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Del. Coyoacán, México, D.F. 04510, MEXICO

katya@uxdea4.iimas.unam.mx

Abstract. Understanding how neutrality works in EC systems has drawn
increasing attention. However, some researchers have found neutrality
to be beneficial for the evolutionary process while others have found it
either useless or worse. We believe there are various reasons for these
contradictory results: (a) many studies have based their conclusions us-
ing crossover and mutation as main operators rather than using only
mutation (Kimura’s studies were done analysing only mutations) and,
(b) studies often consider problems and representation with larger com-
plexity. The aim of this paper is to analyse how neutral mutations tend
to behave in GP and establish how important they are. For this pur-
pose we introduce an approach which has two advantages: (a) it allows
us to specify neutrality and, (b) this makes possible to understand how
neutrality affects the evolutionary search process.

1 Introduction

In late 1960s, Motoo Kimura observed that mutations were present more often
than previously thought. Evolutionary Computation (EC) systems are mostly
inspired from the theories of genetic inheritance and natural selection. However,
Neutral theory [8] has interested some researchers who want to understand it
so that they can incorporate it in their EC systems to solve complex problems.
This theory suggests that a mutation from a gene to another is neutral if this
modification does not affect the phenotype.

Kimura’s theory seems to contradict the Darwinian theory but this is not
right. The Darwinian theory judges genes by their phenotypic expression whereas
Kimura’s theory argues that mutations occurring during evolution are neither
advantageous nor disadvantageous to the survival and reproduction of individu-
als. Such random genetic drift should be considered into the study of the evolu-
tionary process which is an issue neglected by the EC community.

Some researchers have made effort to understand how neutrality works in EC
systems in order to add elements to the evolutionary process to evolve complex
problem solutions. In Genetic Programming (GP) [9], neutrality if often iden-
tified with redundancy and introns. Both have being widely studied in the EC
community [1, 10, 12–14].
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Functional redundancy refers to the fact that many different individuals, at
the phenotype level, represent the same function. For instance the following two
genotypes represent the XOR function:

(nor (and (not (not a )) b) (not (or a b)))
(nor ((nand (nand a b) (or a b)) (not (or a b))))

Introns refers to code that is part of an individual but that semantically does
not affect the program’s behaviour. A good example of an intron could be found
in a typical individual generated for the artificial ant problem [6]. Suppose that
in the root node there is an IF instruction, which means that either the left or
right subtree will not be executed, so, any change in the subtree which is not
executed will have no effect on the behaviour of such individual.

The problem with functional redundancy and introns is that both emerge
and vary during the evolutionary process and for this reason it is very difficult
to measure and study the effects of neutrality.

The aim of this paper is to analyse how neutral mutations behave in GP and
establish how important they are. For this reason, we introduce a new approach
to study the effects of neutrality. This method has two advantages: (a) it al-
lows us to specify neutrality, (b) this makes possible to understand how explicit
neutrality3 affects the evolutionary search process.

The paper is organized as follows. In Section 2, previous work on neutrality
is presented. Section 3, the approach used to carry out our research is described.
Section 4 provides details on the experimental setup used and results are pre-
sented. In Section 5 conclusions are drawn.

2 Previous Work

As we will see in the next paragraphs, neutrality theory has been explored in
Genetic Algorithms. However, neutrality could be easier to find in GP due to its
representations.

Harvey and Thompson [5] studied some effects of neutral networks in an
evolvable hardware problem. In their work, they defined the concept of poten-
tially useful junk that refers to loci in a genotype that are functionless within the
current context, but with different values elsewhere in the genotype they may
become functional. Harvey and Thompson argued that it is possible to reach
a global optimum without worrying about premature convergence if one uses
neutrality in the evolutionary process.

Banzhaf [2] proposed an approach where a genotype-phenotype mapping was
used in the context of constrained optimisation problems. Banzhaf argued that,
very often, constraining the solution space leads to local optima which are diffi-
cult to escape from with traditional methods. He used high variability of neutral
variants to escape from local optima on saddle surfaces. Keller and Banzhaf
extended this work in [7].

3 Term coined by Yu and Miller [19], which means that neutrality can be added to
the evolutionary process.
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Shipman et al. [15] explored the benefits of neutrality in the context of a
mapping based on an abstraction of a genetic regulatory network — a random
Boolean network. The mapping used in their experiments provided a very large
degree of neutrality. From the experimental results they concluded that neutral
drift allowed the discovery of many more phenotypes than would be the case
with a direct encoding without redundancy. In [16] they proposed four different
redundant mappings to study their effect in the evolutionary process and see how
neutrality influences the search. They argued that redundancy was useful in three
of their mappings. They concluded that some kind of redundancy (neutrality) is
crucial.

Smith et al. [17] analysed the effects of the presence of neutral networks on
the evolutionary process. They observed how evolvability was affected by the
presence of such neutral networks. For this purpose they used a system with an
extremely complex genotype-to-fitness mapping. They concluded that the ex-
istence of neutral networks in the search space, which allows the evolutionary
process to escape from local optima, does not necessarily provide any advan-
tage. This is because the population does not evolve any faster due to inherent
neutrality. In [18] they focused their research on looking at the dynamics of the
population rather than looking at just the fitness, and argued that neutrality
did not perform a useful role in an evolutionary robotic task.

Yu and Miller [19] showed that neutrality improves the evolutionary search
process for a Boolean benchmark problem. They used Miller’s Cartesian GP [11]
to measure explicit neutrality in the evolutionary process. They have explained
that mutation on a genotype that has part of its genes active and others inactive
may produce different effects: mutation on active genes is adaptive because it
exploits accumulated beneficial mutations, while mutation on inactive genes has
a neutral effect on a genotype’s fitness, yet it provides exploratory power by
maintaining genetic diversity. Yu and Miller extended this work in [20] show-
ing that neutrality was helpful and that there is a relationship between neutral
mutations and success rate in a Boolean function induction problem. However,
Collins [4] claimed that the conclusion that, in this problem, neutrality is bene-
ficial is flawed.

Yu and Miller [21] also investigated neutrality using the simple OneMax
problem. They attempted a theoretical approach in this work. With their exper-
iments, they showed that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

Chow [3] proposed a method that uses individuals which contains multiple
chromosomes instead of a single chromosome. The idea of his approach was to
apply genetic operators which do not maintain a one-to-one mapping between
a genotypic bit and a phenotypic bit. Chow tested his approach in well known
deceptive problems with good results.

As it can be seen from the brief summaries provided above, some researchers
have found neutrality to be beneficial to evolutionary process while others have
found it either useless or worse. We believe there are various reasons of why
contradictory results on neutrality have been reported. In the next section we
will describe in detail the proposed approach.
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3 Graph-GP Representation

We believe that contradictory results regarding neutrality have several reasons:

– many studies have based their conclusions using crossover and mutation as
main operators rather that using only mutation,

– studies often consider problems, representations and search algorithms that
are relatively complex and so results represent the composition of multiple
effects (e.g., bloat or spurious attractors in GP).

In this paper, we make an effort to clarify these problems. That is,

– We use the traditional representation as suggested by Koza, with the differ-
ence to allow explicit neutrality,

– We analyse performance with and without the presence of neutrality, using
only the mutation operator.

The inspiration of using GP to study some effects of neutrality in the evolu-
tionary process comes from many facets of their properties.

Programs are represented in GP as parse tree, rather than as lines of code.
For instance, the expression AND(a AND (b OR b), a OR a) could be expressed
as shown in Figure 1(a). The set of internal nodes used in GP parse trees is
called function set, F = {f1, · · · , fNF }. The function set could include almost
any kind of programming construct: arithmetic operators, Boolean functions,
looping instructions, etc. The set of terminal nodes is called terminal set T =
{t1, · · · , tNT }. This set can include variables, constants, random constants, etc.

For our experiments, F = {AND, OR,NOT}, while T = {a, b, c, · · · } repre-
senting input wires. Moreover, we have added an extra element in the function
set, p. This p symbol works as follows: (a) Once an individual has been created
as usual, we use a probability to replace a function with a p symbol which is a
function of arity 2, which means that only functions of arity 2 can be replaced by
p symbol. However, this is not a restriction because p can be defined of any arity,
(b) If an individual contains this p symbol, this will point to code somewhere in
the program, so when p is executed, the subtree rooted at that node is ignored,
(c) If p symbol points to a function symbol, the p symbol effectively represents
the sub-tree rooted at that function, and, (d) If p symbol points to a terminal
symbol, the p symbol simply represents that node.

As can be seen, when p symbol is executed, the subtree rooted at that node
is ignored, and so plays the role of inactive code4. When the mutation is applied
in the inactive code, the individual will change at the genotype level but it will
not change at the phenotype level. Figure 1(b) illustrates the concept.

The mutation operator is applied as usual on a per node basis. The only
difference is that when a mutation is applied to the p symbol, we reassign the
position to which it is pointing to. The fitness function that we used for circuit
design is the raw fitness, where we assign the fitness to the individual according
to the number of correct output bits.
4 However, it is worth pointing out that this inactive code can be activated if p point

to this code.
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Fig. 1. (a) Parse-tree representation, and, (b) Graph-GP representation created with
our approach.

Table 1. Summary of Parameters.

Parameter Value

Depth 6, 7, 8, 9, 10

Population Size 200

Generations 400

Mutation Rate per node 0.02, 0.03, 0.04, 0.05, 0.06

P Rate per node 0.00, 0.01, 0.02, 0.03, 0.04

4 Experiments

4.1 Experimental Setup

In this section we use the 6-bit Multiplexer Boolean function to evaluate the
proposed approach. To obtain meaningful and conclusive results, we performed
20 independent runs for each of different mutation rates and different p rates. We
will show the results and analyse them in the following section. Moreover, runs
were stopped when the maximum number of generations was reached. The pa-
rameters we have used are shown in Table 1 (these parameters were defined after
a series of preliminary experiments). Initialization of the population was made
with the full method. Crossover operator was not used in any of our experiments.

4.2 Results and Analysis

Due to space limitations we will focus our attention on results generated with
depth 8. However, it is worth pointing out that results with depths 6, 7, 9 and
10 are very similar to those found with depth 8.
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Table 2. Results found with our approach in the 6-bit Multiplexer. P and Mutation
rate values are shown in the first and second column, respectively. Average of Fitness,
Standard Deviation (σ) and Median are shown in the third, fourth and fifth column,
respectively. Finally, Feasible Circuits (Success Rate) and Average of Generations (this
refers to the average number of generations that are necessary to reach the feasible zone)
are shown in the last two columns.

% P % Mutation Avr. of Fit. Standard Deviation Median F. Circuits Avr. of Gen.

0.01 0.02 64 0 64 100% 80.6

0.01 0.03 63.6 1.23 64 90% 155.66

0.01 0.04 62.65 2.98 64 70% 138.62

0.01 0.05 62.4 1.7 62.5 55% 146.65

0.01 0.06 62.25 1.37 62 30% 203.5

0.02 0.02 63.15 1.76 64 75% 91.46

0.02 0.03 62.5 2.42 64 65% 136.66

0.02 0.04 62.4 2.01 63 50% 141.5

0.02 0.05 60.95 3.24 61 35% 163.71

0.02 0.06 60.35 3.5 60 35% 243.14

0.03 0.02 63.5 2.86 64 85% 122.7

0.03 0.03 63.6 1.05 64 85% 109.64

0.03 0.04 62.3 2 62.5 45% 179.5

0.03 0.05 62 2.68 63 50% 237.5

0.03 0.06 60.7 3.51 61.5 30% 157.56

0.04 0.02 61.5 4.05 64 65% 109.65

0.04 0.03 61.3 4.17 64 60% 117

0.04 0.04 62.4 3.27 64 65% 132.45

0.04 0.05 61.9 2.95 63 45% 220.54

0.04 0.06 60.2 3.29 60 30% 164

From Figure 2 we can see the success rates found by our approach with
different p and mutation rate values. The highest success rate found was 100%
with p = 0.01 and mutation rate = 0.02. Keeping constant this p value and
increasing the mutation rate values, the success rate tends to decrease.

Similar behaviour can be observed with different p rate values. Therefore, we
can conclude that regardless the value of p is, the higher the mutation rate is,
the lower the success rate will be.

At this point, one question arises: what happen if we do not allow the presence
of the p element in our individuals? To answer this question we need to take a
look to Figure 2. In no case the system was able to reach a success rate of 100%
in the absence of the p symbol. Moreover, the performance of the GP system
without the presence of p is poor comparing when it is present. Actually, the
performance of the GP system when p is not present in the individuals is, the
worst for all mutation rates, except when mutation rate is 0.03.



Lecture Notes in Computer Science 7

Fig. 2. Success rate results. P refers to the p rates used in our experiments.

Table 2 shows additional details on our results. The last column reports the
average number of generations that are necessary to reach the feasible region5.
We can see that the lower the value of p is, the smaller the number of generations
that are required to solve the problem.

The experimental results also show how the individuals in the population
tends to behave in the presence of p in their structures. Figure 3 summarizes
such a behaviour on 4 different p rates. The highest success rates were found
when mutation rates were set with the lowest value (0.02), regardless of the p
rates.

At the beginning of the evolutionary process, the number of individuals af-
fected by neutral mutations is high but it tend to decrease after few generations.
In other words, individuals with p elements in their structures tend to disappear
at the beginning of the process. We think this happened because at the begin-
ning of the evolutionary process the solution needs to be protected by allowing
the presence of p in their structures. However, further analysis need to be done
to know why this happen.

Around generation 50 - 60 it is when the number of individuals affected by
neutral mutations becomes stable. As can be observed in all plots in Figure 3,
the best performance is achieved when the number of individuals affected by
neutral mutations is in the range of 90 - 100 (notice that this range is close to

5 The feasible region is the area of the search space containing circuits that match all
the outputs of the problem’s truth table
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half of the population). On the other hand, the worst performance was found
when the number of individuals affected by neutral mutations is below 80.

Fig. 3. Number of individuals affected by neutral mutations. p = 0.01 (a), p = 0.02
(b), p = 0.03 (c), p = 0.04 (d).

From this analysis, it is clear that the presence of p in the individuals can
make the solution avoid get stuck in local optimum. However, a balance between
p rate and mutation rate is needed in order to improve the exploration of the
search space.

5 Conclusions

In late 1960s, Motoo Kimura observed that mutations were present more often
than previously thought. He explained this phenomenon with the concept of
Neutrality which established that the majority of mutations that are present
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during the evolutionary process do not have impact at the phenotype level. This
paper makes an analysis of some effects of neutrality in GP. Moreover, we have
shown that neutrality is an important research area to be considered in the
evolutionary process. With the approach described in this paper, we have been
able to analyse some effects of neutrality.

From results found for the benchmark Boolean problem, we conclude that: (a)
Neutral Mutations help to the evolutionary process to reach feasible regions, (b)
Regardless the value of p, with higher mutation rates the success rates are low,
(c) Neutral Mutations do not allow to get stuck in local optima, and (d) With
low probability of p and low probability of mutation, the evolutionary process
tends to behave in a consistent way and shows better overall performance.

Further work need to be done about the effects of p symbol in tree’s struc-
tures. The amount of neutrality and the mutation rate present in the evolu-
tionary process play an important role during the evolutionary process. In the
future we will investigate the reasons behind the fine balance between these two
elements that is required to aid evolution. We also would like to know why the
presence of p in individuals’ structure tends to decrease in the evolutionary pro-
cess and with the use of family trees we can be able to clarify this point. In a
mutation based algorithm each individual has only one parent. This makes it
possible to track the origin of a sample point, and, in fact, the full evolutionary
path of an individual within its family tree.
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