively. 
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Figure VII.23 shows the absorption spectrum and emission produced with 

excitation at 282.5 nm of the wild-type AavLEA1. The presence of tryptophan within 

the small AavLEA1 protein is evidenced by the absorption at around 290 nm and 

emission at 340 nm bands. Figure VII.24 shows the time-resolved emission spectrum 

of wild-type AavLEA1 when excited at 282.5 nm. The growth and decay of the 

emission band of tryptophan is again present at 340 nm, along with the sharp laser 

band at 282.5 nm. Taking a temporal slice through both the laser and tryptophan 

emission bands of Figure VII.24 allowed for the generation of Figure VII.25. 

Although Figure VII.24 shows the laser band as saturated, this is only an effect from 

showing the spectrum on a scale matching the tryptophan emission band and in reality 

care was taken to ensure that the laser emission was always below saturation. Both the 

laser (red triangles) and tryptophan (black stars) emission temporal slices are overlaid 

in Figure VII.25, along with a single exponential fit of the tryptophan emission (solid 

line) that returns the lifetime of the tryptophan excited state as 2.20 ns. The single 

exponential fit is achieved by deconvoluting the effect of the time profile of the laser 

from that of the tryptophan emission. The accuracy of this fit to the experimental data 

is revealed by how closely the two overlap and this determines the confidence to be 

had in the estimated tryptophan excited state lifetime. Unfortunately, the occurrence 

of a “jitter” in the iCCD detector had the effect of introducing small errors into some 

of the experimental data and, where a linear decay in time of emission intensity 

beyond the emission maximum is expected for a single exponential excited state 

decay, this is not always reflected in the data. Such deviation in linearity is attributed 

to this “jitter” effect and not to some multi exponential decay pattern of the 

tryptophan excited state. 
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Figure VII.23. AavLEA1 steady-state luminescence. The blue spectrum is the AavLEA1 
absorption spectrum and the red is the emission spectrum when excited at 282.5 nm.  
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Figure VII.24. Time-resolved emission of AavLEA1. Emission was recorded after excitation 
at 282.5 nm. 



Chapter VII Spectroscopic Investigations into the Structure of AavLEA1 

 209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.12 Steady-State and Time-Resolved Emission of IAEDANS-Labelled 

AavLEA1 Mutants 

The steady-state emission spectral overlay of IAEDANS-labelled L37C (blue) and 

L132C (black) AavLEA1 with excitation at 282.5 nm is shown in Figure VII.26. Both 

the tryptophan and IAEDANS emission bands are present in both spectra at 340 and 

460 nm, respectively. The relative intensities of these two bands are markedly 

different between the two spectra. For the L37C spectrum the relative intensity of the 

tryptophan and IAEDANS band is almost equal, whereas the L132C spectrum shows 

a considerably more intense tryptophan emission band than that of IAEDANS. This is 

consistent with FRET occurring for the IAEDANS-labelled L37C protein, but not for 

that of the L132C, since FRET would lead to a non-radiative decay of a fraction of 

tryptophan excited state molecules and, therefore, reduce the intensity of the 

tryptophan emission band relative to that of IAEDANS. At the same time energy 

transfer from tryptophan to IAEDANS would generate a larger number of excited 
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Figure VII.25. AavLEA1 emission time profile at 340 nm. The laser-convoluted single 
exponential fit of the temporal profile of the AavLEA1 emission is shown as the solid line.  
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state IAEDANS molecules and so increase the IAEDANS emission band intensity 

relative to that of tryptophan.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.27 shows the time-resolved emission of L132C AavLEA1 with 

excitation at 282.5 nm. The laser band saturation at 282.5 nm is, once again, only 

apparent, resulting from showing the spectrum on a scale appropriate to the 

tryptophan (340 nm) and IAEDANS (460 nm) bands. Taking a temporal slice through 

Figure VII.27 at 282.5 and 340 nm gives the time profile of emission from the laser 

and tryptophan residues, respectively. Figure VII.28 shows both emission profiles, 

along with the single exponential fit of the tryptophan decay. The lifetime of the 

tryptophan excited state in the IAEDANS-labelled L132C AavLEA1 was calculated 

to be 2.30 ns, a lifetime roughly equal to tryptophan in the wild-type AavLEA1. From 

this there does not seem to occur any FRET for the IAEDANS-labelled L132C 

AavLEA1 protein. 
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Figure VII.26.  Steady-state emission of IAEDANS-labelled AavLEA1. The blue and black 
spectra show emission of the IAEDANS-labelled L37C and L132C AavLEA1 mutants, respectively, 
with excitation at 282.5 nm.  
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Figure VII.27. Time-resolved luminescence of IAEDANS-labelled L132C AavLEA1. Emission 
was recorded after excitation at 282.5 nm. 
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Figure VII.28. IAEDANS-labelled L132C AavLEA1 emission time profile at 340 nm.  
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Figure VII.29 shows the time-resolved emission of IAEDANS-labelled L37C 

AavLEA1 with excitation at 282.5 nm. Once more, the laser saturation at 282.5 nm is 

due to scaling. The second-order laser emission band is visible at 565 nm. Both the 

tryptophan (340 nm) and IAEDANS (460 nm) bands are clearly present. At first 

glance the relative intensity of these bands seems inconsistent with the steady-state 

emission spectrum shown in Figure VII.26. This can be explained by noting that the 

IAEDANS excited state lifetime is considerably longer than that of tryptophan and, 

therefore, the IAEDANS emission is spread out over a broader time range than that of 

tryptophan. Taking a temporal slice through the laser and tryptophan bands allows the 

fitting of the tryptophan decay and the calculation of its excited-state lifetime in 

IAEDANS-labelled L37C AavLEA1 as 1.80 ns (Figure VII.30). This lifetime value is 

considerably less than the 2.20 ns of tryptophan in wild-type AavLEA1 and, 

therefore, represents evidence of energy transfer from tryptophan to IAEDANS in the 

labelled L37C mutant.  
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Figure VII.29. Time-resolved luminescence of IAEDANS-labelled L37C AavLEA1. Emission 
was recorded after excitation at 282.5 nm. 
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VII.3.13 Time-Resolved Emission of CPM-Labelled AavLEA1 Mutants 

The time-resolved emission of CPM-labelled L132C AavLEA1 is shown in Figure 

VII.31. An anomalous band is observed at around 300 nm and, because of both the 

sharp bandshape and the similarity of the time profile of this band to that of the laser 

band, this was seen to represent laser emission. The tryptophan and CPM emission 

bands are visible at 340 and 460 nm, respectively. Taking a temporal slice through the 

laser and tryptophan band maximum allowed the calculation of the tryptophan excited 

state lifetime to be calculated as 2.20 ns (Figure VII.32). This is identical to that of 

wild AavLEA1 and, therefore, suggests that no FRET occurs between tryptophan and 

CPM in the L132C mutant. 
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Figure VII.30. IAEDANS-labelled L37C AavLEA1 emission time profile at 340 nm.  
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Figure VII.31. Time-resolved luminescence of CPM-labelled L132C AavLEA1. Emission 
was recorded after excitation at 282.5 nm  
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Figure VII.32. CPM-labelled L132C AavLEA1 emission decay at 340 nm.  
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The same laser, tryptophan and CPM emission bands can be seen in Figure 

VII.33 for the time-resolved emission of CPM-labelled S38C AavLEA1. Calculating 

the tryptophan excited state lifetime by the same method given above (Figure VII.34) 

gives a value of 2.25 ns. Again, this value is very close to that of the wild-type 

AavLEA1 and, therefore, it would appear that there occurs no energy transfer between 

tryptophan and CPM in the S38C mutant. 
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Figure VII.33. Time-resolved luminescence of CPM-labelled S38C AavLEA1.

Emission was recorded after excitation at 282.5 nm  



Chapter VII Spectroscopic Investigations into the Structure of AavLEA1 

 216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.3.14 AavLEA1 Inter-Residue Distance Determination by FRET 

Measurements   

From the FRET observed for the IAEDANS-labelled L37C it is possible to calculate 

the distance, r, between the tryptophan donor and the IAEDANS acceptor. This 

distance is calculated using the equations 

1
6

0

1
1r R

E

 
= − 

 
                                                             (VII.1) 

and 

1 DA

D

E
τ

τ
= −                                                                    (VII.2) 

where R0 is the Forster distance, τDA is the lifetime of the donor in the presence of the 

acceptor, τD is the lifetime of the donor in the absence of the acceptor and E is the 

efficiency of energy transfer. For the tryptophan-IAEDANS donor-acceptor pair R0 is 

22 Å. τD is the lifetime of tryptophan in the unlabelled AavLEA1 (2.20 ns) and τDA is 
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Figure VII.34. CPM-labelled S38C AavLEA1 emission decay at 340 nm.  
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the tryptophan lifetime in the IAEDANS-labelled L37C AavLEA1 (1.80 ns). 

Therefore, E has a value of 0.182 and r is 28.26 Å. There is a separation of 7 residues 

between the tryptophan residue at position 30 in the AavLEA1 protein and the 

mutated cysteine residue of L37C. Therefore, there is an inter-residue average 

distance of approximately 4 Å within this particular segment of the L37C AavLEA1 

mutant. Considering the average inter-residue distances of 1.5 Å for a right-handed α-

helix, 3.4 Å for an anti-parallel β-sheet and 3.2 Å for a parallel β-sheet, it would seem 

that in the region investigated above AavLEA1 adopts a fully-extended random-coil 

secondary structure.  

The lack of any detected FRET for the CPM-labelled S38C mutant is difficult 

to explain considering the clear presence of FRET in IAEDANS-labelled L37C. This 

is especially true given that the Forster distance for the tryptophan-CPM donor-

acceptor pair is 29 Å, while that of tryptophan-IAEDANS is only 22 Å. It is possible 

that the CPM fluorophore failed to attach to the mutated protein. This is somewhat 

plausible given the hydrophobic nature of CPM and its very limited water solubility. 

However, the labelling of BSA with CPM did not seem to be affected by this. 

For the L132C mutant, FRET could only be expected to occur if the protein 

adopts a condensed tertiary structure, such that distant residues come to be located 

close to each other in space. This is true because FRET is a through-space rather than 

a through-bond phenomenon. Even if AavLEA1 were to adopt the most compact 

secondary structure, that of an α-helix, the 132 mutated cysteine residue is far too 

distant from the tryptophan donor for FRET to occur in the absence of a compact 

tertiary structure. The absence of FRET in either the IAEDANS- or CPM-labelled 

L132C AavLEA1 mutant is evidence that AavLEA1 does not adopt any compact 

tertiary structure and this is consistent with the data from the L37C mutant, which 

suggests that AavLEA1 exists as a fully-extended natively unfolded protein.  

 

VII.4 Discussion 

In a polar environment the main driving forces that determine whether a protein will 

exist in a folded or unfolded state are the protein’s mean hydrophobicity and its mean 

net charge. Hydrophobic regions will tend to become folded and charged regions will 

tend towards existing in an unfolded state. Uversky has made use of this 



Chapter VII Spectroscopic Investigations into the Structure of AavLEA1 

 218 

understanding by constructing a charge-hydrophobicity phase space diagram with the 

protein’s mean net charge on the y-axis and its mean hydrophobicity on the x-

axis.[15] Upon populating his charge-hydrophobicity phase space diagram with a 

range of well studied proteins of known secondary structure that consisted of similar 

numbers of both structured and unfolded proteins, Uversky observed that a boundary 

line could be drawn that clearly separated folded from unfolded proteins. This line can 

be expressed by the equation 

1.151

2.785b

R
H

+
=                                                               (VII.3) 

where <H>b and <R> represent a protein’s mean hydrophobicity and mean net charge, 

respectively. Based upon which side of the boundary line a protein falls, one can 

accurately predict whether that protein will be either folded or unfolded. AavLEA1, 

with its low mean hydrophobicity value and high net charge, lies well within the 

region populated by unfolded proteins.  

Both CD and FTIR spectral analyses confirm the secondary structure of 

AavLEA1 as predominantly random coil. Also, the response of AavLEA1 structure to 

changes in physiological conditions, such as temperature, pH and cation concentration 

is entirely consistent with that of other natively unfolded proteins, in that AavLEA1 

displays a ‘turn-out’ effect at elevated temperatures, acidic pH and increased cation 

concentrations, whereby it experiences an increase in its ordered secondary structure 

content.[16] This is in direct contrast to what is observed for structured proteins under 

these conditions. Given that AavLEA1 exists as a natively unfolded protein it is 

assumed that this confers substantial plasticity to the protein molecule and it is likely 

that this plasticity is in some way related to AavLEA1’s biological function in 

anhydrobiosis.  

Although AavLEA1 is natively unfolded in aqueous solution it is still possible 

that it might carry out its anhydrobiotic function as a structured protein, since under 

desiccating conditions the protein would lose its water content and this may have a 

profound effect on the AavLEA1 secondary structure. The potential for AavLEA1 to 

adopt a well-ordered structure was examined using TFE and it was seen that under 

these conditions AavLEA1 shifted its secondary structure from being predominantly 

random coil to being almost completely α-helical. Furthermore, Goyal et al. has 

shown that when dried AavLEA1 becomes considerably helical in structure.[1] 
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Considering the structural prediction that AavLEA1 has a 40 % chance of adopting a 

coiled-coil super secondary structure, it is tempting to imagine that AavLEA1 carries 

out its anhydrobiotic function by forming coiled-coil type polymeric fibrils in the 

absence of water that reinforce the trehalose glassy matrix that forms upon 

desiccation. 

From the results of the FRET analysis it appears that AavLEA1 adopts an 

extended tertiary structure rather than existing as a compact protein and this is 

consistent with the notion that protein plasticity is involved in its functioning and fits 

well with the model of AavLEA1 functioning as a protein solvent shell replacement 

by moulding itself around other well-structured proteins. AavLEA1 has demonstrated 

antagonistic properties towards heat-induced aggregation of both cytochrome c and 

citrate synthase and it is plausible that it does this by masking regions of these 

proteins that become exposed upon heating, which are likely to interact with other 

proteins and so form protein aggregates. That AavLEA1 contributes no temperature-

induced aggregation antagonism to four other standard proteins studied suggests that 

the main role of AavLEA1 is not that of a heat-shock protein. Goyal et al. have also 

observed that AavLEA1 offers cryoprotection against inactivation and aggregation to 

both citrate synthase and lactate dehydrogenase and that it acts synergistically with 

trehalose to protect lactate dehydrogenase activity upon drying.[14] From this it 

seems possible that AavLEA1 functions in a less specific and more general way, in 

that it may facilitate a host of beneficial processes that help the cell during 

anhydrobiosis and at the root of this general functioning is the protein’s molecular 

plasticity.  
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Chapter VIII 
Spectroscopic Investigation of the Rab11-FIP2 and 

Rab11-FIP3 Protein Dimers 

 

VIII.1 Background 

The process by which cells selectively internalise material from their environments is 

known as endocytosis. Cells do this by incorporating specially constructed protein 

molecules into their outer plasma membranes, which are composed of a hydrophobic 

portion that is embedded in the non-polar lipid membrane and a hydrophilic region 

that extends into the cell’s aqueous environment. Such proteins are generally referred 

to as receptor proteins and the hydrophilic region of each receptor protein is specific 

to bind certain ligand molecules that are present in the cell’s environment and are 

required to be transported to its interior. Upon binding of ligands to the protein 

receptors endocytosis occurs by the formation of a clathrin-coated vesicle that is 

produced by the internal folding of the plasma membrane. After the dissociation of 

the ligand-receptor complex there is a need to return the receptor molecules to the 

plasma membrane and this is facilitated by one of two pathways: the fast recycling 

pathway, which involves direct transport of molecules from peripheral sorting or early 

endosomes to the plasma membrane, and the slow recycling pathway, whereby 

molecules are returned to the plasma membrane indirectly through a tubulovesicular 

endosomal-recycling compartment (ERC) that is located close to the microtubule 

organising centre of the cell. Effective regulation of trafficking of materials into and 

within the cell depends largely on the complex recycling of receptor molecules within 

the slow recycling pathway. 

 

VIII.1.1 Rab GTPase’s 

Recent cytological investigations have highlighted the importance of the Rab GTPase 

family of proteins (Rabs) in regulating vesicular trafficking (trafficking of vesicles 

and their cargos within the cell) through their role in membrane trafficking 

(trafficking of proteins/lipids to cellular membranes).[6-16] For example; Rab1 and 

Rab2 appear to play a role in the transport of proteins from the endoplasmic reticulum 
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to the Golgi [7; 8]; Rab6 functions in intra-Golgi transport [9]; and Rabs 4, 5, 7, 9, 11 

and 15 help regulate the trafficking and sorting of endocytosed material between 

lysosomes, endosomes and the plasma membrane.[10-12] Of the Rab GTPases Rab11 

has been amongst the most extensively researched and is recognised as regulating a 

host of membrane transport pathways (e.g., phagocytosis [13], apical targeting in 

epithelial cells [14], protein transport from endosomes to the trans-Golgi network [16] 

and insulin-dependent glucose transporter 4 transport to plasma membranes). A well-

known mechanism of vesicular trafficking is the myosin motor docking to transferrin 

receptor-containing transport vesicles. Yeast two-hybrid experiments have revealed 

that Rab11 interacts with the myosin Vb globular tail domain and, also, in the absence 

of wild-type Rab11, myosin Vb fails to localise to transport vesicles [17], highlighting 

the importance of Rab11 in membrane trafficking.  

 

VIII.1.2 The Family of Rab11-Interacting Proteins 

Numerous so-called effector proteins have been shown to selectively bind to specific 

Rabs and it is supposed that Rabs are functional only when complexed to these 

effector proteins. The supposed mechanism of Rab-effector protein complex 

formation is the GDP(inactive)-/GTP(active)-bound cycling of the Rab GTPase, 

whereby the GTP-bound Rab alters the conformation of the Rab switch 2 domain 

relative to the GDP-bound Rab, in a Rab specific manner, and as a result permits 

binding of the effector protein to the Rab switch 1 domain.[4] A number of effector 

proteins that bind the Rab11 Rab GTPase have recently been discovered and, based 

on the similarities of their predicted tertiary structures, have been grouped into what is 

known as the family of Rab11-interacting proteins (FIPs). Within mammals, FIPs 

genes show a broad distribution across chromosomes and comprise an evolutionarily 

conserved protein family.[3] It has been shown that FIP-Rab11 complexes are 

selectively localised to various membranes within the cell (e.g., recycling endosomes) 

[18], whereas in the absence of complex formation both proteins remain in the 

cytosol. It has also been shown that different FIPs compete with each other for 

binding to Rab11 [19] and, as such, may control Rab11 functioning within the cell - 

depending on the relative amounts of each Rab11-FIP, Rab11 could be preferentially 

assigned to one or other of the numerous trafficking pathways in which it functions. It 
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is from these understandings that FIPs, along with their interactions with Rab11, have 

recently become the subject of considerable cytological and biophysical research. 

So far, six FIPs have been identified: Rab11-FIP1 (FIP1) [20], Rab11-FIP2 

(FIP2) [20], Rab11-FIP3 (FIP3/eferin) [20], Rip11 [21], Rab coupling protein (RCP) 

[22] and Rab11-FIP4 [3]. FIPs are characterised by the presence of a C-terminal (CT) 

Rab11-interacting site, known as the Rab binding domain (RBD) (Figure VIII.1C), 

which partially overlaps a predicted coiled-coil domain (Figure VIII.1A). FIPs are 

further classified according to the presence of other structural domains located at the 

N-terminus. Class I FIPs (Rip11, FIP2 and RCP) contain an N-terminal (NT) C2-

phospholipid binding domain (Figure VIII.2A, Figure VIII.1B), class II FIPs (FIP3 

and FIP4) contain an NT EF-hand calcium binding motif (Figure VIII.2B) and an 

ezrin/radixin/moesin (ERM) domain (Figure VIII.2C, Figure VIII.1D), and class III 

FIPs (FIP1) have no NT domains with homology to other domains (Figure VIII.1A). 

Despite the above similarities, the degree of homology between the various FIPs is 

low (Figure VIII.1E) and, therefore, they are considered as a family of diverse 

proteins with certain common functional motifs.  

The Rab11 subfamily of proteins are known to be enriched on the ERC of the 

slow recycling pathway and are thought to be instrumental in the recycling of receptor 

proteins. The class II effector protein of Rab11a, Rab11-FIP3, has been seen to 

localise to the pericentriolar ERC during the interphase stage of cell division and, 

when complexed to Rab11a, is understood to be involved in the delivery, targeting 

and/or fusion of the ERC with the cleavage furrow/midbody during cell division.[23-

25] 
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Figure VIII.1. The Rab11-FIP protein family.  A Location representation of the various C2, EF, ERM and 
RBD functional domains within the human Rab11-FIP proteins, including the Pfam reference numbers for 
each domain. B ClustalW alignment of the amino terminal 200 amino acids of RCP, Rab11-FIP2, and 
Rip11; C ClustalW alignment of the Rab Binding Domains of RCP, Rab11 FIP2, Rip11, Rab11-FIP1, 
Rab11-FIP3, and Rab11-FIP4; D Alignment of the ERM domains of Rab11-FIP3 and Rab11-FIP4; E
Phylogenetic tree. The scale bar (0.1) represents the distance along the tree corresponding to a change in 
10% of the amino acids. (Reproduced from [3]) 
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VIII.1.3 The Coiled-Coil Protein Interaction within  Rab11-FIPs 

In the simplest case coiled-coils involve two right-handed α-helical segments aligning 

either parallel or anti-parallel to one another and spiralling around each other in a left-

handed manner to form a two-stranded superhelix (Figure VIII.3a). Each helix region 

involved in a coiled-coil can be interpreted in terms of both the hydrophobicity and 

charge of its residues, revealing heptad repeat sequences along the length of coiled-

coil forming helices. Such regions are defined by [abcdefg]n, with a and d 

representing hydrophobic residues and e and f denoting charged residues (Figure 

VIII.3 b). The coiled-coil is stabilised by both hydrophobic and ion-pair interactions 

(Figure VIII.3c) and has at its centre a hydrophobic core (Figure VIII.3 d). 

 

A

C

BA

C

B

Figure VIII.2. The conserved domains of the Rab11-FIP protein family.  α-helices, β-sheets, loop 
regions and calcium ions/ligands are shown as blue spirals, green ribbons, green strings and in red 
colour, respectively. A The C2 domain is composed of two four-stranded β-sheets, creating three 
loops at the top of the domain and four at the bottom. Upper loops 1 and 3 are involved in the binding 
of 3 calcium ions required for phospholipid binding. B Each EF-hand domain consists of two 
perpendicular 10 to 12 residue α-helices with a 12-residue loop region between, forming a single
calcium-binding site (helix-loop-helix). Calcium ions interact with residues contained within the loop 
region. C The ERM domain is approximately 150 amino acids in length and is found in a number of 
cytoskeletal-associated proteins that are found at the interface between the plasma membrane and the 
cytoskeleton. (C) 2006 Nash Lab - University of Chicago 
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According to current understandings the coiled-coil is amongst the most 

common protein-protein interaction motif. It is particularly common amongst 

structural proteins and proteins involved in the tethering of vesicles to target 

organelles – a process that allows subsequent fusion of the vesicle membrane with 

that of the organelle. As such, FIPs are suspected to function either as scaffolding 

proteins – facilitating the formation of a membranous protein complex – or as docking 

proteins. Using immunolabelling, the function of the coiled-coil containing Rab11-

FIP3 has been investigated.[5] When complexed to Rab11a, Rab11-FIP3 is seen to 

localise to membranes of recycling endosomes. The conserved prediction of CT 

coiled-coils and their overlap with the RBD suggests an importance of coiled-coil 

domains for the complexing of FIPs to Rab11. For example, Rab11-FIP2 has been 

shown to form dimers in vitro [2], with monomers held together by an intermolecular 

coiled-coil. Complexing of this homodimer with Rab11 at the RBD has been shown 

by x-ray crystallography to result in a heterotetramer with dyad symmetry, arranged 

as a Rab11-(FIP2)2-Rab11 complex [4]. The intermolecular FIP2 coiled-coil domain 

is, therefore, important in determining both the composition of the complex and its 

Figure VIII.3. Illustration of a dimeric coiled-coi l. a Parallel and anti-parallel left-handed 
spiralling coiled-coil with right-handed helices. b Helical wheel representation of a heptad repeat 
sequence. c Coiled-coil stabilising ion-pair interaction and hydrophobic packing. d Hydrophobic core 
within the coiled-coil. (Modified from [1]) 
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symmetry.  Figure VIII.4 gives a cartoon illustration of how the coiled-coil region of 

Rab11-FIP3 might be instrumental in determining how it interacts with Rab11, based 

on what is known about complex formation involving the Rab11-FIP2 dimer. Figures 

VIII.5 and VIII.1A show the locations of the predicted coiled-coil domains for each 

FIP. Both FIP3 and FIP4 are exceptional in that they appear to contain extensive 

coiled-coil domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure VIII.5. Prediction of coiled-coils within the Rab11-FIP protein family. The 
residue number is plotted on the x-axis and the probability of forming a coiled-coil (0–1)
is on the y-axis. (Copied from [3]) 
 

FIP3 coiled-coil
including RBD 

Rab11 Rab11-FIP3 
complex

Figure VIII.4.  Illustration of the possible symmetry determining influence of the coiled-coil 
region of the Rab11-FIP3 dimer for the FIP3-Rab11 tetrameric complex. ( Modified from 
[2]) 
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Although C-terminal coiled-coils are unanimously predicted for FIPs, the 

veracity of these predictions have, for most FIPs, yet to be experimentally determined. 

The prediction of both the size and location of the Rab11-FIP3 coiled-coil is 

corroborated by the low probability of disorder for the exact region of the coiled-coil 

prediction (Figure VIII.6a), which must be α-helical if the prediction is correct, and 

the relative probabilities of the coiled-coil existing as either a dimer or trimer is 

shown in Figure VIII.6b. From this it is evident that Rab11-FIP3 has a much greater 

probability of existing as a dimer molecule.  
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Figure VIII.6. The coiled-coil prediction profile f or Rab11-FIP3. a Overlay of 
the probability of coiled-coil domains and the probability of disorder, from PairCoil 
and DISOPRED 2 algorithms, respectively. b Overlay of the probabilities of both 
dimer and trimer coiled-coil domains, from the Multicoil algorithm. (Copied from 
[5]) 
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Part A: Rab11-FIP3 

VIII.A.1 Introduction 

The following far-UV CD work was designed to investigate the existence of a CT 

coiled-coil for Rab11-FIP3 for the region of the protein showing a high probability for 

coiled-coil domains. In addition, the structural effect of mutating a specific residue 

located within the RBD region – a mutation that causes dramatic changes within 

examined cells - was investigated by comparing the CD spectrum of the wild-type and 

mutant proteins. The secondary structure fractional composition for both was also 

estimated. 

 

VIII.A.2 Method 

VIII.A.2.1 Protein Expression and Purification 

Purification of hexahistidine-fused Rab11-FIP3 wild-type and Rab11-FIP3 I738E was 

performed by transforming XL1 cells with either pTrcHisC/Rab11-FIP3 or 

pTrcHisC/Rab11-FIP3 I738E. Transformants were grown to an optical density at 600 

nm of approximately (OD600) 0.6 and then induced using 0.1 mM isopropyl-b-D-

thiogalactopyranoside (IPTG) (Melford) for 1 hour at 30 oC. Purification of the 

predicted coiled-coil structured recombinant fragment Rab11-FIP3(463-692) containing a 

six-histidine tag was done by first transforming the pTrcHisC/Rab11-FIP3(463-692) 

plasmid into BL21 (DE3) e. coli cells. After growing a single transformant to an 

OD600 of approximately 0.6 the culture was induced with 0.3 mM IPTG for a period of 

12 hours at 20 oC. All proteins were affinity purified using columns containing Ni2+-

NTA agarose beads (Qiagen). The purity of each protein preparation was analysed by 

SDS-PAGE gel electrophoresis with coomassie blue staining. 

 

VIII.A.2.2 CD spectroscopy 

All spectra were recorded on a Model 400 Spectrophotometer equipped with a Peltier 

temperature controller (Aviv Biomedical Inc.). Spectra were obtained using either a 

10, 1 or 0.1 mm quartz Suprasil cuvette (Hellma® UK) and at a temperature of 23 oC, 

a bandwidth of 1 nm, a stepwidth of 0.2 nm, a response time of 1 s and as an average 

of at least 5 scans. Protein melt experiments were recorded at 222 nm in a 10 mm cell 

with a bandwidth of 1.5 nm, a response time of at least 100 s, an equilibration time of 
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30 s, a temperature step of 2 oC, a heating rate of 2 oC /min and under continuous 

stirring. The protein structural response to trifluoroethanol (TFE) addition was 

investigated by the addition of 0, 5, 10, 15, 20, 30, 40, 50 and 60 % volume per 

volume TFE to protein samples while keeping the concentration of protein constant 

across all samples. CD spectra were expressed in terms of mean residue molar 

ellipticity using the equation [Q]MRW = q/(10.cr.l), where cr and l are the mean residue 

molar concentration and the sample pathlength (cm), respectively. Sample protein 

concentrations were determined by quantitative amino acid analysis (Protein and 

Nucleic Acid Chemistry Facility, Cambridge).  

 

VIII.A.3 Results 

VIII.A.3.1 Protein Expression 

An SDS-PAGE gel for a single batch of Rab11-FIP3453-692 protein is shown in Figure 

VIII.9 and from the protein ladder the sample can be seen to be of the correct size 

based on the protein primary sequence. An absence of any other bands within the 

sample lane confirms that the protein sample is free from any peptide contamination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.9. SDS-PAGE gel of the purified Rab11-FIP3463-692

fragment. The protein ladder is shown in the left lane and the purified 
protein sample is in the right lane.  
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VIII.A.3.2 Mutant and Wild-Type Rab11-FIP3 CD Spectra 

Figures VIII.10 and VIII.11 show the smoothed CD spectra of the wild-type Rab11-

FIP3 and Rab11-FIP3 I738E mutant, respectively. The overlaid smoothing residuals 

reveal both spectra to contain good signal-to-noise, however, this is somewhat 

diminished at the lower wavelength end of each spectrum. The concentration 

determination of both the wild-type and mutant samples as 1.27 and 1.25 mg/ml, 

respectively, enabled the CD spectra to be plotted in terms of the mean residue molar 

ellipticity. A comparison of the wild-type and mutant CD reveals a close similarity 

between the two spectra, suggesting that the I738E mutation did not dramatically alter 

the secondary structure of the Rab11-FIP3 protein. A discrepancy between the bands 

located at 208 nm for the wild-type versus the mutant CD suggests that there is some 

structural consequence to carrying out this mutation.  
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Figure VIII.10. CD spectrum of wild-type Rab11-FIP3. The smoothed CD 
spectrum is overlaid with the smoothing residuals (red). 
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VIII.A.3.3 Quantitative Analysis of Secondary Structure of Rab11-FIP3 

Analysis of the fractional compositions of both the mutant and wild-type full-length 

Rab11-FIP3 proteins with most of the programs contained within the DichroWeb 

software resulted in NMRSD values outside of the limits for an acceptable 

deconvolution fit. The coiled-coil nature of these proteins along with the presence of 

C2-phospholipid, EF-hand and ERM domains are somewhat particular to FIP proteins 

and are not well represented within the protein reference sets used by the DichroWeb 

software. It is likely, therefore, that the impact of these domains on the Rab11-FIP3 

CD spectra was responsible for the failure of the fractional composition analysis. The 

CDSSTR and K2D programs did return NMRSD values below the cut-off limit and 

the results are shown in Table VIII.1. For each program the estimated fractional 

composition values are consistent between the two proteins, as expected from the 

similarity of both protein’s CD spectra. The α-helix content of both proteins is likely 

to be closer to the 29 % value predicted by the K2D program, since the CDSSTR 

program tends to over estimate α-helical content. The uncertainty in the estimation of 

β-sheet content is a feature of protein CD and all that can be concluded is that both 

proteins contain small but significant levels of β-sheet structure. The β-turn 

estimation of both proteins from the CDSSTR program is comparable to that of β-
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Figure VIII.11. CD spectrum of the Rab11-FIP3 I738E mutant. The 
smoothed CD spectrum is overlaid with the smoothing residuals (red). 
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sheet. The K2D program does not estimate β-turn content, but instead includes all 

non-helical and non-sheet conformations as unordered structure.  Reasonable 

agreement between the unordered contents of both proteins for the K2D and CDSSTR 

programs is seen when this is taken into account.   

 

Protein Program αααα-helix ββββ-sheet ββββ-turn Unordered NMRSD 
CDSSTR (ref. set 3) 49 15 14 22 0.015 WT Rab11-FIP3 

K2D 29 28 - 44 0.179 
CDSSTR (ref. set 3) 46 13 17 24 0.019 Rab11-FIP3 I738E 

K2D 29 19 - 52 0.162 

 

 

 

VIII.A.3.4 Detection of Rab11-FIP3 Coiled-Coil Structure by TFE Analysis 

The protein concentration of the predicted coiled-coil domain of the Rab11-FIP3463-692 

fragment used for the TFE analysis was determined by QAA analysis to be 0.11 

mg/ml. The purity of the protein sample is indicated by a single intense band being 

present on the SDS-PAGE gel at the expected location relative to the protein ladder 

(Figure VIII.9). Figure VIII.12 shows the CD spectral overlay of the effect of TFE on 

the Rab11-FIP3463-692 fragment. TFE acts to stabilise peptides towards helix formation 

by increasing the strength of the H-bonds formed within the helix conformation.[26] 

Since TFE induces α-helix conformation for protein regions that are of other 

conformations, the lack of spectral intensity increase at 222 nm up to 20 % v/v TFE 

indicates that the Rab11-FIP3463-692 fragment is already completely α-helical, as 

expected. It is known that the spectral signature of an α-helix that has been distorted 

by its participation within a coiled-coil conformation displays a slightly different CD 

spectrum than that seen with an undistorted non-interacting typical α-helix. This 

difference is characterised by the value of the band ratio at 222 and 208 nm. For a 

non-interacting α-helix the 222:208 ratio is approximately 0.83, but for α-helices with 

coiled-coil super secondary structure this value changes to about 1.03. The observed 

222:208 ratio of Rab11-FIP3463-692 in the absence of TFE is 0.968. This is very close 

to the coiled-coil expected value of 1.03, indicating that the fragment is composed 

almost entirely of helices with coiled-coil super secondary structure. Although TFE 

stabilises secondary structure, it conversely destabilises tertiary structure and as such, 

titration with TFE might be expected to disrupt any coiled-coil content within the 

Table VIII.1. Fractional composition analysis of wild-type Rab11-FIP3 and Rab11-FIP3 
I738E. 



Chapter VIII  Spectroscopic Investigation of the Rab11FIP2 and Rab11-FIP3 Protein Dimers 

 237 

Rab11-FIP3463-692 fragment and this disruption should be evidenced by a change in the 

222:208 ratio from the value of the coiled-coil to that of the non-interacting α-helix. 

Figure VIII.13 shows the plot of the 222:208 ratio with TFE concentration and from 

this it is clear that at TFE concentrations beyond 20 % v/v there occurs a dramatic 

shift of the 222:208 ratio to that expected for non-interacting α-helices. At 50 % v/v 

TFE it appears from the 222:208 ratio value of 0.88 that almost all coiled-coil 

structures have unravelled to form non-interacting α-helix structures. As expected, 

higher TFE concentrations had no additional effect on the 222:208 ratio. 
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Figure VIII.12. CD spectra of Rab11-FIP3463-692 fragment as a function of TFE concentration. 
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Figure VIII.13. Coiled coil conformation of the Rab11-FIP3463-692 as a function of TFE 
concentration. The ratio of the CD spectral intensity at 222 and 208 nm is indicative for the 
presence of coiled coil conformation at lower TFE concentrations. 
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VIII.A.3.5 The Effect of Protein Concentration on the Coiled-Coil Structure of 

Rab11-FIP3 

The formation of coiled-coil polymers from the monomeric peptide chain raises the 

question of the effect of protein concentration on protein polymerisation. Although 

there exists evidence that FIPs interact to form dimeric coiled-coils, it is at least 

feasible that higher order polymerisation is involved in generating the functional form 

of the Rab11-FIP3 complex. In order to investigate this, the effect of protein 

concentration on the structure of Rab11-FIP3 was examined. Initially the CD222 value 

dependence on protein concentration was measured in order to establish the stability 

of the α-helix secondary structure of the Rab11-FIP3463-692 fragment. Figure VIII.14 

shows that the Rab11-FIP3463-692 helical secondary structure is stable over 

approximately a 60-fold concentration range. The ability of the Rab11-FIP3463-692 

fragment to form higher order polymers might be revealed from increasing the protein 

concentration while observing the [Θ]222:[Θ]208 ratio, which is dependent on the 

tertiary structure of the protein. From Figure VIII.15 it would seem that this ratio is 

somewhat stable over the concentration range investigated and that the Rab11-

FIP3463-692 fragment is, therefore, resistant to forming higher order polymers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.14. Rab11-FIP3463-692 secondary structure dependence on concentration. The 
dependence of Rab11-FIP3463-692 structure on concentration can be assessed by monitoring the 
CD222, since it is a completely α-helical protein. 
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VIII.A.4 Discussion 

The mutation of the amino acid number 738 from the wild-type hydrophobic 

isoleucine to the hydrophilic glutamic acid falls within the RBD and has been 

previously shown to prevent complex formation of Rab11a with Rab11-FIP3.[25; 27] 

Since Rab11-FIP3 only functions when complexed to Rab11a the effect on cellular 

activity due to this mutation might be expected to be dramatic. Indeed it has been 

shown that A431 cells containing this mutation behaved as though they had a 

complete absence of Rab11-FIP3 protein, in that the morphology of the ERC is 

profoundly altered, as evidenced by the exclusion of the ERC-marker proteins RCP, 

Rab11a and Rab11-FIP4 from the pericentrosomal region of the cell, revealed by 

confocal immunofluorescence microscopy.[5] The fact that the CD spectrum of the 

Rab11-FIP3 I738E mutant is only marginally different from that of the wild-type 

protein demonstrates the high structural similarity between the two proteins. 

Therefore, it can be concluded that the binding of Rab11a to Rab11-FIP3 exhibits 

very high structural specificity. This is somewhat expected considering the highly 

conserved sequences of the RBD domains between the known Rab11 effector proteins 

(Figure VIII.1C). In fact the isoleucine 738 hydrophobic residue forms part of a non-

polar pocket in which the isoleucine 44 residue of switch 1 of the Rab11a fits upon 

FIP3-Rab11 complex formation.[28] Substitution with the polar glutamic acid at this 

Figure VIII.15. Coiled-coil structural dependence on protein concentration. 
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position should, therefore, constitute a severe destabilisation towards complex 

formation, since this would bring about a strong repulsive interaction with the non-

polar Ileu44 of Rab11a. The coiled-coil nature of Rab11-FIP3 as confirmed by the CD 

analysis of the Rab11-FIP3463-692 fragment is consistent with structural predictions 

from the PairCoil and MultiCoil algorithms and is in good agreement with the crystal 

structure of the related Rab11-FIP2 protein.[4] The estimated α-helix content of 29 % 

by the K2D program for both the wild-type and mutant Rab11-FIP3 proteins is in 

excellent agreement with the 28.50 and 26.13 % estimations, respectively, from FTIR 

spectroscopy.[5] 

 

Part B: Rab11-FIP2 

VIII.B.1 Introduction 

The class 1 FIP Rab11-FIP2 also binds Rab11a and is a 512 residue protein that 

contains a myosin Vb binding region, an RBD at the C terminus and a C2 domain at 

the N terminus. The FIP2-Rab11 complex containing the Rab11a (1-173) and Rab11-

FIP2 (410-512) fragments has been recently characterised by x-ray crystallography 

and its structure is shown in Figure VIII.16. The FIP2-Rab11 complex is composed of 

a homodimer of Rab11-FIP2 with each Rab11-FIP2 monomer bound to a single 

Rab11a such that the overall structure of the complex is represented as a 

heterotetramer with dyad symmetry. Binding of each Rab11-FIP2 monomer to a 

Rab11a protein occurs at the RBD region of the Rab11-FIP2 and the switch 1 region 

of the Rab11a. The Rab11a switch 1 region is made accessible to the Rab11-FIP2 

RBD by a structural shift of the Rab11a upon binding of a phosphate group 

(converting it from the GDP to the GTP state) such that the blocking Rab11a switch 2 

region is relocated. No binding between either of the two Rab11a proteins occurs in 

the complex and the FIP2-Rab11 heterotetramer is held together by the coiled-coil 

interaction of the Rab11-FIP2 homodimer. This coiled-coil domain is, therefore, 

thought to be crucial to the cellular function of the FIP2-Rab11 complex. 

As illustrated above, coiled-coil domains are stabilised by the shielding of the 

hydrophobic residue side-chains from the aqueous environment to form a 

hydrophobic core running along the axis of the coiled-coil. This hydrophobic core is 

further shielded from the environment by the formation of a cap at the top of the 

coiled-coil. Figure VIII.17 shows the N-terminal segment of the Rab11-FIP2 
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homodimer and from this it can be seen that the Tyr453 phenyl ring forms a lid over 

the coiled-coil.  The hydroxyl group of Tyr453 is hydrogen bonded to the oxygen of 

the carbonyl group of Leu451 and the coiled-coil lid is completed by participation of 

Val456, which lies one helix turn down from Leu451. The residues Thr452-Val456 

are considered to all be involved in the coiled-coil cap formation and they are highly 

conserved in FIPs.  

Three distinct FIP2-Rab11 complexes are examined in the following work. 

The complex termed ”A1” consists of two Rab11a1-173 wild-type fragments and the 

Rab11-FIP2410-512 wild-type fragment homodimer. The complex designated as 

“Classic” corresponds to two Rab11a1-173 Q70L mutant fragments bound to the 

Rab11-FIP2410-512 wild-type fragment homodimer. The “M1” complex is composed of 

two Rab11a1-173 Q70L mutant fragments bound to the Rab11-FIP2410-512 V456G 

L457G twice-mutated fragment homodimer. In addition two Rab11-FIP2 homodimers 

were investigated. These were the full-length versions of the Rab11-FIP2 dimer 

fragments present in the Classic and M1 complexes and, therefore, they are referred to 

as either the Classic or M1 homodimer. Here, the Classic homodimer is just the 

Rab11-FIP2 wild-type version. 

The purpose of performing the Rab11a1-173 Q70L mutation is to “activate” the 

Rab11a fragment towards complex formation with the Rab11-FIP2 homodimer, such 

that the Rab11a fragment adopts a conformation similar to the GTP-Rab11-FIP2 

version, with the switch 2 domain delocalised from the switch 1 domain, allowing the 

switch 1 domain to interact with the Rab11-FIP2 homodimer. It is understood, 

therefore, that the A1 complex sample will not consist of a heterotetrameric complex 

at all, but rather will be made up from a mixture of the Rab11-FIP2410-512 wild-type 

fragment homodimer and non-interacting Rab11a1-173 wild-type fragments, since the 

Rab11a fragment is present in its inactive GDP form and complex formation with 

Rab11-FIP2 will be prevented by the inhibiting effect of switch 2 on switch 1. 
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The reason for replacing the valine and leucine residues of the hydrophobic 

cap of Rab11-FIP2 with glycine residues is to restrict the steric hindrance effects, 

created by the side-chains of valine and leucine, to water molecules from coming into 

contact with the hydrophobic core of the coiled-coil. Glycine is an effective 

replacement because it does not have any side-chain, other than that of a hydrogen 

atom, and, therefore, allows maximum exposure of the hydrophobic core to water 

molecules with mutation of the above residues. 

 

 

 

 

 

Figure VIII.16. Ribbon Model of the FIP2-Rab11 Complex. (Top) Rab11a molecules are yellow and 
magenta, while FIP2 is coloured dark pink and green. Switch 1 and switch 2 are indicated, GTP is 
represented as a stick model, and the conserved Mg2+ ion is drawn as a sphere. The short 310 helix at the C 
terminus of FIP2 (green) is also labelled. (Bottom) View of FIP2-Rab11 rotated 90° in order to show the 
2-fold b axis in the crystal. (Copied from [4]) 
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In order to examine the stabilising effect of the Rab11-FIP2 cap on its coiled-

coil domain, mutants of the complex shown in Figure VIII.16 were created and the 

structures and stabilities of these mutants were then analysed by both CD and FTIR 

spectroscopy.  

 

VIII.B.2 Method  

VIII.B.2.1 Protein expression and purification 

For each individual complex mutant the relevant Rab11-FIP2 and Rab11 plasmids 

were co-transformed into BL21(DE3) cells and the proteins were co-expressed. For 

expression of the Rab11-FIP2 homodimer mutants only the relevant Rab11-FIP2 

plasmid was transformed into the BL21(DE3) cells. Protein expression was performed 

using SeMet Media (Molecular Dimensions) with addition of 100 µg/ml ampicillin 

and 30 µg/ml kanamycin at a temperature of 37 oC. After cell growth had proceeded 

to an OD600 of 0.6 the culture was induced by addition of 0.5 mM IPTG. Cells were 

incubated at 37 oC for a further 3 hours, harvested by centrifugation and stored at –20 

Figure VIII.17. The N-terminal coiled-coil cap for the Rab11-FIP2 homodimer. The 
tyrosine residue 453 can be seen to form a lid over the hydrophobic core with its aromatic 
ring side-chain. The orientation of this side-chain, however, is understood to depend on 
interactions with other cap-forming residue side-chains. (Copied from [4]) 
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oC. Frozen pellets were re-solublised in MBP extraction buffer (20 mM Tris-HCl, 200 

mM NaCl, 5 mM MgCl2 and 10 mM β-mercaptoethanol (pH 7.8)) and then sonicated 

twice for 1 minute at room temperature. Lysates were centrifuged at 20,000 x g to 

remove cell debris and the resultant supernatant was applied to an amylose resin (New 

England Biolabs). Following repeat washing with MBP extraction buffer, the proteins 

were eluted using the same buffer but with the addition of 10 mM maltose. The eluted 

protein was then dialysed against 10 mM Tris buffer (pH 8.0), 25 mM NaCl in the 

presence of rTEV protease (20 µg/ml fusion protein) overnight. The cleaved protein 

was loaded onto an ion-exchange column (MonoQ GL 5/50, GE Healthcare) and a 10-

500 mM NaCl salt gradient was applied over a 20-fold excess column volume. The 

FIP2-Rab11 complex protein fractions were collected, pooled and re-purified using a 

Superdex 200 16/60 column (GE Healthcare) equilibrated in column buffer (10 mM 

Tris-HCl, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT (pH 8.0)). 

 

VIII.B.2.2 Site-Directed Mutagenesis 

Site-directed mutagenesis was performed using the QuikChange kit (Stratagene) using 

a pEGFP-C1 Rab11-FIP2 template and incorporation of the mutations was confirmed 

by sequencing. In total three varieties of the FIP2-Rab11 complex were produced; 

Rab111-173 WT complexed to Rab11-FIP2410-512 WT; Rab111-173 Q70L complexed to 

Rab11-FIP2410-512 WT; and Rab111-173 Q70L complexed to Rab11-FIP2410-512 V456G 

L457G. Two varieties of full-length Rab11-FIP2 homodimer were expressed; Rab11-

FIP WT and Rab11-FIP2 V456G L457G. 

 

VIII.B.2.3 CD spectroscopy 

All CD spectra were acquired on a Model 215 CD spectrometer. The Classic and M1 

CD spectra were acquired using a 0.01 mm pathlength quartz demountable 

rectangular cell at a temperature of 25 oC, a bandwidth of 1 nm, an averaging time of 

1 sec, a scan increment of 0.2 nm and as an average of 12 scans. Both spectra were 

background corrected with the CD spectrum of the buffer flow-through from the 

protein purification step, as acquired under identical spectral parameters as those of 

the sample. Protein concentration determination was by Bradford assay. Protein CD 

melt experiments were performed by recording the CD of each protein at 222 nm 

while varying the temperature from 20 to 90 oC in 2 oC increments using a 10 mm 
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pathlength quartz cell. A bandwidth of 1 nm and an averaging time of 20 s were used 

for each melt, with an equilibration time set at 2 minutes between each temperature 

change step. The protein concentration for each of the three melts was adjusted so that 

the CD222 at the start temperature of 20 oC was the same in each case. T1/2 values were 

calculated for each melt by observing the temperature at which the CD222 had 

decreased by 50 % of the total CD222 decrease in going from 20 to 90 oC. For all CD 

measurements the dynode voltage was monitored and kept to within the instrument 

specification of 500 volts. 

 

VIII.B.2.4 FTIR spectroscopy 

All FTIR spectra were collected by the ATR technique using the BioATR II 

accessory, on a Tensor 27 FTIR spectrometer and using the OPUS software. Spectra 

were acquired in double-sided forward-reverse absorption mode by subtracting the 

transmittance spectrum of the protein sample buffer solution from the sample 

transmittance. Spectral parameters were set at a Blackman-Harris Fourier transform, 

an aperture of 6 mm, a resolution of 4 cm-1, a wavelength range of between 1000-

4000 cm-1, a temperature of 20 oC and as an average of 700 scans. The BioATR II 

was purged with dry air before and during spectral acquisition. Spectra were 

processed by zeroing at 1750 cm-1 and correcting for atmospheric gas contribution 

using an existing software algorithm. Spectral second derivatives were calculated 

within the OPUS software as a band-narrowing technique. 

Protein melt experiments were conducted by ramping the temperature of the 

BioATR II accessory using a water bath in increments over the temperature range of 

the melt. A temperature equilibration time of 2 minutes was set for each temperature 

step. Protein concentrations were adjusted such that they were approximately equal 

for the different melt experiments. The Classic FIP2-Rab11 complex melt was 

performed over a temperature range of 20-90 oC in 5 oC increments. The M1 complex 

melt was over a temperature range of 20-85 oC with an increment of 5 oC between 20-

50 and 65-85 oC and 1 oC between 50-65 oC. The Classic and M1 homodimer melts 

were between 20-85 oC with a 5 oC increment between 20-30 and 60-85 oC and a 1 oC 

increment between 30-60 oC. To account for the variable protein adsorption to the 

ATR crystal surface with temperature increase, the amide-I band was area-normalised 

at each temperature increment before the calculation of second derivative spectra. The 
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helix stability profiles from FTIR data were created using a Quant algorithm 

individually generated for each melt experiment. This made use of the helix band 

areas of the second derivative FTIR spectra in order to establish the helix content 

present at each temperature as a function of the total change in helix content over the 

entire melt temperature range. 

 

VIII.B.3 Results 

VIII.B.3.1 Rab11-FIP2 Complex CD Spectra 

Figure VIII.18 shows the CD spectral overlay of the Classic and M1 FIP2-Rab11 

complexes. For both spectra the signal to noise ratio is good and the CD errors are 

low in both cases, although they do increase slightly in moving from higher to lower 

wavelengths. Unfortunately accurate protein concentration determination was not 

performed and both spectra were created using values obtained from the Bradford 

technique. This creates the danger of introducing an error into the absolute magnitude 

values of both protein CD spectra. However, the ATR-FTIR analyses of both samples 

reveal them to be of almost identical protein concentration (Figure VIII.19) and so an 

accurate comparison of the two CD spectra can be made. 

The CD spectra of the Classic and M1 complexes are very similar and from 

each spectrum it can be seen that both complexes are relatively rich in α-helix 

content, as indicated by the magnitude of the negative CD bands at 222 and 208 nm. 

From the relative magnitudes of these negative bands to the positive CD band(s) 

below 200 nm, both complexes appear to contain a minor, but considerable, degree of 

random coil content. The broadness and band-shape of these positive CD bands 

suggest that they are a composite of more than one band. Since both α-helices and β-

sheets display positive CD bands in this region, which have different band maxima, it 

would seem that each complex has some β-sheet content. There does occur a quite 

sizeable difference between the two CD spectra at the low wavelength end of each 

spectrum and this may reflect a real difference of structure between the Classic and 

M1 complexes. However, it should be noted that the CD error values are largest in 

this region. 

As discussed above for the case of Rab11-FIP3, the presence of a coiled-coil 

super-secondary structure within a protein has the effect of altering the magnitude 
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ratios of the 222 and 208 CD bands resulting from the α-helical secondary structure, 

since a coiled-coil domain involves slightly distorted α-helix segments. Both 

complexes have a 222:208 band ratio of 1.12, a value that is closer to the coiled-coil 

expected value of 1.03 than to the non-interacting helix value of 0.83. However, the 

presence of other structures within each complex will have an effect on this 222:208 

ratio and, as such, this value cannot be taken to be purely reflective of the extent of 

coiled-coil interaction within the complex. In spite of this, the similarity of the 

222:208 ratios of the Classic and M1 complexes indicate a lack of any significant 

difference of coiled-coil content.  
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Figure VIII.18. CD spectrum of Classic and M1 FIP2-Rab11 complexes. The Classic CD and 
CD error are plotted in red and the M1 CD and CD error are in black. 
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VIII.B.3.2 Rab11-FIP2 Complex FTIR Spectra 

The ATR-FTIR absorption spectral overlay in the amide-I band region of both the 

Classic and M1 complexes is shown in Figure VIII.19. The similarity of both amide-I 

bands is consistent with the results of the CD analysis. The approximately equal 

intensities of both bands reveals how similar the protein concentration is for both the 

Classic and M1 protein samples. From the bandshape of each amide-I spectra both 

complexes can be seen to contain significant levels of both α-helix and β-sheet 

secondary structures, as revealed by the band intensities at around 1655 and 1632 cm-

1, respectively. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.19. The amide-I bands of the Classic and M1 Rab11-FIP2 complexes.
Shown are the absorption (a) and 2nd derivative amide-I spectral overlays (b) of the 
Classic (red) and M1 (black) complexes. 
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The amide-I 2nd derivative spectrum reveals a major band at 1652 cm-1, 

corresponding to the α-helical amide-I signal. The next most intense band is that 

located at 1632 cm-1 produced by the presence of intra-molecular β-sheet structure. 

The minor β-sheet band is also likely present within the band occurring around 1680 

cm-1. The majority of the intensity of this band, however, probably results from the 

occurrence of β-turn regions within both complexes. The lack of protein inter-

molecular β-sheet aggregates within both samples is revealed by a general absence of 

band intensity between 1620-1625 cm-1. The most notable difference between the two 

spectra is the seemingly higher α-helical content of the Classic complex compared to 

the M1 complex, as seen from the relative intensities of each of the bands centred at 

1652 cm-1.  This difference can also be detected, although less noticeably, in the CD 

data (Figure VIII.18). 

 

VIII.B.3.3 Rab11-FIP2 Homodimer FTIR Spectra 

The structural perturbation created by mutating two of the coiled-coil cap-forming 

residues of the Rab11-FIP2 protein was also investigated by recording the ATR-FTIR 

spectra of both the Classic (Figure VIII.20) and M1 (Figure VIII.21) full-length 

Rab11-FIP2 homodimers. As expected, comparison of the respective homodimers 

with their complex equivalents shows, from the increased relative intensity of the 

helix amide-I component, that the homodimers contain considerably higher fractions 

of α-helix over other structures than do the complexes. Performing the line-narrowing 

second derivative procedure for both spectra allows comparison of the fractional 

contents for both homodimers (Figure VIII.22). Similar to the case of the complexes, 

there exists a close similarity between the second derivative spectra for both proteins. 

In contrast to that seen for the complexes, the M1 homodimer seems to contain a 

slightly higher proportion of α-helix than the Classic. This is also against expectation, 

since cap mutation would be expected to destabilise the α-helix segments involved in 

forming the coiled-coil for the M1 mutant. 
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Figure VIII.20. Classic Rab11-FIP2 homodimer amide-I FTIR absorption spectrum. 

Figure VIII.21. M1 Rab11-FIP2 homodimer amide-I FTIR absorption 
spectrum. 
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VIII.B.3.4 Rab11-FIP2 Complex CD Melts 

It often occurs that the effect of performing a mutation of one or two residues is not 

sufficient to substantially disrupt the secondary or tertiary structure of an entire 

domain, but instead the biggest influence of such mutations is to alter the stability of 

the domain. In order to establish the relative stabilities of each of the complexes a CD 

melt experiment was conducted, where the CD signal at 222 nm was recorded as a 

function of temperature. It was decided to monitor the change in ellipticity at 222 nm 

because this is a characteristic wavelength for the α-helix CD and the mutations 

performed on the Rab11-FIP2 monomers were such as to disrupt the helical regions of 

each protein. Inspection of Figure VIII.23 reveals a large shift in the stability of the 

M1 complex relative to the Classic. For the case where the coiled-coil cap has been 

disrupted by mutations it would be expected that the resulting complex would display 

a less stable CD melt curve, since the stabilising effect of the coiled-coil hydrophobic 

core is likely to be lessened in such an instance. The protein CD melts are, therefore, 

consistent with the identification of the mutated residues as being highly important for 

the formation of a hydrophobic-core-protecting cap. The intermediate stability of the 

A1 mutant is evidence that the formation of the FIP2-Rab11 complex confers greater 

Figure VIII.22. Classic and M1 homodimer second derivative area-normalised amide-I FTIR 
spectral overlay. The Classic and M1 spectra are plotted in red and black, respectively. 
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stability to the Rab11-FIP2 homodimer and/or Rab11a monomers than if these 

proteins existed as non-interacting proteins in solution. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

VIII.B.3.5 Rab11-FIP2 Complex FTIR Melts 

The relative stabilities of the Classic and M1 complexes were also investigated by 

ATR-FTIR protein melt experiments. Figure VIII.24 shows the amide-I bands 

recorded during both melt experiments. A greater number of spectra are present 

within the M1 overlay since the temperature interval between scans was smaller for 

the intermediate temperatures of the M1 melt. The variation in band intensity seen in 

Figure VIII.24a and b is due to adsorption of the protein to the ATR-crystal surface. 

Figure VIII.24c and d correct for this by normalising the amide-I band area. The 

variation in the spectral series at frequencies higher than 1700 cm-1 in Figure VIII.24d 

result from the occurrence of a slight negative water signal due to improper 
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Figure VIII.23. CD temperature melt experiments of the three FIP2-Rab11 complexes. The 
ellipticity was recorded at 222 nm for each temperature for the three complexes. The Classic, M1 
and A1 temperature melts are plotted as black, red and blue, respectively. T1/2 values for the 
Classic, M1 and A1 complexes were calculated as 53.5, 47 and 51 oC, respectively. The CD error 
values are overlaid along the zero-line with the same colour scheme as given above. 
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referencing of the aqueous background. Although this would introduce some error 

into the amide-I bandshape, inspection of Figure VIII.24d shows that the amide-I 

bandshape remains interpretable. From the blue coloured spectra in both Figure 

VIII.24c and d it can be seen that both the Classic and M1 complexes experience a 

clear shift in structure when the temperature is varied from 20 to 30 oC. This is 

consistent with the Rab11a proteins within each complex having an inherent 

flexibility in the switch 1 and 2 regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.25 shows the second derivative spectra of the complex melt 

experiments shown in Figure VIII.24. In both cases a decrease in the bands 

corresponding to α-helix and β-sheet content, located at 1652 and 1632 cm-1, 

respectively, occur with increased temperature. The emergence of a band at 

approximately 1620 cm-1 confirms the formation of intermolecular β-sheet aggregates 

at elevated temperatures during both melt experiments. 

 

 

Figure VIII.24. Classic and M1 FIP2-Rab11 complex amide-I absorption FTIR melts. The blue and 
red spectra correspond to the low and high temperature extremes, respectively, of the a Classic 20-90 oC 
and b M1 20-85 oC melts, with the kaki spectra taken at intermediate temperatures. c and d are the same 
melt experiments as a and b where the amide-I band has been area-normalised and the first three 
temperature step spectra are coloured blue.  
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Using a precalibrated Quant model, the stability of the helix contents of both 

complexes can be plotted as a percentage of the total loss of α-helicity experienced 

during the melt experiment. Figure VIII.26 compares the stability of the Classic and 

M1 α-helix content and from this it can be seen that both complexes appear to contain 

helices of roughly equal stabilities.  

 

 

 

Figure VIII.25. Classic and M1 FIP2-Rab11 complex amide-I area-normalised FTIR second 
derivative spectral overlay. The spectra corresponding to the first two temperature steps have been 
excluded from both the a Classic and b M1 overlays. 
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Figure VIII.26. Classic and M1 FIP2-Rab11 complex helix stability. The Classic and M1 curves 
are plotted in red and black, respectively 
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VIII.B.3.6 Rab11-FIP2 Homodimer FTIR Melts 

ATR-FTIR melt experiments were also performed for the Classic and M1 Rab11-

FIP2 homodimers and the spectral overlays of both are shown in Figure VIII.27. 

Similar to the complex melts, both the Classic and M1 homodimers show a 

degradation of α-helix and β-sheet content and the formation of protein aggregates 

when heated, as revealed by the decreased intensity of bands at 1652 and 1632 cm-1 

and the increased intensity of a band at 1620 cm-1, respectively, in the second 

derivative spectral overlays (Figure VIII.27c and d). Figure VIII.28 compares the 

helix stabilities of the homodimers and from this it appears that the Classic helix 

content has a slightly greater stability than that of the M1 homodimer at temperatures 

beyond 36 oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII.27. Classic and M1 Rab11-FIP2 homodimer ATR-FTIR melts.  The area-normalised 
amide-I absorption spectral overlays for the a Classic and b M1 melts are presented along with the c
Classic and d M1 second derivative spectra for the temperature range 20-85 oC. 
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VIII.B.4 Discussion 

The CD and FTIR analyses of the FIP2-Rab11 complexes are consistent both with 

each other and with the x-ray crystal structure illustrated in Figure VIII.16, in that the 

spectra contain bands at the expected locations and intensities to account for the 

secondary structures present in the crystallised complex. Although small differences 

between the Classic and M1 complexes were present in both the CD and FTIR 

spectra, giving the possibility that the Classic complex contains slightly more α-helix 

content than that of the M1 complex, the magnitude of these differences are too small 

to lend confidence to such a conclusion and, therefore, both complexes are considered 

to have similar secondary structures. Detection of the presence of the coiled-coil 

domain within each complex was not possible by CD spectroscopy because of 

interference from the CD signals of residues within each complex not involved in the 

coiled-coil domain. In spite of this, a comparison of the Classic and M1 complex CD 

spectra revealed that the 222:208 ratio was equal in both cases and, therefore, it can 

be concluded that mutation of the coiled-coil cap residues to produce the M1 complex 

did not prevent the formation of the coiled-coil domain and, consequently, the 

heterotetrameric complex. This suggests that either the structural effects on the coiled-

coil cap produced by carrying out the mutations to generate the M1 complex were of 
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Figure VIII.28. Classic and M1 Rab11-FIP2 homodimer helix stability. The Classic 
and M1 curves are plotted in red and black, respectively 
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only minor importance in terms of exposing the hydrophobic core to the surrounding 

water molecules or that the hydrophobic core is not one of the main stabilising forces 

behind the formation of the coiled-coil domain. The former conclusion would seem 

the more likely and, therefore, it appears that the coiled-coil cap might be able to 

tolerate considerable structural variation and yet still provided a barrier to keep out 

water molecules. The FTIR spectra of the Classic and M1 homodimers were also 

extremely similar, confirming that the cap mutations do not prevent formation of the 

M1 homodimer or significantly distort its structure.  

An examination of the stability of the coiled-coil region in both the Classic 

and M1 complexes by both CD and FTIR produced conflicting results. Both the CD 

and FTIR demonstrate approximate agreement for the temperature range over which 

the helix content for both complexes becomes destabilised. The CD data suggests that 

the Classic complex contains considerably more stable helix content than that of the 

M1 complex. However, when examined by FTIR both complexes appear to have helix 

contents of approximately equal stabilities. This result is somewhat unexplainable, 

although it is possible that the complexes show varying stabilities when in solution, as 

is the case for the CD measurement, or when adsorbed onto the ATR-crystal surface. 

Adding further confusion to matters is that the FTIR analysis of the helix stabilities of 

the Classic versus M1 homodimers reveals that the Classic homodimer helix content 

is somewhat more stable than that of the M1 homodimer. In conclusion, it would 

appear that if the CD data is to believed the coiled-coil cap plays an important role in 

stabilising the coiled-coil domain of the FIP2-Rab11 complex, but according to the 

FTIR data this stabilising effect is only marginal. 
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Chapter IX 

An Investigation into the Structure of a Novel 
Anhydrobiotic Nematode DJ-1 Protein 

 

IX.1 Introduction 

Studies of anhydrobiosis within nematodes led to the discovery of an anhydrobiotic 

protein within the Panagolaimus superbus species that belongs to the DJ-1/ThiJ/Pfpl 

protein superfamily. The human form of DJ-1 has been considerably researched since 

it was found that mutations within the DJ-1 gene were responsible for the recessively 

inherited Parkinson’s disease. The structure of human DJ-1 has been solved by x-ray 

crystallography and is shown in Figure IX.1.[2] Other DJ-1 orthologs are to be found 

in a variety of eukaryotic species and these are reported as being responsible for a 

variety of functions. For example, DJ-1 proteins have been associated with cellular 

transformation [3], transcriptional effects [4], control of mRNA stability [5], 

chaperone activity [6] and response to oxidative stress [7; 8]. DJ-1 proteins show 

sequence homology to numerous proteins, which are related by their possession of a 

ThiJ domain (α/β/α sandwich motif) and amongst these are included protein 

chaperones [9], catalases [10], proteases [11; 12]and ThiJ kinases [13; 14]. Similar to 

the glutamine amidotransferase protein superfamily (GAT), members of the DJ-

1/ThiJ/PfpI superfamily have an overall α/β sandwich structure, as can be seen for 

human DJ-1 from Figure IX.1.[10; 15] Bandyopadhyay and Cookson performed a 

detailed analysis of several hundred sequences of the DJ-1/ThiJ/PfpI superfamily 

members and found the bacterial ThiJ genes to be the nearest homologous primary 

sequences.[15] From this they supposed that DJ-1 might have evolved from thiamine 

synthesis genes that have been dispensed with in eukaryotes. 
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The neurodegenerative Parkinson’s disease (PD) is characterised by the loss of 

dopaminergic neurons in the substantia nigra and by the presence of intracellular 

inclusions called Lewy bodies.[16] Lewy bodies are found to be particularly enriched 

for α-synuclein fibrils. α-synuclein is a natively unfolded protein that exists in high 

concentrations in dopaminergic neurons and autosomal mutations within α-synuclein 

lead to a rare form of primary Parkinsonism.[17] Human DJ-1 has been found to 

perturb α-synuclein aggregate formation in a redox-dependent manner by functioning 

as a molecular chaperone.[18] It is, therefore, thought that DJ-1 exerts its effect on 

Parkinson’s disease by preventing the formation of Lewy bodies, which are the result 

of α-synuclein aggregation - a process that is exacerbated under oxidative stress 

conditions. Such oxidising conditions are present within dopaminergic neurons, due to 

the highly reactive nature of dopamine.[19-21]   

Human DJ-1 is thought to respond to oxidative stress by becoming oxidised at 

its cysteine residues, leading to the formation of cysteine sulfinic or sulfonic acids, 

and this is particularly true for the highly conserved solvent-exposed cysteine-106 

residue.[22; 23] The modification of these residues is understood to have 

consequences relative to the functioning of the protein. Studies performed on cell 

cultures and animal models suggest that DJ-1 function may be modulated by 

Figure IX.1. Ribbon representation of the secondary structure of human DJ-1. 
The α-helix and β-sheet regions are coloured red and yellow, respectively. (PyMol) 
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oxidation of cysteine residues and that this alteration potentially leads to the activation 

of chaperone activity.[18; 24; 25] Shendelman et al. performed mutation knockdown 

investigations into the importance of Cys-106 and Cys-53 for the chaperone 

functionality of human DJ-1.[18] It was discovered that Cys-53 was essential for DJ-1 

chaperone activity in preventing α-synuclein aggregation, whereas Cys-106 was not.  

Zhou et al. went on to demonstrate that oxidation of Cys-106 in human DJ-1 was 

essential for its chaperone activity towards α-synuclein and that where such oxidation 

did not occur that native DJ-1 had no effect upon α-synuclein fibrillation.[25] Also, 

Zhou and Freed found that DJ-1 up-regulated glutathione synthesis during oxidative 

stress and inhibited human A53T α-synuclein toxicity through increased expression 

of heat shock protein 70, leading the authors to conclude that DJ-1 has multiple 

specific mechanisms for protecting dopamine neurons from cell death.[26] In 

addition, human DJ-1 has recently been discovered to enhance the cellular oxidative 

stress response by regulating the activity of the antioxidant transcription factor Nrf2 

[27] and it may also exert additional influence over cell fate through its involvement 

in the PTEN/Akt signalling pathway.[28; 29] 

Having discovered a novel DJ-1 protein within panagolaimus superbus (P. sup 

DJ-1) , it was interesting to examine this protein’s structure and to compare it to the 

structure of human DJ-1. It was also valuable to determine whether this protein was 

capable of adopting a similar function to that of the human variety and, as such, its 

thermo-stability and structural response to oxidation was examined.  

 

IX.2 Method 

IX.2.1 Protein synthesis and purification 

A pET-30-DJ-1 plasmid was generated by ligating the entire cDNA coding region of 

DJ-1 from p. sup. into a pET-30 Ek/LIC vector. The plasmid was transformed into 

BL21 (DE3) pLYS E. coli cells, a single colony of these cells was used to inoculate 

an LB broth containing kanamycin (Sigma) and the culture was grown at 37 oC until 

the OD600 had reached 0.6. This culture was used to inoculate 100 ml of LB broth 

containing kanamycin and grown at 37 oC to an OD600 of 0.8. Induction was by 

addition of 1 mM IPTG (Sigma) with incubation at 37 oC for 4 hrs. Cells were 

harvested by centrifugation at 4 oC and stored at –20 oC until needed. After defrosting, 
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cells were lysed using Bugbuster reagent and Benzonase Nuclease (Merck 

Biosciences). Protein purification was achieved initially by using a vector encoded 

His-Tag and a Ni-NTA resin column (Merck Biosciences). Before a second 

purification step was applied to the eluted protein, using an AKTA purifier equipped 

with HiTrap Q HP anion exchange column, the eluted protein was dialyzed against 75 

mM Tris 10 mM NaCl pH 8.0 (bind buffer). After loading, the ion exchange column 

was washed with five column volumes of bind buffer and eluted with a shallow 

gradient of 0-50 % of 75 mM Tris 1 M NaCl pH 8.0 in 15 column volumes. Purified 

protein eluted as a single peak at 35 % gradient. Protein purity was analysed by SDS-

PAGE gel electrophoresis (12 %) using a Precision Plus All Blue marker (Biorad) 

with Coomassie blue staining. The presence of recombinant P. sup DJ-1 was 

confirmed by both Western Blot - using anti-His tag antibody (Merck Biosciences) 

and 3,3’-Diaminobenzidine (DAB) (Sigma) - and MALDI-TOF mass spectrometry 

procedures (data not shown). The sample was prepared for CD analysis by dialyzing 

against 10 mM PBS, 100 mM NaF pH 7.4. Samples were concentrated to a protein 

concentration of approximately 2 mg/ml using a 10K MW cut-off Amicon Ultra filter 

(Millipore), as measured by A280 and an extinction coefficient estimated from the 

protein primary sequence by the Protparam program 

(http://www.expasy.ch/tools/protparam.html). 

 

IX.2.2 CD Spectroscopy 

Spectra were acquired on a Model 400 CD Spectrometer (Aviv Biomedical), using a 

rectangular demountable quartz cell of 0.01 cm pathlength (Hellma UK), as an 

average of 10 scans, in the wavelength range 260-178 nm (250-190 nm where DTT 

was present), at a temperature of 23 oC, with a bandwidth of 1 nm, an acquisition time 

of 1 s and at intervals of 0.2 nm. Spectra were background corrected by subtracting 

the CD spectrum of the protein sample buffer solution, which was acquired under 

identical conditions to that of the sample spectrum. Spectra were acquired with DJ-1 

in its native state, in the presence of 600 mM H2O2 in its oxidised state and in the 

presence of 5 mM DTT in its reduced state. CD222 melt experiments were performed 

for DJ-1 in both its native and oxidised state using a 1 cm quartz cell (Hellma UK) 

equipped with a magnetic stirrer, at a wavelength of 222 nm, with a spectral 

acquisition time of 1 s, over the temperature range of 10-88 oC, with a temperature 



                             An Investigation into the Structure of a Novel Anhydrobiotic Nematode DJ-1 Protein 

265 

step of 3 oC and with a 2 minute equilibration time at each temperature prior to 

acquisition. The T1/2 value was determined as the temperature at which the CD222 

intensity had decreased by half of its total intensity shift over the temperature range of 

the experiment. All samples were thoroughly degassed before spectral acquisition. 

Sample protein concentration determination was by the QAAA method (Cambridge 

University) and was taken as an average of 2 analyses. Quantitative secondary 

structure analysis was performed using the SELCON3, CONTIN/LL, CDSSTR, 

VARSLC and K2D programs and the DichroWeb server. 

 

IX.2.3 FTIR Spectroscopy  

FTIR spectra were acquired using a Tensor27 FTIR spectrometer equipped with a 

sensitive N2 cooled MCT detector (Bruker). Transmission spectra were acquired using 

an AquaSpec transmission cell accessory (Bruker), as an average of 150 scans, at a 

resolution of 4 cm-1, with an aperture of 0.5 cm, over a wavenumber range of 4000-

1000 cm-1, with a Norton-Beer Fourier transform apodization function and at a 

temperature of 20 oC. Absorption spectra were generated by subtracting the 

transmission spectrum of the sample buffer solution (obtained using the same 

acquisition parameters) from that of the sample.  

FTIR melt experiments were performed using a BioATR-II ATR accessory 

(Bruker), as an average of 500 scans, at a resolution of 4 cm-1, with an aperture of 4 

cm, over a wavenumber range of 4000-1000 cm-1, with a Blackman-Harris Fourier 

transform apodization function, over a temperature range of 13-88 oC and with a 2 

minute equilibration time. Absorption spectra were generated by subtracting the 

spectrum of the buffer from that of the sample at each temperature. Samples were 

thoroughly degassed before injection into either the AquaSpec or BioATR-II cells. 

 All spectra were post-processed within the OPUS software (Bruker) using an 

atmospheric correction algorithm to remove any water vapour bands from the protein 

spectrum. Spectra were zeroed between 1800-1750 cm-1, area-normalised between 

1700-1600 cm-1 (for the protein melt spectra only) and the spectral 2ND derivatives 

were then calculated. The transmission mode spectrum was used to determine the α-

helix and β-sheet content of the sample protein using Quant macrofiles that employ a 

protein spectral database within the OPUS software. The protein aggregation profile 

was determined by generating a Quant macrofile that analysed the area of a band 
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between 1626-1620 cm-1 in the 2ND derivative spectra. T1/2 values were obtained by 

observing the temperature at which the intensity of this band had increased to half of 

its maximal value. 

 

IX.3 Results 

IX.3.1 P. sup. DJ-1 Protein Sample Purity 

Figure IX.2a shows the SDS-PAGE gel analysis of a P. sup DJ-1 protein sample. The 

presence of an intense band at approximately 25 kDa in lanes 3-8 is evidence of the 

isolation of a highly concentrated P. sup DJ-1 sample. The lack of any other 

significant bands within these lanes suggests that the protein was present in high 

purity. Figure IX.2b reveals the results of the ion-exchange purification procedure. 

The presence of a single peak in the UV280 and UV264 time resolved absorption; along 

with the narrow peak width suggests that the protein sample is of excellent purity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IX.2. SDS-PAGE gel and ion exchange purification of P. sup DJ-1. 
a For the SDS-PAGE gel the protein ladder is shown in lane 1 and the purified 
protein is in lanes 3-8. b The sample elution fraction from the ion exchange 
column shows both a single UV280 and UV264  peak that occurred after 45 
minutes flow time. 
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IX.3.2 Structural Prediction of P. Sup. DJ-1 

X-ray crystallography studies of human DJ-1 reveal that the protein consists of a 

dimer composed of two identical monomeric peptide units.[30] Residues Met-17, Ile-

21, His-126, Pro-127, Pro-158 and Phe-162 are thought to be involved in dimer 

formation and these residues are completely conserved within human, rat, mouse, 

Xenopus, Drosophila and nematoda DJ-1 proteins.[31] Of these, residues Met-17 and 

Phe-162 are considered to be essential for dimer fomation because they represent the 

core of the monomeric hydrophobic interaction. Figure IX.3 compares the primary 

sequences of human DJ-1 and the nematode Caenorhabditis elegans (C. elegans) and 

Panagolaimus superbus DJ-1, where the residues that are involved in forming the DJ-

1 dimer are highlighted in red. From this it seems plausible that P. sup DJ-1 exists as a 

dimer, since all but two of the residues listed above are present within the P. superbus 

primary sequence. However, this conclusion is made somewhat doubtful due to the 

absence of residue Met-17 within P. sup DJ-1 and, in addition, the hydrophobic 

methionine is replaced by a hydrophilic threonine residue. A similar replacement of 

the hydrophobic His-126 with the hydrophilic tyrosine residue for P. sup DJ-1 raises 

further doubts about the dimeric nature of P. sup DJ-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1                                              21                                                      41 61         81                 
P.Sup MTTKILVIGFPETEETELII TVDILRRTELNVTIANLNDE KYFT CVQKTTIKADKLFKDV ENETFDAVIIPGGPGSYKVA NNDRLVTFLKKHDEAG KLLA

Human ASKRALVILAKGAEE XETVI PVDVXRRAGIKVTVAGLAGK   DPVQCSRDVVICPDASLEDA     KKEGPYDVVVLPGGNLGAQN   LSESAAVKEILKEQENRKGL

C. elegans MAQKSALIILAAEGAEE MEV   IITGDVLARGEIRVVYAGLD      GAEPVKCARGAHIVPDVKLE     DVETEKFDIVILPGGQPGSN        TLAESLLVRDVLKSQVESGG

101                                          121                                                       141                                                  161        181
P.Sup AICGAPVIFAQNKIGEGGKM TSYPNDKEKIEKAGFVYDEL DVVVSNNIVTSRA PGTAFEF ALKLVEILVGETTSMDLAKT LLYVQ

Human IAAI CAGPTALLAHEIGFGS      KVTTHPLAKDKXXNGGHYTY     SENRVEKDGLILTSRGPGTS     FEFALAIVEALNGKEVAAQV    KAPLVLK

C. Elegans LIGAICAAPIALLSHGVKAE     LVTSHPSVKEKLEKGGYKYS        EDRVVVSGKIITSRGPGTAF EFALKIVELLEGKDKATSLI      APMLLKL

a

b

Figure IX.3. DJ-1 dimer formation. a A stereo pair of a ribbon diagram of the human DJ-1 dimer. 
The ribbons are coloured blue and green for monomer A and B, respectively, and the four structural 
elements involved in the dimer formation are labelled in red. The β3 domain is formed upon 
dimerization. b Comparison of the primary sequences of human , P. sup and C. elegans DJ-1. The 
residues important for dimer formation are coloured red and the cysteine residues are shown as bold 
and underlined. Where the dimer forming residues are not conserved within P. sup DJ-1 the replacing 
residue is shown in green.  
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Figure IX.4 shows the predicted secondary structures of P. sup. and human 

DJ-1 from their primary structures, along with the crystal structure of human DJ-1 

from x-ray crystallography.[2] Comparing the predicted and x-ray structure of human 

DJ-1 reveals the accuracy of the PROF program in predicting secondary structure and 

it is clear that there exists a good correlation between the predicted and 

experimentally determined structure for human DJ-1. Comparing the predicted 

structure of P. sup DJ-1 with the crystal structure of human DJ-1 reveals a high level 

of structural homology between the two. It is likely, therefore, that P. sup DJ-1 adopts 

a very similar secondary structure to human DJ-1.  

 
 

 

 

 

 

 

 

 

 

 

 

IX.3.3 CD Analysis of P. sup DJ-1 Secondary Structure 

The CD spectrum of P. sup DJ-1 is characteristic of a well-structured α/β mixed 

protein, whereby the typical helix band with minima at 222 and 208 nm is present, 

along with a disproportionately intense positive band at wavelengths shorter than 200 

nm - indicating the presence of significant sheet content (Figure IX.5). The CD error 

values in Figure IX.5 are very small, even at the short wavelength region of the 

spectrum. Table IX.1 shows the results of analysing the native DJ-1 spectrum shown 

in Figure IX.5 using the programs contained within the DichroWeb software. Since 

the CD spectrum was acquired to 178 nm, each of the eight protein databases could be 

used in conjunction with the SELCON3 and CONTIN/LL programs. The software 

would not allow analysis below 185 nm when using the CDSSTR program, however, 

and this prevented the use of reference sets 1, 2 and 5 with this program. 

 

 

Figure IX.4. Comparison of the primary sequence of P. Sup and human DJ-1. The predicted 
secondary structure of P. Sup DJ-1 is shown (PROF)[1], along with the x-ray crystal and predicted 
secondary structures of human DJ-1 [2], with β-sheet and α-helix residues coloured yellow and red, 
respectively, and loop region residues coloured green. For the predicted secondary structures, residues 
coloured black correspond to protein regions where the PROF program could not assign secondary 
structure. 

1                                21                                          41                                                  61                                                      81   
P.Sup Pred. MTTKILVIGFPETEETELII T VDILRRTELNVTIANLNDE KYFTCVQKTTIKAD KLFKDV ENETFDAVII PGGPGSYKVA NNDRLVTFLKKHDEAGKLLA

Human  Act. ASKRALVIL AKGAEEXETVI    PVDVXRRAGIKVTVAGLAGK DPVQCSRDVVICPDASLEDA     KKEGPYDVVVL PGGNLGAQN   LSESAAVKEILKEQENRKGL

Human Pred. ASKRALVILA KGAEEXETVI PVDVXRRAGIKVTVAGLAGK DPVQCSRDVVI CPDASLEDA     KKEGPYDVVVL PGGNLGAQN LSESAAVKEILKEQENRKGL

101                                                121                                                       141     161                181
P.Sup  Pred.      AICGAPVIFAQNKIGEGGKM TSYPNDKEKIEKAGFVYDEL DVVV SNNIVT SRAPGTAFEF ALKLVEIL VGETTSMDLAKT LLYVQ

Human Act.           IAAI CAGPTALLAHEIGFGS KVTTHPLAKDKXX NGGHYTY SENRVEKDGLILTSRGPGTS     FEFALAIVEALNGKEVAAQV    KAPLVLK

Human Pred. IAAICAGPTALLAHE IGFGS KVTTHPLAK DKXXNGGHYTY SENRVEKDGLILT SRGPGTS FEFALAIVEALNGKEVAAQV    KAPLVLK
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For each analysis there is listed the NMRSD value, which approximates the 

success achieved when analysing the protein’s structure by the particular method, 

with lower values indicating a superior analysis. With the exception of the SELCON3 

program, NMRSD values were always within the limits specified for the program in 

order for the result to be valid. However, the NMRSD values for each analysis using 

the SELCON3 program were very close to the 0.25 cut-off limit and SELCON3 

usually produces the largest NMRSD values when compared to the other programs. 

The close comparison between results using the SELCON3 program and those using 

the CONTIN/LL program, for which the NMRSD values were well within the 

required limit, suggests that SELCON3 was capable of analysing the P. sup DJ-1 CD 

spectrum. 

 

 

Figure IX.5. CD spectrum of P. Sup. DJ-1. The black, red and blue spectrum was 
recorded under native, oxidising and reducing conditions, respectively. The CD error values 
are shown in their corresponding colours as overlaid. 
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Program Ref. Set αααα1 αααα2 ββββ1111    ββββ2222 PII Turn Other NMRSD 
K2D - 0.38 - 0.15 - - - 0.47 0.113 

1 0.194 0.127 0.110 0.091 - 0.249 0.221 0.360 
2 0.276 0.070 

(310H) 
0.202 - 0.040 0.124 0.297 0.335 

3 0.203 0.136 0.192 0.083 - 0.202 0.200 0.277 
4 0.243 0.170 0.115 0.066 - 0.145 0.265 0.277 
5 0.353 - 0.207 - 0.068 0.228 0.124 0.314 
6 0.204 0.137 0.196 0.086 - 0.209 0.183 0.259 
7 0.246 0.173 0.119 0.063 - 0.132 0.262 0.258 

SELCON3 

SP175 0.215 0.156 0.139 0.077 - 0.090 0.321 0.346 
1 0.220 0.114 0.142 0.088 - 0.235 0.200 0.109 
2 0.262 0.062 

(310H) 
0.227 - 0.032 0.117 0.300 0.111 

3 0.223 0.128 0.158 0.074 - 0.215 0.201 0.095 
4 0.244 0.167 0.120 0.065 - 0.174 0.230 0.056 
5 0.344 - 0.236 - 0.044 0.224 0.152 0.160 
6 0.228 0.138 0.171 0.078 - 0.231 0.155 0.095 
7 0.241 0.177 0.137 0.075 - 0.202 0.168 0.056 

CONTIN/LL 

SP175 0.238 0.157 0.133 0.077 - 0.097 0.299 0.044 
VARSLC - 0.41 - 0.08 0.12 - 0.14 0.20 0.294 

3 0.26 0.17 0.10 0.09 - 0.23 0.15 0.007 
4 0.29 0.17 0.11 0.06 - 0.15 0.21 0.008 
6 0.27 0.17 0.18 0.09 - 0.19 0.12 0.007 
7 0.27 0.20 0.12 0.08 - 0.14 0.20 0.008 

CDSSTR 

SP175 0.27 0.19 0.10 0.07 - 0.07 0.29 0.012 

 

 

From Table IX.1 it can be seen that results were consistent over the range of 

reference sets used for each program. There was good correlation also between the 

average results from each of the programs. As expected, the CDSSTR program 

estimated the highest total helix content compared to the other programs and also 

achieved the lowest NMRSD values. Given that CDSSTR generally overestimates the 

helix content of proteins, P. sup DJ-1 is likely to contain between 38-42 % α-helix, as 

suggested by the estimates of all other programs. The total β-sheet estimate was 

consistently between 18-24 % over all analyses. Therefore, the proportion of non-

helix/non-sheet structure in P. sup DJ-1 is estimated as between 34-44 %.  

Table IX.2 shows the values estimated for both the number of α-helices and β-

sheets and their average lengths within P. sup DJ-1. Since the protein contains 185 

residues, analysis of its CD spectrum estimates it to contain approximately 7 α-helices 

of an average length of 10 residues and 6.5 β-sheets of an average length of 5.5 

residues. Comparison of the estimated structure of P. sup DJ-1 from its CD spectrum 

with the x-ray crystal structure of human DJ-1 (Figures IX.1 and IX.3) shows 

Table IX.1. Quantitative secondary structure analysis of P. sup DJ-1 from its CD spectrum. 
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excellent agreement for both the number of helices and their average length. Although 

the estimated number of β-sheets for P. sup DJ-1 is considerably less than that 

observed in human DJ-1, this is not surprising considering that many of the human 

DJ-1 β-sheets are comprised of only 2 or 3 residues. If these are excluded, there is 

excellent agreement between P. sup and human DJ-1 in terms of both the number of 

β-sheets and their average length. Taken together, this is strong evidence for both 

proteins having very similar secondary structures. 

 

 

 

IX.3.4 FTIR Analysis of P. sup DJ-1 Secondary Structure 

The amide-I band of P. sup DJ-1 is shown in Figure IX.6 and 2ND derivative analysis 

of the absorption spectrum reveals the presence of two intense bands centred at 1653 

and 1628 cm-1, corresponding to the α-helix and β-sheet amide-I bands, respectively. 

The minor β-sheet band can also be seen in the 2ND derivative spectrum as a band at 

around 1687 cm-1. A band located at approximately 1674 cm-1 most likely results 

from β-turn protein content. Inspection of Figure IX.1 reveals the presence of these 

structures within human DJ-1. A quantitative analysis of secondary structure 

estimates the α-helix and β-sheet content as 37.831 and 29.167 %, respectively.  

 

 

Program Ref. Set H per 100 res. Av. H length (Res) ββββ per 100 res. Av. ββββ length (Res) 
1 3.173 10.099 4.528 4.429 
3 3.396 9.963 4.165 6.615 
4 4.245 9.722 3.276 5.500 
6 3.417 9.973 4.287 6.568 
7 4.315 9.709 3.173 5.738 

SELCON3 

SP175 3.908 9.502 3.827 5.627 
1 3.100 10.312 4.661 4.996 
3 3.800 9.974 3.850 7.143 
4 4.183 9.996 3.359 5.672 
6 3.800 9.974 3.850 7.143 
7 4.308 9.844 3.398 5.810 

CONTIN/LL 

SP175 4.029 9.607 3.882 5.696 
3 4.350 10.039 4.306 4.246 
4 4.202 10.923 3.185 5.586 
6 4.230 10.293 4.278 6.170 
7 5.009 9.306 3.772 5.064 

CDSSTR 

SP175 4.831 9.598 3.289 5.057 

Table IX.2. Analysis of the helical and sheet properties of P. sup DJ-1 from its CD spectrum. The 
average helix (H) and sheet (β) lengths are given in residue numbers (Res). 
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IX.3.5 P. sup DJ-1 Thermo-stability 

Given the close relation between DJ-1 proteins and the heat-shock Hsp31 E. coli 

chaperone protein, the thermo-stability of the helix domains of P. sup DJ-1 is 

significant if a similar functionality is to be ascribed to it. Figure IX.7 shows the 

CD222 nm melt of P. sup DJ-1 and from this a T1/2 value of 76 oC was determined. This 

is in almost exact agreement with the T1/2 value of 75 oC of human DJ-1.[18] Also, 

the P. sup DJ-1 aggregation profile was investigated by way of an FTIR melt analysis 

(Figure IX.8). Figure IX.9 tracks the increasing intensity of the aggregation band, 

centred at approximately 1622 cm-1 in Figure IX.8, and from this a T1/2 value of 70 oC 

was determined. Therefore, P. sup DJ-1 exhibits very high thermo-stability with 

regard to both its helix domains and its aggregation profile and this is consistent with 

what is observed for human DJ-1 and is as expected for a heat shock protein.[18] 
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Figure IX.6. The amide-I band of P. sup DJ-1. The amide-I 
absorption spectrum is shown in a and the 2ND derivative is given 
in b. 
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Figure IX.7. P. sup DJ-1 helix stability from CD. The helix stability of P. sup DJ-1 
alone (solid) and in the presence of 600 mM H2O2 (dashed) is revealed by monitoring 
the ∆ε222 nm as a function of temperature, with a T1/2 value of 76 oC. 

20 40 60 80
Temperature (oC)

-3.0

-2.5

-2.0

-1.5
∆

ε 2
2

2
n

m
(m

o
l-1

cm
-1
)

T1/2 = 76 oC

20 40 60 80
Temperature (oC)

-3.0

-2.5

-2.0

-1.5
∆

ε 2
2

2
n

m
(m

o
l-1

cm
-1
)

T1/2 = 76 oC

1600162016401660168017001720

Wavenumber cm-1

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

0.
01
2

0.
01
4

0.
01
6

A
bs
or
ba
nc
e 
U
ni
ts

 Page 1/1

160016201640166016801700-0
.0
00
06

-0
.0
00
04

-0
.0
00
02

0.
00
00
0

0.
00
00
2

A
bs
or
ba
nc
e 
U
ni
ts

1600162016401660168017001720

Wavenumber cm-1

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

0.
01
2

0.
01
4

0.
01
6

A
bs
or
ba
nc
e 
U
ni
ts

 Page 1/1

160016201640166016801700-0
.0
00
06

-0
.0
00
04

-0
.0
00
02

0.
00
00
0

0.
00
00
2

A
bs
or
ba
nc
e 
U
ni
ts

1600162016401660168017001720

Wavenumber cm-1

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

0.
01
2

0.
01
4

0.
01
6

A
bs
or
ba
nc
e 
U
ni
ts

 Page 1/1

160016201640166016801700

-0
.0
00
06

-0
.0
00
04

-0
.0
00
02

0.
00
00
0

0.
00
00
2

0.
00
00
4

A
bs
or
ba
nc
e 
U
ni
ts

1600162016401660168017001720
Wavenumber cm-1

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

0.
01
2

0.
01
4

0.
01
6

A
bs
or
ba
nc
e 
U
ni
ts

 Page 1/1

160016201640166016801700

-0
.0
00
06

-0
.0
00
04

-0
.0
00
02

0.
00
00
0

0.
00
00
2

0.
00
00
4

A
bs
or
ba
nc
e 
U
ni
ts

a b 

c d 

Figure IX.8. FTIR melts of P. sup DJ-1. The amide-I absorption melt overlays for P. sup DJ-1 
alone and in the presence of 600 mM H2O2 are shown as a and b, respectively, while c and d are 
the corresponding 2ND derivative overlays. Spectra shown as blue, green, orange and red were 
taken at 13, 16-61, 64-85 and 88 oC, respectively. 
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IX.3.6 The effect of Oxidation and Reduction to P. Sup DJ-1 

From Figure IX.5 it can be seen that subjecting P. sup DJ-1 to high concentrations of 

H2O2 (600 mM) or DTT (5 mM) had little or no effect on its secondary structure. 

Also, Figures IX.7, IX.8 and IX.9 show that P. sup DJ-1 does not become destabilised 

under oxidising conditions, either in respect to its helix domains or its ability to 

withstand aggregation beyond the limits of most other proteins. This data supports the 

theory that P. sup DJ-1 functions as a chaperone protein that protects other proteins 

from denaturing under oxidative stress.  

 

IX.4 Discussion 

Table IX.3 shows the x-ray and predicted quantitative secondary structure 

composition of human DJ-1, along with the predicted, CD and FTIR estimates of the 

fractional composition of P. sup DJ-1. From this the PROF program significantly 

underestimated the helix content, but gave very good correlation of sheet content for 

human DJ-1. Good agreement is seen when comparing the FTIR and CD estimation 

of helix content for P. sup DJ-1. In this case the amount of helix is likely to be closer 

to the minimum of the 36-44 % range, since the CDSSTR program is responsible for 

Figure IX.9. Aggregation profile of P. sup DJ-1. The aggregation profile of P. sup
DJ-1 is shown both in the absence (blue) and presence (600 mM) (red) of H2O2, with 
both having a T1/2 value of 70 oC. 
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defining the range’s upper limit and this program tends to over estimate protein helix 

content. The 37.83 % helix content predicted by FTIR supports this interpretation. 

Using CD to determine the extent of sheet structure within a protein is less than ideal, 

due to the irregularity and low intensity of sheet CD signal, and this is reflected in the 

relatively large 15-25 % range of estimated sheet content from CD data. FTIR is 

considered a superior method for evaluating the total amount of β-sheet content than 

CD and, therefore, the value of 29.17 % is taken as the best estimate for sheet content. 

According to the data given in Table IX.3, therefore, P. sup DJ-1 contains less helix 

and more sheet content than the human form. Notwithstanding this, the two proteins 

are predicted to be structurally homologous (Figure IX.4). Similar to that of the 

human form, the significant under-prediction of helix content is again seen for P. sup 

DJ-1, whereas the prediction for sheet content is in good agreement with that 

suggested from FTIR data. 

 

 

 

 

 

 
 

 

 
The up-regulation of chaperone heat-shock or oxidative stress proteins in 

response to cell desiccation is consistent with expectation, since the loss of water 

represents a considerable stress from which the cell’s native protein molecules must 

be protected. It is, therefore, not surprising that a DJ-1 homolog should have been 

discovered as an anhydrobiotic protein within P. sup. From the FTIR and CD 

examination of P. sup DJ-1, it is clear that both the α-helix and β-sheet contents are 

roughly similar to that of human DJ-1 and in addition there is good agreement 

between the two homologs in both the estimated number of α-helices and β-sheets, 

along with their respective average lengths. Taken together, this data lends strong 

support to the predicted P. sup DJ-1 structure, which can be seen to be in good 

Protein % Helix  % Sheet % Other 

H. DJ-1 (predicted) 25.13 22.99 51.88 

H. DJ-1 (x-ray) 48.66 20.86 30.48 

P. sup DJ-1 (predicted) 28.65 25.95 45.50 

P. sup DJ-1 (CD) 36-44 15-25 31-49 

P. sup DJ-1 (FTIR) 37.83 29.17 33.00 

Table IX.3. Quantitative secondary structures of 
human and P. sup DJ-1.   
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agreement with the human form, in terms of the locations of helices and sheets within 

both proteins.  

Given the structural similarity between the human and P. sup DJ-1 homologs, 

it seems reasonable to speculate that they may possess similar functionalities. 

Previous examinations of human DJ-1 suggest that it is capable of carrying out a 

variety of specific functions. Among the most important of its functions is its ability 

to aid other proteins to retain their structures during conditions of oxidative stress and 

to perturb their heat-induced denaturation. If P. sup DJ-1 can be assigned such 

functionality it should show tolerance to both oxidative and heat stress. According to 

both the CD and FTIR melt experiments, P. sup DJ-1 demonstrates high thermo-

stability and this is unaffected by the introduction of oxidative stress conditions. 

Furthermore, the structure of P. sup DJ-1 was seen to be unchanged when subjected to 

either oxidative or reductive stress. In conclusion, therefore, from the data presented 

here it seems plausible at least that the novel P. sup DJ-1 protein functions during 

anhydrobiosis by acting as a molecular chaperone to relieve oxidative and/or thermal 

stress from other native proteins within Panagolaimus superbus. 

The significance of the absence of Cys-53 from both the P. superbus and C. 

elegans DJ-1 proteins could be related to an absence of redox control for their 

functioning as chaperones during oxidative stress. Studies being carried out at present 

indicate that P. sup DJ-1 does indeed inhibit the heat induced aggregation of α-

synuclein, insulin and citrate synthase and that this chaperone activity is not effected 

by the protein’s redox state (in press). This is in contrast to findings made with human 

DJ-1, where chaperone activity was only demonstrated when the protein was in its 

oxidised state. Furthermore, human DJ-1 chaperone activity was abrogated upon 

mutation of Cys-53. It was also discovered by CD spectroscopy that human DJ-1 

secondary structure was considerably affected by exposure to 50 mM H2O2.[25]This 

is in contrast to P. sup DJ-1, which demonstrated structural stability up to 600 mM 

H2O2 concentration. These data indicate that human DJ-1 possess a sensitivity 

towards its redox environment where non exists for P. sup DJ-1 and it is possible that 

Cys-53 may have some involvement in human DJ-1 being a redox-dependent 

molecular chaperone. 
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Chapter X 

Conclusion 

 

From this work it is clear that both CD and FTIR spectroscopy are appropriate for the 

investigation of protein secondary structure, since both techniques return structurally 

characteristic and reproducible protein spectra. Together with reference sets 

containing proteins of known structure, both CD and FTIR can be used to accurately 

determine secondary structure fractional composition. However, due to the intense 

overlapping OH bending vibration for the water solvent molecules with that of the 

protein amide-I band, it was found that in general FTIR was a little less reliable in 

terms of achieving precisely reproducible spectra and, consequently, secondary 

structure composition estimates. The superiority of FTIR over CD for revealing 

protein β-sheet content, along with the relative weakness of CD in this regard, makes 

FTIR a highly complimentary technique to that of CD for protein analysis. The 

procedure for jointly using the CD and FTIR techniques should be, therefore, to use 

CD to assess the protein helix content and FTIR to determine its sheet composition.  

A difficulty with using FTIR to examine the helix content of proteins in 

aqueous solution is encountered when the protein also contains significant amounts of 

random coil content. This problem arises because of the closeness of the helix (1648-

1655 cm-1) and random coil (1640-1645 cm-1) amide-I bands, along with the broad 

bandshape of the latter, which makes it hard to resolve the two. It is possible to 

perform a separate analysis in D2O solvent, in which the random coil amide-I band 

experiences a disproportionately large red-shift, such that it no longer overlaps the 

helix amide-I band, but instead overlaps that of the β-sheet. This effect was observed 

for both lysozyme and α-chymotrypsin. In practice, however, FTIR should be used 

with caution for determining protein helix content, as evidenced by the large errors 

observed for the myoglobin and hemoglobin FTIR structural estimates. 

Somewhat contrary to current opinion, it was found that CD spectral 

acquisition to wavelengths shorter than 185 nm did not have a pronounced effect on 

the accuracy of estimation of protein structure. Since it is difficult to achieve accurate 
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spectral measurements at these short wavelengths unless vacuum spectrometers are 

used, it is perhaps a safer practise to restrict conventional CD analyses to between 

260-185 nm. Analysis of fractional compositions of standard and novel proteins using 

each of the programs contained within the DichroWeb server was found to be quite 

consistent. For each program there occurred high consistency across all of the protein 

reference sets available, regardless of the amount of proteins contained within the 

reference set. These findings are as expected for a reliable structural analysis and such 

a result lends confidence to the accuracy of the estimated structural fractional 

composition.   

In order to determine a protein’s secondary structure from its CD spectrum it 

is essential that the concentration of the protein within the sample be accurately 

measured. Because of the dependence of a protein’s UV extinction coefficient on its 

secondary structure, sample concentrations of novel proteins of unknown structure 

cannot be definitively obtained by UV spectroscopy. Protein concentration is, 

therefore, most accurately estimated using methods such as the quantitative amino 

acid analysis technique, prior to CD spectral analysis. By examining the area of the 

amide-I bands of proteins with distinctly different secondary structures, it was found 

that the amide-I extinction coefficient was not significantly affected by protein 

secondary structure. As such, it was possible to generate a concentration calibration 

curve using FTIR spectroscopy that could be used to accurately determine the 

concentration of samples of novel proteins. 

In terms of performing protein melt experiments, both CD and FTIR 

spectroscopy should be employed. Because FTIR melt experiments in general require 

the use of ATR FTIR, this technique is not suitable for accurately measuring small 

structural changes with temperature. The reason for this is that the process of 

becoming adsorbed onto the ATR crystal surface distorts the protein’s secondary 

structure in a manner that decreases its helix and increases its sheet content. Since 

protein adsorption is a function of temperature, the difficulty of identifying spectral 

changes due to adsorption and those due to temperature effects makes ATR FTIR 

only suitable for monitoring large changes in protein structure, such as protein 

aggregation. This, however, is a valuable measurement, since aggregation is one of 

the principal means by which proteins suffer loss of function and, therefore, stability 

against aggregation is of crucial importance. While CD cannot measure aggregation 
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phenomenon, due to light scattering effects, it is capable of faithfully monitoring 

small structural shifts that occur with temperature variation. This is of considerable 

benefit when examining the possible destabilising influence that a particular mutation 

may have to a protein’s structure. The temperature stability of helix domains should 

also be principally investigated by CD222 melts. 

2D correlation spectroscopy is a useful technique for investigating the 

sequence of structural changes for proteins that occur when some external 

perturbation is applied to the sample. The most obvious perturbation is that of 

ramping the temperature from low to high values in order to investigate protein 

unfolding. The level of detail that can be achieved using this procedure with ATR 

FTIR is limited, however, due to protein-surface adsorption. Use of this technique 

over large temperature ranges does not lend itself to CD analysis because of the light 

scattering caused by protein aggregates. With FTIR, 2D correlation spectroscopy can 

be used to examine a protein’s aggregation process, where it is of biological 

importance whether aggregation occurs predominantly before or after the loss of its 

secondary structure. For both myoglobin and α-chymotrypsin, aggregation was found 

to be preceded by the loss of protein secondary structure, whereas for hemoglobin 

aggregation occurs at the premolten globule stage, before secondary structural 

degradation.   

While both CD and FTIR only give information on a protein’s overall 

structural composition, as opposed to a detailed description of the geometry of the 

molecule, these techniques can be used effectively to support structural predictions. 

Both CD and FTIR were used in this way to study the novel Panagolaimus superbus 

(P. sup) DJ-1 protein. Since many novel proteins correspond to homologs of other 

proteins of known structure, this information can be used along with CD and FTIR to 

create a detailed estimate of the protein’s general structure. Additionally, by 

generating protein fragments it should be possible to use either technique to 

accurately determine local secondary structure. This was demonstrated for the case of 

the Rab11-FIP3 protein, where a coiled-coil domain was predicted to exist in the 

region of residues 463-692. Analysis of the Rab11-FIP3463-692 protein fragment by CD 

spectroscopy confirmed the presence of a coiled-coil domain. By taking suitably small 

protein fragments the distribution of structure along the protein backbone can be built 

up using CD and FTIR spectroscopy. Although this involves considerable effort on 
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the part of the biologist and would be impractical for most studies, it does exist as a 

possibility for the system in question.  

Both CD and FTIR can also be useful in cases where the protein structure has 

been previously solved, for example by x-ray studies. This was demonstrated with the 

coiled-coil cap region of Rab11-FIP2, whereby x-ray crystallography identified 

crucial residues within Rab11-FIP2 that most likely act to stabilise the hydrophobic 

core of the coiled-coil by shielding it from the external aqueous environment. By 

generating mutated fragments of the Rab11-FIP2 coiled-coil domain, it was possible 

to assess each mutant in terms of both its structure and its stability using CD and 

FTIR. Although mutation of the valine456 and leucine457 residues to glycines had little 

effect on the overall secondary structure of the coiled-coil (helix content), CD222 melt 

experiments revealed that performing these mutations had a marked effect on its 

stability, such that the mutated protein fragment helix content was considerably less 

stable than that of the wild type. This acts as strong evidence that the valine456 and/or 

leucine457 residue(s) plays a vital role in enclosing the coiled-coil hydrophobic core in 

Rab11-FIP2.   

Analysis of protein tertiary structure is generally the preserve of x-ray 

crystallography or nmr spectroscopy, although some information is possible using 

near-UV CD to examine amino acid side-chain absorption. As an aid to these 

techniques, luminescent spectroscopy can be employed to answer specific biologically 

significant questions. For example, by the site-specific labelling of AavLEA1 mutants 

it was possible to determine that it exists in a highly extended configuration, rather 

than as a compacted protein, through use of the FRET technique. Since FRET is a 

through-space phenomenon, it can be used to examine the spatial relation of important 

residues within a protein. Alternatively, FRET can be used to detect protein substrate 

interaction by separately labelling either the protein or substrate with donor or 

acceptor fluorescent tags.  

Structural investigations of two proposed anhydrobiotic proteins supported 

them as being identified as such. AavLEA1 from the aphelencus avenae nematode 

was found to be a natively unfolded protein that exists in an extended tertiary 

conformation. It was found that this protein acted synergistically with the trehalose 

disaccharide to stabilise cytochrome A against temperature induced aggregation and, 

therefore, may have some heat-shock functionality. In addition, this protein was found 



Chapter X Conclusion 

 285 

to change structure by becoming more helical in response to cation concentration 

increase, supporting the possibility that it may offer cation-sequestering protection 

during anhydrobiosis. The likelihood of AavLEA1 forming coiled-coil fibrils in the 

absence of water that can act as reinforcement to a sugar glass matrix was examined 

by suspending it in TFE solution. AavLEA1 was discovered to become completely 

helical in TFE, suggesting that in the absence of a polar environment - as would be 

the case in a sugar glass - AavLEA1 is perfectly suited towards forming coiled-coil 

fibrils.  

P. sup DJ-1 from the nematode Panagrolamus superbus was discovered to 

have high structural homology to the human DJ-1 form and, as such, exists as an α/β-

sandwich protein. P. sup DJ-1 was discovered to have high thermostability, both in 

terms of its helical domains and its ability to withstand aggregation and also 

demonstrated extreme tolerance to redox stress, being structurally unaltered when 

placed at H2O2 concentrations of up to 600 mM and DTT concentrations of 5 mM. 

Furthermore, protein thermostability was shown not to be effected by oxidative 

conditions. Since human DJ-1 is known to act as a molecular chaperone to proteins 

such as α-synuclein in a manner that stabilises it against temperature and oxidative 

stress induced aggregation, it is, therefore, likely that P. sup DJ-1 adopts a similar 

function. Recent studies on the effect of P. sup DJ-1 to α-synuclein, citrate synthase 

and insulin heat-induced aggregation processes seem to confirm this conclusion. Also, 

from these studies it appears that P. sup DJ-1 chaperone activity towards these 

proteins is not under redox control, in contrast to that of human DJ-1. Because of the 

extreme nature of the anhydrobiotic process, molecular chaperone activity could be 

essential to cell survival and DJ-1 proteins may very well be instrumental in this 

regard. 

 


