
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nnmr20

Journal of New Music Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nnmr20

Parallel computation of time-varying convolution

Victor Lazzarini

To cite this article: Victor Lazzarini (2020) Parallel computation of time-varying convolution,
Journal of New Music Research, 49:5, 403-415, DOI: 10.1080/09298215.2020.1810280

To link to this article: https://doi.org/10.1080/09298215.2020.1810280

Published online: 26 Aug 2020.

Submit your article to this journal

Article views: 61

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=nnmr20
https://www.tandfonline.com/loi/nnmr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09298215.2020.1810280
https://doi.org/10.1080/09298215.2020.1810280
https://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09298215.2020.1810280
https://www.tandfonline.com/doi/mlt/10.1080/09298215.2020.1810280
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2020.1810280&domain=pdf&date_stamp=2020-08-26
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2020.1810280&domain=pdf&date_stamp=2020-08-26

JOURNAL OF NEWMUSIC RESEARCH
2020, VOL. 49, NO. 5, 403–415
https://doi.org/10.1080/09298215.2020.1810280

Parallel computation of time-varying convolution

Victor Lazzarini

Department of Music, Maynooth University, Maynooth, Ireland

ABSTRACT
This paper introduces a method for computing the time-varying convolution in parallel. It discusses
the motivations for this approach, detailing the limitations with the current serial implementation.
A detailed review of the signal processing involved is presented, describing the time-varying filter
as a modification of the time-invariant case. This is followed by description of the parallel method,
which is then implemented in theOpen Computing Language. An analysis of tests result is provided,
detailing the improvements on the existing approach and noting the cases where it is not the most
suitable option.

ARTICLE HISTORY
Received 12 October 2019
Accepted 7 July 2020

KEYWORDS
Computer music; musical
signal processing;
time-varying filters; OpenCL

1. Introduction

Parallel computation has become an important topic in
musical signal processing. Applications, such as additive
and spectral modelling synthesis (Savioja et al., 2010;
Tsai et al., 2010), room acoustics modelling (Hamil-
ton & Webb, 2013; Roeber et al., 2007; Savioja, 2010),
the sliding phase vocoder (Bradford et al., 2011), lin-
ear time-invariant convolution (Belloch et al., 2011),
filtering (Belloch et al., 2013), binaural audio (Belloch
et al., 2018), and other types of audio signal process-
ing (Savioja et al., 2011), have been proposed as a way
of harnessing the resources of computing devices such
as general-purpose graphics processing units. In par-
ticular, we have observed that spectral processing can
be implemented very efficiently with parallel algorithms
(Crespi, 2016; Lazzarini et al., 2014), due to the particu-
lar nature of the data being manipulated. This provides
the initial motivation for the present work, in which
frequency-domain operations are predominant.

Time-varying convolution is a newly proposed audio
processing algorithm,which has foundmany novelmusic
performance uses (Brandtsegg et al., 2018). It involves the
cross-synthesis of two arbitrary input signals in a very
transparent manner, relying on signal content with no
need for parametric controls. Due to these characteris-
tics, it has been found to be particularly amenable to
cross-adaptive applications. Depending on some of the
conditions, in its current form, based on serial computa-
tion, this process can consume a significant amount of
resources. This puts limits on what can be achieved in

CONTACT Victor Lazzarini victor.lazzarini@mu.ie

realtime signal processing, where time-varying convolu-
tion can have the most impact.

This paper is organised as follows. It begins by provid-
ing an outline of the audio signal processingmathematics
behind time-varying convolution, leading to the funda-
mental aspects of its current (serial) implementation. Fol-
lowing this, the paper discusses each component of the
process and how parallel computation can be achieved.
This is followed by a reference implementation using a
well-defined open specification. A final section is then
dedicated to a discussion of test results, comparing serial
and parallel computation.

2. Time-varying convolution

Recently, the topic of time-varying filters has received
some attention in the digital audio signal processing lit-
erature. Arbitrary switching of filters was discussed in
Laroche (2007), where a framework for the analysis of
difficult cases was provided. More practical uses were
also discussed, such as the use of coefficient modula-
tion by periodic signals (Kleimola et al., 2011; Lazzarini
et al., 2009, 2011; Timoney et al., 2014), building on
the recent theory of periodic linear time-varying (PLTV)
filters (Cherniakov, 2003), for both finite and infinite
response cases. Following this, a special case of arbi-
trary time-varying linear finite impulse response filters
(TVFIR) was introduced for time-varying convolution
applications (Brandtsegg et al., 2018), which is the focus
of the discussion in this paper.

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2020.1810280&domain=pdf&date_stamp=2020-10-06
mailto:victor.lazzarini@mu.ie

404 V. LAZZARINI

Figure 1. Input signal and time-varying filter coefficients.

In order to introduce the definition of time-varying
convolution, we begin by recalling that a discrete linear
finite impulse response filter (FIR) of length L applied
to an input signal x(t) is defined by the convolution
(Oppenheim et al., 1999)

y(t) =
L−1∑
n=0

anx(t − n). (1)

In the time-invariant case, the set of coefficients an deter-
mine filter impulse response h(t).

h(t) =
L−1∑
n=0

anu(t − n) = at (2)

From the impulse response, we can derive the filter trans-
fer function.

H(z) =
L−1∑
n=0

anz−n (3)

The discrete filter spectrum is then given by setting z =
ejωk and ω = 2π/L, from which we can obtain its ampli-
tude (|H(ejωk)|) and phase (arg{H(ejωk)}) responses. The
filter can be applied to the signal either as in Equation (1)
or as a product of the filter and signal spectra.

Y(z) = H(z)X(z) (4)

From this, a TVFIR can be defined by removing the
assumption that the coefficients an of Equation (1) are
fixed. In this case, we replace these with a set of time-
varying coefficients cn(t),

y(t) =
L−1∑
n=0

cn(t)x(t − n) (5)

We now take the coefficients cn(t) from an arbitrary input
waveform s(t), by shifting in samples from the right, as

Figure 2. Time-varying convolution.

described by

cn(t) =
{
s(t), n = tmod L
cn(t − 1), otherwise

(6)

This mechanism defines a delay line of length L, with the
samples of the signal s(t) being shifted in, replacing the
oldest coefficient as shown in Figure 1. The write position
wraps around at the end and proceeds circularly around
the coefficient buffer.

The TVFIR convolution is then computed as shown
in Figure 2. Note that the input signals x(t) and s(t) are
held in two separate delay lines. For each sample of out-
put, we take one sample from each signal and discards
one sample from each delay line. This algorithm defines
the time-varying convolution process, a special case of
TVFIRs where we take two arbitrary input signals, using
one of them nominally as the filter impulse response, and
the other as its input signal. However, it is important to
note that there is no actual distinction between these two
inputs, as they can be equally serve as ‘signal’ or ‘impulse’.

2.1. Implementation

Afirst pass at the implementation of time-varying convo-
lution would employ Equations (5) and (6). As denoted
by these, at every output sample, we would only need
to shift one sample in and discard another sample, of
each signal. The replacement of the filter coefficients
only needs to write a single value for every new out-
put sample, holding all the others in memory, and
shifting the read/write position circularly. An efficient
implementation of convolution also only needs to write
one single sample into the input signal delay line at a
time. As an example, an implementation of the time-
domain algorithm is shown as aCsound code fragment in
Listing 1.

JOURNAL OF NEWMUSIC RESEARCH 405

Listing 1 Time-varying convolution
// coefficients delay line memory (ifn)
ifn = ftgen(0,0,iL,7,0,iL,0)
// writing pointer
andx = phasor(sr/iL)
// write signal 2 as coefficients to ifn
tablew(asig2,andx,ifn,1)
// compute direct convolution of sigs 1 and 2
aout = dconv(asig1,isiz,ifn)

The complexity is O(N2), as for each output sample N
multiplications and additions are necessary. For large fil-
ter sizes, it can become increasingly prohibitive to employ
this method, especially if the aim is to be able to process
signal in real time.

The algorithm outlined above describes the time-
domain implementation of the process, based on a direct
convolution approach. As an alternative to this, we have
an equivalent form that can be computed in the fre-
quency domain. By applying Equation (4), we can define
time-varying convolution as

Y(i, k) = C(i, k)X(i, k) (7)

Note that nowwehave a function of two variables, idefin-
ing time and k frequency. This effects the product of the
two input spectra C(i, k) and X(i, k), which can be seen
as snapshots of the coefficients and input at a time i. For
this, we employ a rectangular window to select data from
the two input signals every L samples. UsingN ≥ 2L − 1,
ω = 2π/N, we have

C(i, k) =
N−1∑
n=0

w(n − iL)cn(i)e−jωkn (0 ≤ k < N − 1),

(8)
and

X(i, k) =
N−1∑
n=0

w(n − iL)xi(n)e−jωkn (0 ≤ k < N − 1),

(9)
where w(n) is a rectangular window of size L (the
filter length), and i ∈ Z, i ≥ 0. As per Figure 1 and
Equation (6), the coefficients cn(i) are equivalent to a
block of samples taken from the input signal s(t) start-
ing at time t = i. By choosing an appropriate size N
for each transform, it is possible to employ a suitable
FFT algorithm to implement these transforms, reducing
the computational complexity of the implementation. To
obtain the time-varying convolution in the time-domain,
we first apply the inverse DFT to each output block i of

size N, and then overlap-add these,

yi(n) =
N−1∑
k=0

Y(i, k)ejωkn (0 ≤ n < N − 1). (10)

Assuming yi(n) = 0 for n < 0 and n ≥ N, then the time-
varying convolution output is defined by the overlap-add
expression

y(t) =
∑
i=0

yi(t − iL). (11)

The complete process is shown in Figure 3, which
describes the process of obtaining one output block of L
samples, which is overlap-added to form the output sig-
nal.The signal labelled as input 1 is used to produce the
spectra X(i, k) and input 2 yields C(i, k).

While this second approach is much improved in
terms of computational efficiency, it can pose problems in
practice. The major difficulty is that it requires all input
samples to each DFT to be available before it can pro-
ceed, which is not an issue in off-line applications, but
it will introduce a constant input–output latency in real
time applications. The minimum latency in seconds will
be equivalent to the product of the filter size L and the
sampling rate fs. As large delays are generally undesir-
able, this may place a practical limit to the size of filters
employed in real time applications.

The solution to this problem is to consider that both
approaches, in the time and frequency domain, are spe-
cial cases of a more general algorithm, called parti-
tioned convolution (Lazzarini, 2017a; Wefers, 2015). The
method sections the filter into a number of partitions
before applying convolution and assembling the output.
In the former case, the partition is a single sample, and in
the latter case, the complete filter (that is, there is only one
partition). Starting with Equation (9), we choose a suit-
able value for the partition size M, 1 ≤ M ≤ L, so that
P = �L/M�, and modify Equation (6) as follows (with
ω = π/M), to produce the successive spectral frames for

406 V. LAZZARINI

Figure 3. Frequency-domain implementation of convolution, input 1 provides the data for X(i, k) and input 2 for C(i, k).

the coefficients,

C(l, k) =

⎧⎪⎪⎨
⎪⎪⎩

2M−1∑
n=0

si(n)e−jωkn, l = imod P

C(l − 1, k), otherwise

(12)

In this re-definition, C(t, k) now refers to zero-padded
blocks of 2M samples in the frequency domain, taken
from the second input signal at M intervals and shifted
into a circular buffer.With this, we can re-define the oper-
ation as the sum of spectral products relative to each
partition,

Y(i, k) =
P−1∑
m=0

C(m, k)X(i − m, k) (13)

using X(i, k) as defined in Equation (9).
Following the IDFT (Equation (10)), the time-varying

convolution of the two signals can now be obtained by
the overlap-add operation.

y(t) =
∑
i=0

yi (t − iM) (14)

As noted above, the special cases of P = 1 and P = L
are equivalent to the two original approaches discussed
above. In most applications of time-varying convolu-
tion, they will be employed only in very particular situ-
ations. The minimum latency of partitioned convolution
is defined by the partition size M; decreasing it reduces
the delay in getting an output out of the system, but with
a corresponding increase in number of operations. The
choice of partition size will be determined in terms of
minimising the input/output latency while still retaining
an efficient use of computation resources.

3. Parallel computation

The serial computation of time-varying convolution as
described in Section 2.1 is discussed in detail in Brandt-
segg et al. (2018). From a macro-level perspective, we
have four sequential steps, in which the first stage can be
trivially split into two concurrent operations:

(1) DFT of two input signals.
(2) Sum of the spectral products.
(3) Inverse DFT.
(4) Overlap-add (OLA).

Each one of these steps may be broken down into
a combination of serial and parallel sets of operations.
In the following sections, we will discuss these, provid-
ing the background to the implementation presented in
Section 4.

Figure 4. Paritioned time-varying convolution.

JOURNAL OF NEWMUSIC RESEARCH 407

3.1. DFT

Practical efficient computation of the DFT will always
employ one of the existing FFT algorithms. In the case
of time-varying convolution, the best candidate for this
is the original radix-2 FFT (Cooley & Tukey, 1965), since
it is possible to choose transform sizes that will match its
requirements. Starting with the DFT as defined by

X(k) =
N−1∑
t=0

x(t)e−2π jkt/N . (15)

We divide this into two half-size transforms, one for even
t and another for odd t, ω−k = e−2π jk/N

XN(k) = E(k) + ω−kO(k) (16)

Since the DFT is periodic,X(k + N) = X(k), we have the
following relationships.

XN(k)

=
{
E(k) + ω−kO(k), 0 ≤ k < N/2
E(k − N/2) + ω−kO(k − N/2), N/2 ≤ k < N

(17)

Applying the identity e−2π j(k+N/2)/N = −e−2π jk/N , we
can re-define the DFT as a pair of equations, for k =
0, . . . ,N/2:

XN(k) = E(k) + ω−kO(k)

XN(k + N/2) = E(k) − ω−kO(k)
(18)

Finally, Equation (18) can be applied recursively, halving
the transform size each time, down to N = 2. The com-
putation then starts with single points, and is repeated
log2 N times sequentially until the transform is com-
pleted, as demonstrated in Figure 5 for N = 8.

Since each one of theN/2 applications of Equation (18)
is independent, we can compute each one of the log2 N
serial steps in N/2 concurrent sets of operations. How-
ever, as seen in Figure 5, the indexes of the input vec-
tor are not in ascending order. Due the nature of the
decimation-in-time radix-2 FFT algorithm, this array
needs to be re-arranged so that the spectral samples are
in the correct order at the output. This requires the sam-
ple indexes to be bit reversed.With a bit-reverse operator
b(n), this operation is defined as follows.

y(n) = x(b(n)) (19)

The reordering of the input may also be computed in N
parallel operations as an extra sequential step, provided

Figure 5. Sequential steps for Radix-2 FFT of size 8, each ofwhich
can be computed in parallel with 4 sets of operations.

that themapping b(n) is prepared in advance. The inverse
DFT,

x(t) =
N−1∑
k=0

X(k)e2π jkt/N , (20)

is implemented using a similar approach, reordering the
data and applying the required number of FFT passes, but
with inverted complex exponential scaling factors.

3.1.1. Real-to-complex transforms
Since audio signals are real-valued, it is possible to take
advantage of the fact that it has a spectrum with Her-
mitian symmetry and therefore we will be able to use a
half-size transform to compute it (Chu & George, 1999;
Mulgrew et al., 1999). We can re-interpret the input as a
complex-valued sequence of lengthM = N/2 and apply
the DFT. In order to obtain the corresponding non-
negative spectrum Y(k), we apply the following expres-
sions.

R(k) = 1
2

(
X(k) + X(M − k)

)
I(k) = j

2

(
X(M − k) − X(k)

) (21)

Y(k) = R(k) + ω−kI(k), 0 ≤ k < M/2

Y(M − k) = R(k) − ω−kI(k), M/2 < k < M
(22)

The complex-to-real inverse DFT will employ a similar
approach, first preparing an input to a DFTwhose output
can be re-interpreted as a real-valued sequence. For this,
we apply the following equations to obtain R(k) and I(k),
and from those, Y(k)

R(k) = 1
2

(
X(k) + X(M − k)

)
I(k) = j

2

(
X(k) − X(M − k)

) (23)

408 V. LAZZARINI

Figure 6. OpenCL processing kernels,memory buffers (teletype),
and threads synchronisation,withMdenoting the size of eachpar-
tition,p the current partition, andP the total number of partitions.

Y(k) = R(k) + ωkI(k), 0 ≤ k < M/2

Y(M − k) = R(k) − ωkI(k), M/2 < k < M
(24)

It is possible to compute these equations inM/2 concur-
rent sets of operations, requiring one extra pass to the
ones listed in Section 3.1. The total number of sequential
steps for each forward and inverse DFT is log2M + 2.

3.2. Spectral products

At the centre of time-varying convolution, we have
(M − 1)P complex products, plus 2P realmultiplications,
where M is the partition (or half-transform) size. This
provides the justification for the extra step in calculat-
ing a real-to-complex transform, as we have saved half
the operations we would otherwise have had to apply. As
defined by the equation

Y(i, k) =
P−1∑
m=0

C(m, k)X(i − m, k), 1 ≤ k < M (25)

these are all independent of each other and can be com-
puted in parallel in one single pass. For k = 0, we have the

special case of treating the real and imaginary parts as two
real numbers, holding the 0Hz and Nyquist frequency
points.

The final sum into M points can also be computed in
parallel. As we will see in Section 4, the implementation
of these operations can be combined together by making
sure that the sums are atomic to avoid race conditions.

3.3. OLA

The final step is the application of the overlap-add oper-
ation, which also needs to include the scaling of each
sample by the half-transform size M if this has not been
applied at any other stage. In order to produce one
output block of M samples, the following expression is
employed.

y(t) = yi(t) + yi−1(t + M)

M
, 0 ≤ t < M, (26)

where yi(t) is the current output of the inverse DFT oper-
ation. This equation can be computed in M concurrent
operations.

4. An OpenCL implementation

In order to demonstrate the principles outlined in
Section 3, a reference implementation of time-varying
convolution is presented in this section. For this,
the Open Computing Language (OpenCL) framework
(Khronos OpenCL Working Group, 2019) was cho-
sen due to its widespread availability, generality and
good support for shared-memory programming, which
is required by the type of parallelism employed here. The
framework supports heterogeneous platforms, allowing
for the results of this article to be transferable to a variety
of computing devices.

OpenCL is composed of a C API and an intermediate
language. The latter allows cross-platform programming
for parallel programs within a well-defined computing
environment. The former provides a means for host con-
trol of concurrent computation, including just-in-time
compilation, memory access, and execution. OpenCL
programs are defined as kernels, which run in parallel
under the chosen platform, which can be a general-
purpose central processing unit (CPU), a graphics pro-
cessing unit (GPU), or another computing device such
as a hardware accelerator. The OpenCL language resem-
bles C very closely, therefore it is well understood in the
signal processing community, allowing for results to be
efficiently communicated.

The present implementation consists of a C++ class,
which may be employed in any signal processing appli-
cation, and an accompanying sample application in the

JOURNAL OF NEWMUSIC RESEARCH 409

form of a unit generator for the Csound sound andmusic
computing system (Lazzarini et al., 2016) using CPOF
(Lazzarini, 2017b). The details of the C++ code and its
use in Csound are beyond the scope of this paper, but
the complete source code is available as an Online Sup-
plement to this article. We will note, nevertheless, the
most salient points as needed, while concentrating on
the OpenCL implementation of the principles laid out in
Section 3.

The typical configuration of an OpenCL application
consists of a program run on a host computer, which
manages the operations run on one ormore parallel com-
puting devices. As part of this process, the host will be
responsible for passing the data to the OpenCL kernels,
executing them, and fetching the output. In the particu-
lar case here, audio data will be buffered in and out of the
device as required. The flowchart in Figure 6 shows the
structure of the implementation in terms of its process-
ing kernels, data buffers, and threads synchronisation. An
aspect that needs significant attention is memory man-
agement, in particular, it is important to minimise trans-
fers between the host and the device, keeping intermedi-
ate results in it as much as possible. As can be observed
in the flowchart, some kernels operate on data in-place,

whereas others require out-of-place processing. Data is
transferred only at the start and end of the processes, and
then placed in the spectral delay line buffers (spec1[]
and spec2[] in Figure 6). It is important also to con-
sider the synchronisation points for the parallel opera-
tions, so that we maximise the concurrency. These are
determined by the segmentation of the operations in sep-
arate kernels. In the following sections, we detail the key
aspects of each component in the implementation.

4.1. FFT

The FFT operation involves two separate kernels,
reorder and fft. The former is a very simple
operation, which effectively uses a bit-reversal map
to re-organise the data in the correct format for the
(decimation-in-time) FFT operation. It is a straight
implementation of Equation (19) (Listing 2), which is
run in M parallel instances, M denoting the partition
size. Each kernel instance is indexed by the value of
get_global_id(0). Since these kernels may be used
with a spectral delay line, an offset argument is provided
to select the correct memory block for processing.

Listing 2 Data reorder kernel
kernel void reorder(global cmplx *out, global cmplx *in,

global const int *b, int offs) {
int k = get_global_id(0);
out += offs;
out[k] = in[b[k]];
in[b[k]] = 0.f;

}

The reorder kernel depends on an externally
defined mapping array, which provides a bit-reversed
number for a given DFT size, generated by the code in

Listing 3 (Elster, 1998). This is done once at setup time
and copied to read-only memory in the device.

Listing 3 Bit-reversal map generation
for (int i=0; i < M; i++)

bp[i] = i;
for (int i = 1, m = M >> i; i < M;

i = i << 1,m = m >> 1)
for (int j = 0; j < i; j++)

bp[i + j] = bp[j] + m;

410 V. LAZZARINI

It is important to comment on the reasons for seg-
menting the reorder operation as a separate kernel, as it
might appear that it could be incorporated as part of the
FFT kernel. Firstly, the reorder operation is performed
out of place, while the FFT is in place. In order to com-
bine the two in a single kernel, we would need to perform
a copy of the data somewhere along the way, which is
not ideal. Secondly, the reordering is applied only once,
whereas the FFT kernel will be invoked repeatedly log2M

times. That would require us to implement some form of
branching in the kernel. Finally, it is possible to imple-
ment the first FFT pass in the reorder kernel, but that
would complicate the code design and exposition, and it
is unlikely that it would result in significant performance
gains. However, this remains an alternative for a trivial
re-factoring of the code.

The FFT kernel itself implements Equation (18) more
or less directly (Listing 4).

Listing 4 FFT kernel
kernel void fft(global cmplx *s, global const cmplx *w,

int N, int n2, int offs) {
int k, i, m, n;
cmplx e, o;
s += offs;
k = get_global_id(0)*n2;
m = k/N;
n = n2 >> 1;
k = k%N + m;
i = k + n;
e = s[k];
o = prod(s[i],w[m*N/n2]);
s[k] = e + o;
s[i] = e - o;

}

When the FFT is executed, M/2 parallel instances of
this kernel are invoked log2M times, with the same argu-
ments except for the value of n2. This starts at 1 and
is doubled each time. The array s containing the par-
tial results is updated each time. The kernel depends on
read-only array w of ωk scaling factors, which is created
and copied at setup time. This is the only difference in
the calculation of the forward and inverse transforms.
The code makes use of the locally defined inline function
prod(), which calculates the product of two complex
numbers.

4.2. Real-to-complex FFT

Following the computation of the half-sizeDFT, a conver-
sion kernel needs to run on the data in order to produce
the non-negative spectrum (Listing 5). This implements
Equations (21) and (22). A special case is applied to the
first pair of numbers of the DFT. These two positions will
hold the 0 and M points, which are real valued, packed
as pair. Note that since cmplx is an alias of the native
OpenCL float2 vectorial type, access to each element
is made via the subscriptsx and y. The conversion kernel
processes the data in place and, as before, an offset is used
to select the correct memory block to process.

Listing 5 Real-to-complex FFT conversion kernel
kernel void r2c(global cmplx *c, global const cmplx *w,

int M, int offs) {
int i = get_global_id(0);
if(!i) {

JOURNAL OF NEWMUSIC RESEARCH 411

c[0] = (cmplx)
((c[0].x + c[0].y)*.5f, (c[0].x - c[0].y)*.5f);

return;
}
int j = N - i;
cmplx e, o, cj = conjg(c[j]), p;
c += offs;
e =.5f*(c[i] + cj);
o = .5f*rot(cj - c[i]);
p = prod(w[i], o);
c[i] = e + p;
c[j] = conjg(e - p);
}

As in the FFT case, we need to run M/2 parallel
instances as each kernel operates on a pair of numbers.
As before, a read-only array of complex scaling factors is
required, and this can be also created and copied to the
device at setup time. The code makes use of two other

locally-defined inline functions rot() and conjg(),
providing rotation of a number by π and the complex
conjugate, respectively. The corresponding inverse con-
version operation is shown in Listing 6, which is applied
to the data prior to the reorder and FFT kernels.

Listing 6 Complex-to-real FFT conversion kernel
kernel void c2r(global cmplx *c, global const cmplx *w,

int M) {
int i = get_global_id(0);
if(!i) {
c[0] =
(cmplx) ((c[0].x + c[0].y), (c[0].x - c[0].y));

return;
}
int j = M - i;
cmplx e, o, cj = conjg(c[j]), p;
e = .5f*(c[i] + cj);
o = .5f*rot(c[i] - cj);
p = prod(w[i], o);
c[i] = e + p;
c[j] = conjg(e - p);
}

4.3. Spectral products

The two input spectra are combined using the parti-
tioned convolution operation defined by Equation (13).
The process involves employing two spectral delay lines,
to which the operation is applied, as shown schemat-
ically in Figure 7. The delays are implemented using

circular buffers, and the output of each DFT is com-
puted into the corresponding position prior to the exe-
cution of the convolution kernel. Note that due to the
fact that conventionally we are using future spectra of
one of the input signals, the actual implementation places
these in reverse index order into the delay line in order

412 V. LAZZARINI

to correctly express the process outlined in Section 2.1
(for more details, see Brandtsegg et al. (2018)). This is
denoted by the reverse indexing of the spec2[] buffer

in Figure 6. The convolution kernel in Listing 7 expects
the two spectra to be placed in reverse order relative to
each other.

Listing 7 Partitioned convolution kernel
kernel void convol(global float *out,

global const cmplx *in, global const cmplx *coef,
int rp, int M, int P) {

int k = get_global_id(0);
int n = k%b;
int n2 = n << 1;
rp += k/M;
in += (rp < P ? rp : rp%P)*M;
cmplx s = n ? prod(in[n], coef[k]) :

(cmplx) (in[0].x*coef[k]. x, in[0].y*coef[k].y);
atomicAdd(&out[n2], s.x);
atomicAdd(&out[n2+1], s.y);

}

For each output block,M × P kernels are instantiated
in parallel. When they are run, an updated read position
rp is fed as a parameter so that the correct spectra are
read circularly from the two delay lines. The product of
the two spectra is calculated, and then, using the locally-
defined inline atomic sum function atomicAdd(), the
results are accumulated in the output buffer. Note that
this also expects that its memory locations are reset to 0
prior to the kernels being executed.

4.4. OLA

TheOLA operation completes the time-varying convolu-
tion process (Listing 8). This is implemented in another
very simple kernel, implementing Equation (26), run in
M parallel instances. In addition to this, we also use the
kernel to copy the second half of the output buffer for
use at the next time round. Following this step, we can
transfer the output from the device to the host program.

Listing 8 Overlap-add kernel
kernel void olap(global float *buf, global const float *in,

int M){
int n = get_global_id(0);
buf[n] = (in[n] + buf[M+n])/M;
buf[parts+n] = in[M+n];

}

5. Results and discussion

The present implementation, in the form of the Csound
opcode cltvconv, was tested under two different com-
puting devices: an Intel HD630GPU and an Intel Core
I7 CPU. These tests were set against the serial imple-
mentation presented in Brandtsegg et al. (2018), the
opcode tvconv. Identical code (Listing 9), except for

the time-varying convolution implementation, employ-
ing two audio inputs, was tested using various settings of
the partition size M and filter size L, M<L. The sam-
pling rate was set to 44.1 kHz and the processing block
size (ksmps) was 10 samples. The testing was completely
automated using a Python script to run the Csound code,
time the operation and produce the plots and table shown
here. Each run was 100 seconds long and 10 runs were

JOURNAL OF NEWMUSIC RESEARCH 413

used for each setting, from which an average was taken.
Figure 8 shows the results of these tests in terms of the
real time ratio d:c, where d is the sound duration and c is

computation time taken to synthesise it. This is ameasure
of the fitness of a process to run in real time. Ratios < 1
indicate that real time performance is not achievable.

Listing 9 Test code
instr 1
iM = pow(2,p4)
iL = pow(2,p5)
idev = p6
ain1 = diskin:a("beats.wav", 1, 0, 1)
ain2 = diskin:a("fox.wav", 1, 0, 1)
if idev < 2 then
asig = cltvconv(ain1,ain2,1,1,iM, iL,idev)

else
asig = tvconv(ain1,ain2,1,1,iM,iL)

endif
out(asig)

endin

Figure 7. Spectral delay lines in the partitioned convolution
computation.

From these plots, we can observe that both partition
sizeM and filter lengthLhave a significant impact on per-
formance. With smaller partition sizes, serial code in the
host is less costly than parallel computation for shorter
filter lengths. As reported elsewhere (Crespi, 2016; Laz-
zarini et al., 2014), shorter DFT sizes do not make the
most of the parallel computing resources. This is also
the case for the partitioned convolution operation. There
are more kernel calls and data transfers per output sam-
ples, which generates increased overheads. However, as
L is increased, its performance is severely degraded,

regardless of M. This has less of an effect in the paral-
lel implementations, where the increase in cost is much
less pronounced. We can also observe that the support
for high levels of concurrency in the GPU provides a sig-
nificant performance boost in comparison to the CPU
device. The specific results from GPU tests are shown
in Table 1, where we can see that, at minimum, the real
time ratio is 2.7, increasing to 168.1 withM = 32768 and
L = 216.

These results indicate that in applications where
input/output latency is not a consideration, the computa-
tion of time-varying convolution should be performed in
parallel, with an appropriate choice ofM. It is important
to note that the opcode does not employ any extra buffer-
ing of data, therefore the code latency is strictly defined
by the choice of partition size. Of course in situations
where very short partition sizes are required for minimal
latency, the use of the parallel implementation is not rec-
ommended. However, if small delays can be tolerated, it
is also best to use this approach when very long filters are
employed. In fact, this implementation allows real time
operation in cases where this is not achievable with serial
code. For example, for filters that are longer than 222 sam-
ples (about 95 s at 44.1 kHz), its realtime ratio falls below
1 (except in the case of large M, above 213 samples). In
contrast, parallel computation of the time-varying con-
volution running in the GPU allows filter sizes that are
several minutes long. This opens up new possibilities for
real time audio processing in interactive performances.

414 V. LAZZARINI

Figure 8. Performance of time-varying convolution run as serial code in the host computer (solid lines), in parallel on a GPU (dashes)
and CPU (dots), in different partition sizes (M) and filter lengths (L), plotted in terms of realtime (RT) ratios.

Table 1. Realtime ratios for theGPUcomputationof time-varying
convolution, for various settings of partition size M and filter
length L.

log2 L

M 16 17 18 19 20 21 22

512 4.7 4.9 4.9 4.6 5.3 4.4 2.7
2048 21.0 21.1 20.3 20.8 19.8 15.2 9.1
8192 65.7 66.2 66.6 65.5 64.8 55.0 32.3
32768 168.1 166.8 164.3 164.5 160.3 132.8 87.2

6. Conclusions

This paper presented a method for computing the time-
varying convolution in parallel. This was motivated by
related work demonstrating that spectral-domain oper-
ations could be efficiently implemented in concurrent

steps. The results presented here have consistently agreed
with this, proving that the approach can be very useful in
musical signal processing applications.

In particular, the article set out to provide an alter-
native to the existing serial implementation that would
remove its limitations in terms of filter sizes. We have
shown that the use of GPU for parallel computation,
employing the methods described here, is capable of
improving significantly this aspect. At the same time,
it was also noted that shorter DFT sizes are not as
efficient, mostly due to the overheads in data trans-
fer from host to device and device to host, and an
increased number of kernel calls. However, these issues
are not intrinsically related to the parallel computa-
tion method, and may be improved in future computing
devices.

JOURNAL OF NEWMUSIC RESEARCH 415

Supplemental online material for this article can be
accessed at http://github.com/vlazzarini/opencl_fft. The
source code for the OpenCL implementation (discussed
in Section 4) is available, alongside the test scripts used to
obtain the results in Section 5. A short video demonstrat-
ing the use of the code in performance is also available at
https://youtu.be/r3XeGe63l9Y.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Belloch, J. A., Badia, J. M., Igual, F. D., Gonzalez, A.,
& Quintana-Orti, E. S. (2018). Optimized fundamen-
tal signal processing operations for energy minimiza-
tion on heterogeneous mobile devices. IEEE Transactions
on Circuits and Systems I: Regular, 65(5), 1614–1627.
https://doi.org/10.1109/TCSI.2017.2761909

Belloch, J. A., Gonzalez, A., Martinez-Zaldivar, F. J., &
Vidal, A. M. (2013). Multichannel massive audio process-
ing for a generalized crosstalk cancellation and equaliza-
tion application using GPUs. Integrated Computer-Aided
Engineering, 20(2), 169–283. https://doi.org/10.3233/ICA-
130422

Belloch, J. A., Gonzalez, A., Martnez-Zaldvar, F. J., & Vidal, A.
M. (2011). Real-time massive convolution for audio appli-
cations on GPU. Journal of Supercomputing, 58(3), 449–457.
https://doi.org/10.1007/s11227-011-0610-8

Bradford, R., Ffitch, J., & Dobson, R. (2011). Real-time slid-
ing phase vocoder using a commodity GPU. Proceedings of
ICMC2011, ICMC (pp. 587–590). University of Hudders-
field and ICMA, Huddersfield, UK. ISBN 978-0-9845274-0-
3.

Brandtsegg, Ø., Saue, S., & Lazzarini, V. (2018). Live convolu-
tion with time-varying filters. Applied Sciences, 8(1), 1–29.
https://doi.org/10.3390/app8010103

Cherniakov, M. (2003). An introduction to parametric digital
filters and oscillators. John Wiley & Sons.

Chu, E., & George, A. (1999). Inside the FFT black box: serial
and parallel fast fourier transform algorithms. Computational
Mathematics. Taylor & Francis.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the
machine calculation of complex Fourier series.Mathematics
of Computation, 19(90), 297–301. https://doi.org/10.1090/
S0025-5718-1965-0178586-1

Crespi, A. G. (2016). Spectral manipulation of audio using
general-purpose graphics processing units [Master’s thesis].
Politecnico di Milano.

Elster, A. C. (1998). Fast bit-reversal algorithms. In Proceedings
of the ICASSP 89, Glasgow, UK (pp. 1099–1102).

Hamilton, B., & Webb, C. (2013). Room acoustics modelling
using GPU-accelerated finite difference and finite volume
methods on a face-centered cubic grid. In Proceedings of the
16th digital audio effects (DAFx-2013), Maynooth, Ireland
(pp. 1–8).

Khronos OpenCLWorking Group (2019). The OpenCL specifi-
cation. Beaverton.

Kleimola, J., Lazzarini, V., Välimäki, V., & Timoney, J. (2011).
Feedback amplitude modulation synthesis. EURASIP Jour-
nal on Advances in Signal Processing, 2011(434378), 1–18.
https://doi.org/10.1155/2011/434378

Laroche, J. (2007). On the stability of time-varying recursive fil-
ters. Journal of the Audio Engineering Society, 55(6), 460–471.
http://www.aes.org/e-lib/browse.cfm?elib= 14168

Lazzarini, V. (2017a). Computer music instruments. Springer.
Lazzarini, V. (2017b). Supporting an object-oriented approach

to unit generator development: the csound plugin opcode
framework.Applied Sciences, 7(10), 1–32. https://doi.org/10.
3390/app7100970

Lazzarini, V., Ffitch, J., Timoney, J., & Bradford, R. (2014).
Streaming spectral processing with consumer-level graphics
processing units. In Proceedings of the international confer-
ence on digital audio effects (DAFx-14), Erlangen, Germany
(pp. 1–8).

Lazzarini, V., Ffitch, J., Yi, S., Heintz, J., Brandtsegg, Ø., &
McCurdy, I. (2016). Csound: A sound and music computing
system. Springer.

Lazzarini, V., Kleimola, J., Timoney, J., & Välimäki, V. (2009).
Five variations on a feedback theme. In Proceedings of the
12th international conference on digital audio effects (pp.
139–145).

Lazzarini, V., Kleimola, J., Timoney, J., & Välimäki, V. (2011).
Aspects of second-order feedback AM synthesis. In Pro-
ceedings of the international computer music conference (pp.
92–98).

Mulgrew, B., Grant, P., & Thompson, J. (1999). Digital
signal processing: concepts and applications. Macmillan
Press.

Oppenheim, A. V., Schafer, R.W., & Buck, J. R. (1999).Discrete-
time signal processing (2nd ed.). Prentice-Hall, Inc.

Roeber, N., Kaminski, U., & Masuch, M. (2007). Ray acoustics
using computer graphics technology. In Proceedings of the
10th digital audio effects (DAFx-2007), Bordeaux, France (pp.
1–6).

Savioja, L. (2010). Use of GPUs in room acoustic modeling and
auralization. In Proceedings of the international symposium
on room acoustics (ISRA 2010), Melbourne, Australia (pp.
1–6).

Savioja, L., Valimaki, V., & Smith, J. (2010). Real-time
additive synthesis with one million sinusoids using a
GPU. In Proceedings of the 128th AES, London, UK
(pp. 1–6).

Savioja, L., Valimaki, V., & Smith, J. O. (2011). Audio signal pro-
cessing using graphics processing units. Journal of the Audio
Engineering Society, 59(1), 3–19. http://www.aes.org/e-lib/
browse.cfm?elib= 15772

Timoney, J., Pekonen, J., Lazzarini, V., & Välimäki, V.
(2014). Dynamic signal phase distortion using coefficient-
modulated all pass filters. Journal of the Audio Engineering
Society, 62(9), 596–610. https://doi.org/10.17743/jaes.2014.
0033

Tsai, P.-Y., Wang, T.-W., & Alvin, S. (2010). GPU-based spec-
tral model synthesis for real-time sound rendering. In
Proceedings of the 13th digital audio effects (DAFx-2010),
Graz, Austria (pp. 1–6).

Wefers, F. (2015). Partitioned convolution algorithms for real-
time auralization (Vol. 20). Logos Verlag.

http://github.com/vlazzarini/opencl_fft
https://youtu.be/r3XeGe63l9Y
https://doi.org/10.1109/TCSI.2017.2761909
https://doi.org/10.3233/ICA-130422
https://doi.org/10.1007/s11227-011-0610-8
https://doi.org/10.3390/app8010103
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1155/2011/434378
http://www.aes.org/e-lib/browse.cfm?elib=14168
https://doi.org/10.3390/app7100970
http://www.aes.org/e-lib/browse.cfm?elib=15772
https://doi.org/10.17743/jaes.2014.0033

	1. Introduction
	2. Time-varying convolution
	2.1. Implementation

	3. Parallel computation
	3.1. DFT
	3.1.1. Real-to-complex transforms

	3.2. Spectral products
	3.3. OLA

	4. An OpenCL implementation
	4.1. FFT
	4.2. Real-to-complex FFT
	4.3. Spectral products
	4.4. OLA

	5. Results and discussion
	6. Conclusions
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

