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ABSTRACT

This paper provides an experience report of using the Dafny pro-

gram verifier, at the VerifyThis 2021 program verification competi-

tion. The competition aims to evaluate the usability of logic-based

program verification tools in a controlled experiment, challenging

both the verification tools and the users of those tools. We present

the two challenges that we tackled during the competition and

discuss our solutions. As a result, we identify strengths and weak-

nesses of Dafny in the verification of relatively complex algorithms,

and report on our experience of applying Dafny in this setting.
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1 INTRODUCTION

This paper provides an experience report of using the Dafny pro-

gram verifier, at the VerifyThis 2021 program verification competi-

tion. During the competition our team, comprised of one post-doc

and one PhD student tackled two of the three challenges posed1

using the Dafny program verifier [14].

The competition examined both the verification tools and the

users of those tools. As a result, we were able to identify some

strengths and weaknesses in Dafny, as well as harness the opportu-

nity to educate ourselves on applying this formal verification tool

to relatively complex algorithmic problems.

This paper is structured as follows. Section 2 briefly summarises

the VerifyThis competition series and the Dafny program verifier.

Section 3 describes and discusses two of the competition challenges

and our corresponding Dafny solutions, constructed during the
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competition period. In Section 4 we discuss our experience and

outline some of the strengths and weaknesses of our chosen tool

for these challenges. Finally, Section 5 concludes.

2 BACKGROUND

In this section, we briefly summarise the structure of the VerifyThis

competition series and describe the verification tool that we used.

2.1 VerifyThis Competition

VerifyThis is a series of program verification competitions that has

been held at FoVeOOS2011 [2], FM2012 [7], Dagstuhl Seminar 14171

(2014), ETAPS 2015ś2019 [4, 8ś11] and 2021, inspired by the VSTTE

2010 competition [12]. VerifyThis aims to evaluate the usability of

logic-based program verification tools in an easily repeatable, con-

trolled experiment, and to bring together and encourage discussion

between those interested in formal verification. The competition

challenges are described in a combination of natural language and

pseudo code. Participants must formalise the requirements, im-

plement a solution, and formally verify the implementation for

adherence to the specification. There are no restrictions on the

programming language or verification technology used.

The correctness properties posed in the problems focus on the

input-output behaviour of programs. Solutions are judged for cor-

rectness, completeness, and elegance. Typically, VerifyThis is a

2-day event. The on-site competition on day 1 consists of three

90 minute challenges which are released consecutively. On day 2

the jury discusses the solutions with each team participating, in

parallel all participants present and discuss their solutions and their

different approaches. VerifyThis 2021 was unusual because it took

place as an online-only event (due to COVID-19). The three chal-

lenges were issued concurrently, with a 24-hour period allocated

for participants to attempt solutions. Challenges were intentionally

made more difficult than those for the on-site competition because

of the extended time period allowed. Day 2 then consisted of partic-

ipants short online presentations of solutions. Twenty-three teams

submitted solutions, three of which used Dafny as their main tool.

2.2 Dafny

Dafny is a programming language with a program verifier, used to

statically verify functional program correctness, allowing users to

define specification constructs e.g. pre-/post-conditions [14]. For

verification, programs are translated into the Boogie intermediate

verification language [1] and then the Z3 automated theorem prover

discharges the associated proof obligations [3].

Figure 1 shows the structure of a method with specification

constructs in Dafny. Pre- and post-conditions are indicated by the

requires (line 2) and ensures (line 4) clauses respectively.

The modifies clause (line 3) allows the user to specify a frame

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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1 method myMethod(x: int) returns (y: int)
2 requires . . .

3 modifies . . .

4 ensures . . .

5 {
6 while (i<x) //this is a comment

7 invariant . . .

8 decreases . . .

9 {
10 . . .

11 }
12 }

Figure 1: The basic structure of a method with specification

constructs in Dafny.

condition that denotes the set of memory locations that are allowed

to be modified. Loop invariants (line 7) are used to reason about the

correctness of loops and provide support for verifying related post-

conditions. The loop variant, identified as a decreases clause

(line 8), is used to prove termination. Dafny supports specification-

only ghost code, which is erased in the resulting executable and

is only available for use by the verifier. Dafny has been used in

previous VerifyThis competitions [8, 11] and also in larger systems

[5, 6]. We used Dafny as part of Visual Studio Code [13]2.

3 THE CHALLENGES

VerifyThis 2021 consisted of three verification challenges. Of these

three, we were able to partially complete two challenges during the

allotted competition time. This section summarises and describes

our efforts. Full source code is available in our repository3.

3.1 Challenge 1: Lexicographic Permutations

łThis challenge considers an algorithm that takes any sequence A as

input, and enumerates all possible permutations of A. Moreover, it

enumerates these permutations in sorted (lexicographic) order.ž

The basic algorithm that was given to competitors is provided

in Figure 2. The verification tasks are summarised as follows4:

Task 1.1: Verify that ‘next’ is memory-safe.

Task 1.2: Verify that ‘next’ terminates for every input.

Task 1.3: Verify that any changes on ‘a’ performed by ‘next’ are

permutations.

Task 1.4: Verify that, if ‘next(a)’ returns false, then ‘a’ is left un-

modified and is indeed the last permutation in the sequence.

Task 1.5: Verify that, if ‘next(a)’ returns true, then ‘a’ is modified

to be the proper next permutation in the sequence.

Task 1.6: Verify that ‘permut’ is memory-safe.

Task 1.7: Verify that ‘permut’ terminates for every input.

Task 1.8: Verify that any permutation reported by ‘permut’ is

unique.

Task 1.9: Verify that ‘permut(a)’ reports all permutations of ‘a’.

Task 1.10: Verify that ‘permut’ outputs all permutations in lexico-

graphic order.

We specified numerous predicates in Dafny to help with verifying

properties about the alogorithm. These are summarised in Figure 3:

2Dafny version 3.1.0.
3https://github.com/mariefarrell/MUVerifyThis2021.git
4https://www.pm.inf.ethz.ch/research/verifythis/Challenges.html

1 seq<int> permut(int[] A){

2 seq<int> result := seq();

3 if (A = null) return result;

4 sort(A);

5 do { result := result ++ seq(to_seq(A)); }

6 while (next(A));

7 return result;

8 }

9 bool next(int[] A) {

10 int i := A.length - 1;

11 while (i > 0 ∧ A[i - 1] ≥ A[i]) {

12 i := i - 1;

13 }

14 if (i ≤ 0) return false;

15 int j := A.length - 1;

16 while (A[j] ≤ A[i - 1]){

17 j := j - 1;

18 }

19 int temp := A[i - 1];

20 A[i - 1] := A[j];

21 A[j] := temp;

22 j := A.length - 1;

23 while (i < j) {

24 temp := A[i];

25 A[i] := A[j];

26 A[j] := temp;

27 i := i + 1;

28 j := j - 1;

29 }

30 return true;

31 }

Figure 2: This pseudo code was given to the competitors as

part of the Challenge 1 description. Note that ‘++’ denotes

sequence concatenation.

1 predicate sorted(s: seq<int>)
2 {

3 ∀ i, j | 0 ≤ i < j < |s| · s[i] ≤ s[j]
4 }
5 predicate reverseSorted(s: seq<int>)
6 {

7 ∀ i, j | 0 ≤ i < j < |s| · s[i] ≥ s[j]
8 }
9 predicate sortedRange(s: seq<int>, l: int, u: int)

10 requires 0 ≤ l ≤ u ≤ |s|
11 {
12 sorted(s[l..u])
13 }
14 predicate reverseSortedRange(s: seq<int>, l: int, u: int)
15 requires 0 ≤ l ≤ u ≤ |s|
16 {
17 reverseSorted(s[l..u])
18 }
19 predicate lastPerm(s: seq<int>)
20 {
21 reverseSorted(s)
22 }
23 predicate ltseq(a: seq<int>, b: seq<int>)

24 requires |a| = |b|
25 {

26 ∃ j | 0 ≤ j < |a| · a[..j] = b[..j] ∧ a[j] < b[j]
27 }
28 predicate strictlySortedSeq(S: seq<seq<int>>)
29 requires ∀ i | 0 ≤ i < |S| - 1 · |S[i]| = |S[i + 1]|
30 {

31 |S|>1 ⇒ ∀ i | 0 ≤ i < |S|-1 · ltseq(S[i], S[i + 1])
32 }

Figure 3: Predicates in Dafny for Challenge 1.
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Lines 1ś18: The sorted and reverseSorted predicates

are used to describe what it means for the sequence to be

sorted in ascending and descending order respectively. Based

on these thesortedRange andreverseSortedRange

predicates consider ascending and descending sortedness,

respectively, given a range of the input sequence.

Lines 19ś22: The lastPerm predicate allows us to identify

whenwe have reached the final permutationwhich, since it is

the last in the lexicographic order, will bereverseSorted.

This is particularly useful when verifying Task 1.4.

Lines 23ś32: The ltseq predicate takes two sequences of

the same size as input and checks whether one is less than,

in terms of the lexicographic ordering, than the other. This

predicate is used by the strictlySortedSeq predicate

which determines whether an input sequence of sequences

is in lexicographical order. This is used to verify Task 1.10.

Figure 4 contains our Dafny implementation of the next and

permut methods as outlined in Figure 2.

Lines 1ś5: These pre- and post-conditions verify Tasks 1.3,

1.4 and 1.5. The modifies clause (line 2) relates to the

frame condition and allows us to modify the input array

of integers. This supports memory safety in Task 1.1 by

specifying the memory locations (a) that are allowed to be

modified. We verify that the modified array contains the

same elements as the input array using Dafny’s multiset

construction on line 3, this corresponds to Task 1.3. The

post-condition on line 4 corresponds to the verification of

Task 1.4 which specifies that if next returns false then a

is unmodified and is the last permutation in the sequence. In

contrast, we partially verify Task 1.5 via the post-condition

on line 5which specifies that, if next returnstrue thena is

modified to be the proper next permutation in the sequence.

We partially verify this property because we do not give

sufficient treatment to the proper next permutation. Instead,

we focus on verifying that the permutation does come after

the original but we could not verify that there are no other

permutations in between.

Lines 6ś17: This corresponds to the functionality on lines 10ś

13 of Figure 2. The addition of the loop invariants on lines 10ś

13 supports the verification of the post-conditions on lines

3ś5. In particular, the invariant on lines 11ś12 is necessary

to prove the post-condition on line 4 corresponding to Task

1.4. The decreases clause on line 14 is provided to prove loop

termination and contributes to the fulfilment of Task 1.2.

Lines 18ś29: This corresponds to the functionality of lines 14ś

18 of Figure 2. The loop invariants on lines 24ś25 ensure the

correct functioning of the loop with the invariant on line 24

concerned with memory safety (Task 1.1). The decreases

clause on line 26 serves to prove termination (Task 1.2).

Lines 30ś47: These lines correspond to lines 19ś31 of Figure

2. The ghost variable on line 32 is used in the loop invariant

on lines 37ś38 which supports the verification of the post-

condition on line 5 corresponding (partially) to Task 1.5.

Similarly, the invariant on line 39 supports the verification

of the post-condition on line 3 (Task 1.3).

Lines 48ś54: The permutmethod is specified by the pre-and

post-conditions on lines 50ś54. Memory safety (Task 1.6)

is addressed by the modifies clause on line 50. The post-

conditions on lines 51ś53 ensure that all produced sequences

are the same size and are in lexicographic order (Tasks 1.8

and 1.10), respectively. For Task 1.8, we get uniqueness from

strict monotonicity, a strictly increasing sequence contains

no duplicates.

Lines 55ś83: These lines correspond to the functionality of

lines 1ś8 in Figure 2. We define a ghost variable (line 64)

which is used by the invariant on lines 70ś71. This is used to

prove that the pre-condition for ltseq is not violated when

it is called in the invariant on lines 74ś75. This invariant on

lines 74ś75 is also needed to verify the invariant on line 76

which, in turn, supports the verification of the post-condition

on line 53 (Tasks 1.8 and 1.10). The decreases clause on

line 77 serves to prove termination (Task 1.7).

Overall, we were able to verify Tasks 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.8

and 1.10. We partially verified Task 1.5 but we did not provide a

particularly elegant (or complete) solution to Task 1.9 because we

did not have a nice way of specifying that all permutations were

reported. This could be a limitation of us as Dafny users or it could

be due to the way that we constructed the algorithm.

For Task 1.9, our approach was to use the fact that, for a sequence

of size 𝑛, there will be at most 𝑛! permutations. We thus included

the loop variable fac on line 67 of Figure 4 and our loop condition

enforces that next is not called more than fac times. Without

this variable we could not prove that the loop would terminate or

that next was only called the correct number of times.

With respect to Task 1.5, we were not able to completely ver-

ify that the proper next permutation is returned. Specifically, the

post-condition that we were trying to verify was that there are no

such sequences in between the one that has been returned and the

previous one. This kind of property was difficult to verify in Dafny.

3.2 Challenge 2: DLL to BST

łThis challenge is to verify an in-place algorithm to convert a sorted

doubly-linked list (DLL) into a balanced binary search tree (BST).ž

Figure 5 contains the corresponding pseudo code that was given

to competitors. The verification tasks were as follows:

Task 2.1: Prove that this algorithm converts an input list into a

tree.

Task 2.2: Prove that the algorithm is memory-safe.

Task 2.3: Prove that if the input list is sorted then the resulting

tree is a BST.

Task 2.4: Prove that the resulting BST is balanced.

Task 2.5: Prove that the algorithm terminates.

Task 2.6: (Optional) Prove the above for an iterative version of

size.

We were less successful with this challenge than we were with

the previous one because we spent a lot of time encoding predicates

to determine the validity of a binary search tree and doubly linked

list. These predicates and a necessary constructor are contained in

34
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1 method next(a: array<int>) returns (ok: bool)
2 modifies a
3 ensures multiset(a[..]) = old(multiset(a[..]))
4 ensures !ok ⇒ a[..] = old(a[..]) ∧ lastPerm(a[..])
5 ensures ok ⇒ ltseq(old(a[..]), a[..])
6 {
7 var len ≔ a.Length;
8 var i ≔ len - 1;
9 while i > 0 ∧ a[i - 1] ≥ a[i]
10 invariant -1 ≤ i < len ∧ i = -1 ⇒ len = 0
11 invariant
12 i ≥ 0 ⇒ reverseSortedRange(a[..], i, a.Length)
13 invariant a[..] = old(a[..])
14 decreases i
15 {
16 i ≔ i - 1;
17 }
18 if i ≤ 0 {
19 ok ≔ false;
20 return;
21 }
22 var j ≔ len - 1;
23 while a[j] ≤ a[i - 1]
24 invariant a[..] = old(a[..])
25 invariant j > i - 1
26 decreases j
27 {
28 j ≔ j - 1;
29 }
30 a[i - 1], a[j] ≔ a[j], a[i - 1];
31

32 ghost var idx ≔ min(i - 1, j);
33 var k ≔ i - 1;
34 j ≔ len - 1;
35 while i < j
36 invariant k < i < len ∧ k ≤ j < len
37 invariant a[..idx] = old(a[..idx])
38 ∧ a[idx] > old(a[idx])
39 invariant old(multiset(a[..])) = multiset(a[..])
40 decreases j - i
41 {
42 a[i], a[j] ≔ a[j], a[i];
43 i ≔ i + 1;
44 j ≔ j - 1;
45 }
46 ok ≔ true;
47 }
48 method permut(a: array<int>)
49 returns (result: seq<seq<int>>)
50 modifies a

51 ensures ∀ i | 0 ≤ i < |result| - 1

52 · |result[i]| = |result[i + 1]|
53 ensures strictlySortedSeq(result)
54 {
55 result ≔ [];
56

57 if a.Length ≤ 0 {
58 return [[]];
59 }
60 sort(a);
61

62 result ≔ result + [a[..]];
63

64 ghost var len ≔ |a[..]|;
65 var ok ≔ next(a);
66 var fac ≔ factorial(a.Length);
67

68 while ok ∧ fac > 0

69 invariant |result| ≥ 1

70 invariant ∀ i | 0 ≤ i < |result|

71 · |result[i]| = len

72 invariant ∀ i | 0 ≤ i < |result| - 1

73 · |result[i]| = |result[i + 1]|

74 invariant ok ⇒ ∀ i | 0 ≤ i < |result|
75 · ltseq(result[i], a[..])
76 invariant strictlySortedSeq(result)
77 decreases fac
78 {
79 result ≔ result + [a[..]];
80 ok ≔ next(a);
81 fac ≔ fac - 1;
82 }
83 }

Figure 4: Dafny implementation of next (lines 1ś47) and

permut (lines 48ś83).

1 // Ref is the type of nodes used for both list

2 // and tree, and has these fields:

3 field data: Int

4 field prev: Ref

5 field next: Ref

6 method size(head: Ref) returns(count: Int) {

7 if (head != null) {

8 count := size(head.next)

9 count := count + 1

10 } else {

11 count := 0

12 }

13 }

14 method dll_to_bst(head: Ref) returns(root: Ref) {

15 var n: Int

16 var right: Ref

17 n := size(head)

18 root, right := dll_to_bst_rec(head, n)

19 }

20 // Converts a sorted DLL into a balanced BST

21 method dll_to_bst_rec(head: Ref, n: Int)

22 returns(root: Ref, right: Ref) {

23 if (n > 0) {

24 // Recursively construct the left subtree

25 var left: Ref

26 left, root := dll_to_bst_rec(head, n/2)

27 // Set pointer to left subtree

28 root.prev := left

29 // Recursively construct the right subtree

30 var temp: Ref

31 temp, right

32 := dll_to_bst_rec(root.next, n-n/2-1)

33
34 // Set pointer to right subtree

35 root.next := temp

36 } else {

37 root := null

38 right := head

39 }

40 }

Figure 5: This pseudo code was given to the competitors as

part of the Challenge 2 description.

Figure 6 which we describe below. We broadly followed a specifica-

tion of binary trees that was available in the Dafny repository5.

Lines 1ś5: This class describes the basic components of a vari-

able of type Ref. This corresponds to the field definitions

on lines 1ś5 of Figure 5 that was given to competitors.

Lines 6ś8: We define two ghost variables to be used later.

It is common when creating classes in Dafny to include

both non-ghost and ghost variables. Here, the ghost vari-

able Contents provides an abstract representation of the

linked list for specification purposes. The set Repr con-

tains all objects making up the representation set of a Ref,

including itself and its subobjects. This is mainly used to

describe frame conditions (the set of objects in reads and

modifies clauses). For example, requiring that the sets

prev.Repr and next.Repr are disjoint, using the ‘!!’

operator, ensures that no object in the left subtree also ap-

pears in the right subtree, and vice versa. This also ensures

that there are no cycles. We furthermore require that the

left and right subtrees are ‘subsets’ of their parent, using the

‘<=’ operator. We also prove termination by showing that

5https://git.io/JG2i7
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1 class Ref {
2 var data: int
3 var next: Ref?
4 var prev: Ref?
5

6 ghost var Repr: set<object>
7 ghost var Contents: seq<int>
8

9 constructor(data: int)
10 ensures ValidLL() ∧ ValidBST() ∧ SortedLL()
11 {
12 this.data ≔ data;
13 next ≔ null;
14 prev ≔ null;
15 Repr ≔ {this};
16 Contents ≔ [data];
17 }
18 predicate ValidLL()
19 reads this, Repr
20 decreases Repr
21 {
22 this in Repr ∧ prev = null

23 ∧ (next ≠ null ⇒ next in Repr

24 ∧ next.Repr ≤ Repr ∧ this ̸∈ next.Repr
25 ∧ Contents = [data] + next.Contents
26 ∧ next.ValidLL())
27 ∧ (next = null ⇒ Contents = [data])
28 }
29 predicate SortedLL()
30 reads this, Repr
31 requires ValidLL()
32 decreases Repr
33 {
34 if next = null then true else

35 if data ≤ next.data then next.SortedLL()
36 else false
37 }
38 predicate ValidBST()
39 reads this, Repr
40 decreases Repr
41 {
42 this in Repr
43 ∧ (prev ≠ null ⇒ prev in Repr

44 ∧ prev.Repr ≤ Repr ∧ this ̸∈ prev.Repr
45 ∧ prev.ValidBST()

46 ∧ ∀ x | x in prev.Contents · x < data)
47 ∧ (next ≠ null ⇒ next in Repr

48 ∧ next.Repr ≤ Repr ∧ this ̸∈ next.Repr
49 ∧ next.ValidBST()

50 ∧ ∀ x | x in next.Contents · x > data)
51 ∧ (prev = null ∧ next = null
52 ⇒ Contents = [data])
53 ∧ (prev ≠ null ∧ next = null
54 ⇒ Contents = prev.Contents + [data])
55 ∧ (prev = null ∧ next ≠ null
56 ⇒ Contents = [data] + next.Contents)
57 ∧ (prev ≠ null ∧ next ≠ null
58 ⇒ prev.Repr !! next.Repr
59 ∧ Contents = prev.Contents
60 + [data] + next.Contents)
61 }
62 predicate BalancedBST()
63 reads this, Repr
64 decreases Repr
65 requires ValidBST()
66 {
67 ValidBSTisValidRef();
68 (depth(next) = depth(prev) ∨
69 depth(next) = depth(prev) + 1 ∨
70 depth(next) + 1 = depth(prev)) ∧
71 (next ≠ null ⇒ next.BalancedBST()) ∧
72 (prev ≠ null ⇒ prev.BalancedBST())
73 }
74 }
75 function getRepr(ref: Ref?): set<object>
76 reads ref
77 {
78 if ref ≠ null then ref.Repr else {}
79 }

Figure 6: Predicates and Ref class in Dafny for Challenge 2.

1 method size(ref: Ref?) returns (count: nat)
2 requires ref = null ∨ ref.ValidLL()
3 ensures ref = null ⇒ count = 0

4 ensures ref ≠ null ⇒ count = |ref.Contents|
5 decreases if ref ≠ null then ref.Repr else {}
6 {
7 if ref ≠ null {
8 count ≔ size(ref.next);
9 count ≔ count + 1;
10 } else {
11 count ≔ 0;
12 }
13 }
14 method dll2bst(head: Ref?) returns (root: Ref?)
15 modifies if head ≠ null then head.Repr else {}
16 requires head = null
17 ∨ (head.ValidLL() ∧ head.SortedLL())
18 ensures root = null ∨ root.ValidBST()
19 {
20 var n ≔ size(head);
21 var right: Ref?;
22 root, right ≔ dll2bstrec(head, n);
23 }
24 method dll2bstrec(head: Ref?, n: nat)
25 returns (root: Ref?, right: Ref?)
26 modifies if head ≠ null then head.Repr else {}
27 requires head = null
28 ∨ (head.ValidLL() ∧ head.SortedLL())
29 ensures root = null ∨ root.ValidBST()
30 ensures right = null ∨ right.ValidLL()
31 ensures head ≠ null ⇒

32 (n = |head.Contents| ⇒ right = null) ∧

33 (n < |head.Contents| ⇒ right ≠ null)
34 ensures getRepr(head) = getRepr(root) + getRepr(right)
35 ensures getRepr(root) !! getRepr(right)
36 decreases n
37 {
38 if n > 0 {
39 var left: Ref?;
40 left, root ≔ dll2bstrec(head, n/2);
41 root.prev ≔ left;
42

43 var temp: Ref?;
44 temp, right ≔ dll2bstrec(root.next, n - n/2 - 1);
45 root.next ≔ temp;
46 } else {
47 root ≔ null;
48 right ≔ head;
49 }
50 }

Figure 7: Dafny implementation for Challenge 2.

the size of Repr decreases with each recursive call (lines 20,

32, 40 and 64 of Figure 6).

Lines 9ś17: Here we provide a constructor for this class.

Lines 18ś28: This predicate specifies what it means to be a

valid linked list. The reads clause on line 19 specifies the

memory locations that the predicate is allowed to access. We

use the decreases clause on line 20 to prove termination

in the usual way. Note that we do not actually require that

the linked list is a true doubly-linked list, merely that it is a

valid singly-linked list, and that the reference prev exists.

Lines 29ś37: This predicate specifies what it means to be a

sorted linked list.

Lines 38ś61: Here, we specify what it means for a binary

search tree to be valid. In particular, the prev and next

subtrees should also be valid binary search trees (lines 45

and 49 respectively). The prev and next subtrees should

also be disjoint indicated by the ‘!!’ operator on line 58.

Lines 62ś74: The ValidRef predicate is the same as the

ValidBST predicate, but omits the requirement for left
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subtrees to contain smaller data, and right subtrees to con-

tain larger data. It is our least specific requirement, but we

still enforce that there are no cycles, since termination would

otherwise be very difficult to determine in general.

Lines 75ś79: This function is used to collect the set of repre-

sentative objects for a given Ref.

The predicates defined in Figure 6 are necessary to verify Tasks 2.3

and 2.4. Our Dafny implementation of the functionality that was

provided to competitors (shown in Figure 5) is contained in Figure

7 and we describe it as follows:

Lines 1ś13: This is our Dafny implementation of the size

function that was given on lines 6ś13 of Figure 7. The pre-

condition on line 2 requires that the input ref is either null

or it is a valid linked list. We then ensure (line 3) that if

ref is null then count will be 0. Otherwise, it returns the

size of ref (line 4). The decreases clause on line 5 is

used to prove termination, which supports Task 2.5. In the

case that ref is not null, the set of objects making up the

representation of ref decreases in size, however if ref is

null, then there is no such set, so we simply say that the

empty set decreases.

Lines 14ś23: This corresponds to lines 14ś19 of the pseudo

code that was given in Figure 5. We added the specifica-

tions on lines 15ś18 for verification. The modifies clause

is needed here and supports memory safety as prescribed

by Task 2.2. We ensure (line 18) that the output is a valid

binary search tree using the predicate that was previously de-

fined. We note that these specifications were verified for this

method, however, they depend on those in the subsequent

method which we could not completely verify.

Lines 24ś50: Here, we capture the main functionality of the

algorithm, corresponding to lines 20ś40 of Figure 5. We were

able to verify termination of this method (line 35 and Task

2.5). We verified memory safety via the modifies clause

on line 26. We verified the post-conditions on lines 31ś34

which offers some evidence towards Task 2.4. However, we

encountered difficulties when trying to verify the specifica-

tions on lines 29ś30. Much of the difficulty revolves around

verifying that we have permission to stitch left and temp

onto root, and deciding what exactly we can say about the

resulting data structure.

We were able to completely verify Task 2.5 but not the other

tasks. As a result, we did not attempt the optional Task 2.6.

A significant amount of time was spent trying to formalise a

predicate describing a valid doubly-linked list. Termination of such a

predicate follows from the fact that Repr, the set of objects making

up the representation of a Ref is finite, and that it decreases in size

with each call. This is not so simple with a doubly-linked list, since,

as presented, there is no easy way to prove that such a predicate

terminates. This stems from the difficulty in navigating a doubly

linked list and knowing your exact location in the list at any given

time. We might have had a better result if we had used another

data structure to represent the list, for example a pair of stacks, and

defined an invariant to describe the relationship between this and

the doubly linked list, giving us more visibility of how we traverse

the structure and providing more explicit termination measures.

However, this may not have solved all of our problems.

Further, the use of potentially null variables and the recursive

nature of the method on lines 24ś50 of Figure 7 caused us problems

with respect to proving the frame condition (modifies clause).

We specify that head.Repr may be modified (line 15), which

means that Dafny can modify any object in head.Repr. However,

Dafny does not recognise that it is allowed to modify root (on

line 41), despite the fact that Dafny knows that root is not null,

that root is in head.Repr, and that it can modify any object in

head.Repr, from which it should follow immediately that root

is modifiable. In the discussion session at VerifyThis 2021 other

teams presented similar issues and some managed to solve this

with their verification tools. We also noted that at least one of the

other teams participating in the competition using Dafny switched

to using Isabelle for Challenge 2.

4 DISCUSSION

The challenges in VerifyThis 2021 exposed a number of strengths

and limitations of Dafny. Particular strengths included Dafny’s abil-

ity to prove termination and memory safety with little input, espe-

cially in Challenge 1 (Tasks 1.1, 1.2. 1.6, 1.7 and 2.5). Dafny’s built-in

value types, i.e. sets, sequences, multisets, and maps, support er-

gonomic specification and verification. The multiset datatype

was particularly useful for verification of Challenge 1, allowing us

to state and easily prove that two arrays contained the same ele-

ments without needing to write additional functions or predicates

to verify Task 1.3. Likewise, we used Dafny’s immutable sequence

types seq when specifying both challenges, and the set type in

Challenge 2 for tracking the representation of an object.

We used two main constructs to support the specification of

aggregate objects in Challenge 2. These are object invariants, which

we express as a validity predicate e.g. ValidLL (lines 18ś28 of

Figure 6), and a representation set, expressed as a ghost variable

Repr (line 15 of Figure 6) representing the object’s dynamic frame6.

This representation of an object’s dynamic frame is provided as

a set of objects, so Repr can contain references to objects of any

type and that set of objects can dynamically change over time. We

can specify permissions on this set, using reads and modifies

clauses, specified for each predicate, function or method provided.

Dafny’s predicates and lemmas helped us with verification tasks

throughout the challenges, allowing us to make our specifications

more concise. Dafny provides automatic induction proofs for lem-

mas which we found useful in our proofs. We also took advantage of

Dafny’s specification-only ghost constructs in both Challenge 1,

for verification of loop invariants, and Challenge 2, for the abstract

representation of the linked list and set of representation objects as

mentioned above.

It was difficult to verify properties about possibly null objects

in Challenge 2 e.g. lines 24ś50 of Figure 7. A larger variety of

built-in datatypes would potentially have been useful here. The

decreases annotation provides an expression that decreases

with every recursive call and is bounded below. If a recursive func-

tion or method is not given an explicit decreases clause, then

6The name of the programming language Dafny comes from a permutation of the
letters in łdynamic framesž.
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the Dafny verifier guesses one based on the parameter provided

by the function or method. This was useful apart from when more

sophisticated measures were required, e.g. line 5 of Figure 5. Fur-

ther to this, the error messages provided by Dafny were often not

informative, but this is a limitation of many verification tools.

A nice aspect of Dafny is that memory safety is verified with-

out a large specification overhead. For Challenge 1, array bounds

are verified via the associated variants and invariants. The use of

modifies clauses allow us to specify which memory locations are

allowed to be modified by the relevant methods. If no modifies

clause is given then the default is that no memory locations can be

modified. These modifies clauses are accompanied by reads

clauses in Challenge 2 to control which memory locations are ac-

cessible (e.g. the current object and its representation on lines 19,

30, 39 and 63 of Figure 6).

The competition provided both a challenge to the tool and to

the users of the tool. It was beneficial for us, the users, because

it allowed us to learn more about Dafny as well as examine how

Dafny performs when verifying relatively complex algorithmic

problems. To date we have not seen details of the other Dafny

solutions submitted to VerifyThis 2021 but we look forward to

comparing our efforts when they are made available. Likewise,

a deeper discussion with other teams, regarding how they used

their tool to solve the challenges would be interesting. We hope to

resolve the problems that we encountered and we thank K. Rustan.

M. Leino for preliminary discussions regarding potential solutions.

5 CONCLUSIONS

Participation in the VerifyThis 2021 competition was educational

because it allowed us to examine the usability and usefulness of

Dafny for algorithmic verification tasks. It also gave us an opportu-

nity to learn more about the tool and gave us a better understanding

of its strengths and weaknesses. We would like to offer congrat-

ulations to the prize winners of VerifyThis 2021. VerifyThis 2021

was sponsored by Amazon (AWS) and the winners are listed at:

https://www.pm.inf.ethz.ch/research/verifythis/Prizes.html.
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