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We compute the quark-gluon vertex in quenched QCD, in the Landau gauge using an off-shell mean-field 
O(a)-improved fermion action. The running coupling is calculated in an 'asymmetric' momentum subtraction 

scheme (MOM). We obtain a crude estimate for A~--~ = 170 =t: 65 MeV, which is considerably lower than other 
determinations of this quantity. However, substantial systematic errors remain. 

1. I N T R O D U C T I O N  

A nonper turbat ive  s tudy of the quark-gluon 
vertex is of great interest for a number  of rea- 
sons. Firstly, it allows us to determine the run- 
ning coupling as from first principles, and also, by 
studying the large-momentum behaviour,  to de- 
termine the scale parameter  AM- ~. This approach 
is complementary  to determinations of as  from 
the three-gluon vertex [1], as well as numerous 
other methods [2-5]. 

Secondly, it may provide input for model stud- 
ies of hadron structure, and in part icular  allow 
us to assess the reliability of t runcat ion schemes 
for Dyson-Schwinger equations. The infrared be- 
haviour may  also yield information about  dynam- 
ics of quark confinement [6]. 

Previously [7], the running coupling was stud- 
ied in an asymmetric  momentum subtract ion 
scheme, and O(a)  errors in the fermion action 
were found to be a serious problem. Here we ex- 
pand on this study, using an off-shell O(a)  im- 
proved quark propagator  to reduce those errors. 

In the continuum, the quark-gluon vertex with 
gluon momentum q and quark momenta  p, r = 
p + q can be decomposed as follows: 

4 

Aù(p, q) = ~_, Ai(p 2, q2, r2)Li ,g(p,  q) 
i=l 

8 
+ ~ Ti (p2, q2, r 2)Ti,~ (p, q) 

i=1 

(1) 
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The longitudinal components Li and the transverse 
components Tl are given by [8] 

LI, ,  = '7ù L2,ù =]ékù (2) 

L3, t*  = kt, L4,t, = aù,,k~ 

T3,,~ "= q2"h,- ~qù T4, ,ù  = t~,a,,xp,,qx 

T5,ù = aù~q~ Ts,ù = - (qk )7ù+  ¢kù (3) 
1 

T7.ù = - 2 ( qk ) [16 "7» - k~ ] +k~a~, xp,,qx 

Ts,ù = -'/ùa,,xp,, q x -  l~q,~+ ~p~, 

where kù ~ (2p + q)~, gù -- (pq)qù - q2pt,. We are 
particularly interested in )q, since this form factor is 
related to the running coupling. In the kinematical 
limit q = 0, which we will be concentrating on here, 
all the transverse form factors ri, as weil as A4, are 
zero. We will also be studying the 'symmetric' mo- 
mentum configuration where q = -2p.  In this case, 
all the form factors are zero apart from A1, T3 and rs. 

2. R E N O R M A L I S A T I O N  

We impose 'continuum-like' MOM conditions on 
the quark and gluon propagators: 

DL(qa)lq2=,2 = Zs(#,a) (4) 
#2 

z2(~, «) p~-»~ (5) SL(Pq)IP2=~'2 = i , K - - ~ T ~ I ( ~ )  _ 

where Kù(p) = sinp~, We then impose momentum 
subtraction conditions on A1. We define the 'asym- 
metric' (MOM) scheme by 

1 AMOM(#) ---- A1(#2,0,# 2) = ~tr'7~A~(p, 0)[p==ù2 (6) 
p v = 0  
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where no sum over the Lorentz index v is implied. 
I t  is also possible to define a ' symmetr ic '  (M---Ö-M) 
scheme where A~°M(p) -- Al(# 2, 4p 2, p2); however, 
as we shall see it is not possible to implement this 
scheme in the Landau gauge on the lattice. 

The MOM renormalised coupling is defined by 

gR(~) = iz2(~,)z~/~(#):,  (~) (7) 

On the lattice, the proper vertex is given by 

T»~ (q)A~ (p, q) -- TaTu~, (q)A» (p, q) 

=-- (S (p) ) - l (S (p)Aa~(q) ) (S(p  + q ) ) - i ( D ( q ) ) - I  (8) 

The tensor T,~ is given by Djù,(q) = Tu~,(q)D(q). In 
Landau gauge, for q # 0 this is simply the trans- 
verse projector. Thus it is not possible to evaluate 
the longitudinal components of the quark-gluon ver- 
tex, including A1, for non-zero gluon momentum in 

Landau gauge. This means that  our MOM scheme is 
the only feasible scheme in this context. 
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F igure  1. T h e  un reno rma l i s ed  )~l (p2,0 ,p  2) as a 
funct ion  of pa .  T h e  filled circles a re  d a t a  o b t a i n e d  
us ing the  ' u n i m p r o v e d '  p r o p a g a t o r  So, while  the  
open  t r i ang les  a re  o b t a i n e d  using the  ' improve d '  
p r o p a g a t o r  SI .  

3. R E S U L T S  

We have analysed 495 configurations on a 163 x 48 
lat t ice at /3 -- 6.0, at one quark mass m a  = 0.058, 
using the SW action with the mean-field csw = 1.479. 
We have used the 'unimproved'  quark propagator  

So(x,O) - (M-1)=o; So(p) = ~ _ e - i P = S ( x , O )  (9) 
æ 

and the ' improved'  propagator [9] 

Sc(p) = (1 + bq)So(p) + A (10) 

with the mean-field coefficients A = 0.57, bq = 1.14. 
The configurations have been fixed to the Landau 
gauge with 8 < 10 -12. 

In fig. 1 we show )~IMOM(p) as a function of p, for 
both So and $1. We see that  there is a very big dif- 
ference between the unimproved and improved quark 
propagators.  However, this difference is almost en- 
tirely due to the tree-level behaviour of the improved 
propagator.  It is possible to implement a tree-level 
correction scheme for the vertex similar to the one 
used for the quark propagator in [9]; however, tha t  is 
not necessary in this case since the tree-level correc- 
tion of the vertex is exactly cancelled by the tree-level 
correction of Z2 given in [9]. 

Fig. 2 shows the running coupling gM--öfi(#) as a 
function of #. We see that  the results obtained from 
So and $I agree almost perfectly, despite the big dif- 
ference in the unrenormalised A1 - -  confirming that  

the dominant  (tree-level) behaviour is cancelled out 
at the renormalisation stage. 

We obtain Afi-ò-fi by inverting the two-loop renor- 
malisation group equation, 

1 b l  

A = #e ~ (bog2(#)) -2~bo (11) 

The results from S1 are shown in fig. 3. It is not 
clear whether there is a perturbat ive window for this 
quantity. We do not expect two-loop perturbat ion 
theory to be valid until # >> 2 GeV. It  is therefore 
no surprise tha t  we do not see a plateau in A until 
3 GeV. More importantly,  as observed in the three- 
gluon vertex [10], (~M-ö-fi contains power corrections, 
which we have not yet  taXen into account. We ex- 
pect the inclusion of these corrections to significantly 
change the value of Afi-ò-~. On the other hand, lat- 
tice artefacts become large for # > 2 GeV, so it is 
questionable whether we can trust  out da ta  here. 

Z~, Za and A M°M have been computed at one-loop 
level in the MS scheine [11,8]. In Landau gauge, they 
are 

z3(~)  = 1 + «~(~____2 97 47r ~CA Z2(#) = 1 (12) 

)~MOM(p) = 1 + «M-g(P) CA 3 +  (13) 
47r 4 

From this we find, for # » m, 

[ 1 5 1 ~ ~ ( p )  ~O(  ~)] (14) 
a~-ò-~(#) = «~--~(#) I-~ 12 4~r 
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Figu re  2. The  runn ing  coupl ing  9f fò -~(#)  as a 
func t ion  of  the  r eno rma l i s a t i on  scale #. T h e  sym-  
bols  a re  as  in fig. 1. 
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Figu re  3. A M ~  eva lua ted  using (11) as func t ion  
of t he  scale #,  us ing the  ' improved '  p r o p a g a t o r  

81. 

which gives AM--ö-fi/A~-g = exp(151/232) = 1.77. 
From fig. 3 we find A ~ ò ~  = 300 4- 100 MeV, which 
gives an est imate of A~-~ = 1704-65 MeV. As already 
indicated, however, the systematic uncertainties con- 
nected with the finite lattice spacing (even using the 
Sz, giving improved ultraviolet behaviour) and the 
power corrections to «~ (which come in addition to 
those arising in eq. (13)) are substantial ,  and may 
easily change this estimate by a factor of 2. 

4.  O U T L O O K  

We have defined a zero-momentum (MOM) sub- 
traction scheme for the quark-gluon vertex and used 
it to determine c~s and AQCD. Lattice artefacts still 
give substantial  uncertainties; it is not clear whether 
they are under control. A further source of systematic 
error in the determination of AQCD is power correc- 
tions to er». Work is in progress to determine these. 

In the Landau gauge, Iongitudinal components of 
the vertex can only be studied at zero gluon momen- 

tum, so MOM is the only feasible renormalisation 
scheme. Transverse components, which axe all zero at 
this point, may be studied in more general kinemat- 
ics. We axe currently analysing the two components 
) t3 (p  2, 0, p 2) a n d  T3(p  2, 4 p 2 , p 2 ) .  

In a general covariant gauge, in addition to study- 
ing the gauge dependence of the vertex, it is also pos- 
sible to define a symmetric (MOM) renormalisation 
scheme. This is an interesting issue for future work. 
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