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This note draws together and extends two recent results on Diophantine approxima-
tion and Hausdorff dimension. The first, by Hinokuma and Shiga [12], considers the
oscillating error function |sin^|/^T rather than the strictly decreasing function q~T of
Jarnik's theorem. The second is Rynne's extension [17] to systems of linear forms of
Borosh and Fraenkel's paper [3] on restricted Diophantine approximation with real
numbers. Rynne's result will be extended to a class of general error functions and applied
to obtain a more general form of [12] in which the error function is any positive function.

Before stating the problem some notation and definitions are introduced. Define ||v||
to be the distance of the nearest integer vector p e Z" from v e W, that is ||v|| = |v - p^.
Let X be an m X n real matrix. Then

is a system of n real linear forms in m variables. The set of ip well-approximable mXn
matrices is defined as

W(m,n; «/0 = {X e Umn : \\qX\\ < «K|q|) for infinitely many q e Zm}.

This paper is concerned with the Hausdorff dimension of W(m,n;ijj) when instead of
running over all q in Zm, we look at the q confined to a subset Q <=, Zm. Three applications
of the main theorem will be given, one of which includes the case when ip is not
necessarily a descreasing function. The set W(m,n;\fi) has been studied extensively;
results about its Lebesgue measure can be found in [16,10]; about its Hausdorff
dimension in [14,15,1, 8, 2, 7, 5]; and about its Hausdorff measure in [15,4].

Define the unique number 0 £ v(Q) < in such that

2 \qr ]
qTe <°° for e>O.J

This is the exponent of convergence. From now on WQ(m,n; i/») will be used to denote the
set

WQ(m, n; i/0 = {X e W"" : ||qAl < i^(|q|) for infinitely many q e Q).

Using this definition Rynne obtained the following result.

THEOREM 1 (Rynne). For T > v(Q)/n

dim WQ(m, n;x~r) = {m- \)n

Note that it follows from Groshev's theorem [10] that if r < v(Q)/m then WQ has full
Lebesgue measure.

As mentioned above this theorem extends the results of Borosh and Fraenkel [3],
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who did the one dimensional case, and also of Eggleston [8] who considered certain
subsets which were suitably sparse (corresponding to v(Q) = 0) or suitably dense
(corresponding to v(Q) = 1). Bovey and Dodson [2] also looked at sequences which
although "thin" were dense enough not to affect the Hausdorff dimension {v(Q) = m). In
particular they investigated a sequence of q whose coordinates were primes in arithmetic
progressions; that is

Q = {q e T" : q,, • at (mod k,), 1 £ i s m),

where (a,-, kt) = 1.
With the objective of extending Rynne's result to a general class of error functions in

mind, the lower and upper orders A and K of a function / at infinity are defined
respectively as

log r

log r

Using these definitions let Â  = A(l/i/f) and K^ = K(1/I/0- Then for any e >0 there exists
an No such that for all N> No

giving

AT"*-* <,/,(#)< AT A*+e. (1)

Further information on upper and lower order can be found in Hayman [11].

THEOREM 2. Let ift be a positive function; then

(m - l)n + V ( g ) + W<dim WQ(m,n; 4>)<(m-
1 + K

dim WQ(m,n; 4>)(m 1)« +
1 + K,J, 1 + Â ,

for Â  > v{Q)ln.

When Q = Zm, Dodson [5] proved that the Hausdorff dimension of W{m,n\ t/0 was
in fact equal to (m - \)n + (m + n)/(l + A )̂ for K4l>mln. When the lower and upper
orders are equal the exact dimension is obtained.

From the definitions of upper and lower order we have that

This proves the theorem.
Three applications of Theorem 2 will now be discussed.
Application 1. This concerns the set W(m,n; \fi) when i/> is not strictly decreasing.

THEOREM 3. Let ip : R-» R+, <p : U—> U+ be functions with <p decreasing. Let Q be an
infinite set of integer vectors contained in Zm for which <p(|q|) ^ iA(|q|), for fl" fl e Q- Then

where Â , = A(l/i/») and KV =

Note that there is no growth condition on i/r but there is no interest in looking at the
set when ty is increasing. When t/f(|q|) decreases for certain integers one can take
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<p(lql) = <Klql) f°r q e 6- The upper bound is obtained from [5] and the lower bound
comes from the lower bound estimate in Theorem 2. Obviously WQ{m,n\ <p)s
W(m,n; iff) and thus any lower bound for the dimension of WQ(m,n; <p) is also a lower
bound for dim W(m, n; i/f).

Hinokuma and Shiga [12] obtained the exact dimension for the case m = n = l with
if/(q) = |sin<7|/<7T. Since then, in 1996 Hinokuma and Shiga [13] have proved the complete
result for a general function if/ for the case m = n = 1. Their proof involved a calculation
of the number of q such that |sin q\ > c. Thus the subset Q was the set of q e 2 such that
|sin<7|>c and (p(q) = c/qT. Using the notation of this paper they proved that v(Q) = 1.
Plainly Theorem 3 contains Hinokuma and Shiga's result, and indeed extends it to higher
dimensions (the lower and upper orders are the same in this case). Clearly it will also deal
with any other suitable trigonometrical function.

Another example is the function 4>(r) = <f>(r)/r*, where $ is the Euler function, and
so ip has a very irregular behaviour. For prime numbers however t//(r) = (r — l)/rT and
strictly decreases on the set of primes. In this case although the prime numbers can be
thought of as a "thin" set, v(Q) = 1 and the upper and lower bounds for the Hausdorff
dimension are equal. Hence

dim W(l, 1, ./O = - ( T > 2 ) .

T

Application 2. The following set

K(«/0 = {(X, a) e Umn X R™ : | |q* - a|| < tKlql) for infinitely many q e Zm}
was considered by Dodson in [6] and its Hausdorff dimension obtained using a different
method for ip decreasing. This set is an inhomogeneous version of W(m,n; i/r). Bounds
for its Hausdorff dimension can be obtained by rewriting it as WQ(m,n; \p) with
Q = {(q, -1) e Zm + 1: q G Zm}, and considering the cartesian product of X and a as a
matrix in R(m+1>" with a as the final column vector. For this Q it is readily verified that
v(Q) = m and then Theorem 2 gives the result

m + n . m + n
mn H <dim V(iii)^mn H .

1 + 1 + A
In the event that ty is decreasing the exact Hausdorff dimension can be determined. As ijj
is decreasing, from the definition of lower order there exists a sequence of arbitrarily large
integers N such that il/(N) > N~**~e. It also holds that

for q e [l/2Nr,Nr] and some constant c. Choose a sequence {Nr}r of the N's for which
A/,+1 ^ 4Nr and let

Q = {(q, -1) G Zm + 1: |q| G [l/2Nr, Nr] for some r}.

It is readily verified that v(Q) = m. Also

giving the exact dimension. This observation is due to Bryan Rynne.
Application 3. Consider a point X which lies in W(m,n; i/f). Let Q(x) be the set of

q e Z m for which \\qX\\ < ip(\q\). In some recent work by Forrest [9] the following
condition was required: there exist other points, X' say, which obey the same inequality
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for q e Q(X). (In [9] only one dimension was needed.) Using Theorem 2 it can now be
shown that there exist uncountably many such points. By Theorem 2

dim WQm(m, n; <A) ^ (m - l)n + w +

Thus the set of X e Rm" that approximate the same q in Zm has positive Hausdorff
dimension strictly greater than (m — l)n, which shows that there are uncountable many
such points, and they do not all lie on the hyperplanes defined by qX = 0.
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