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Abstract. We consider Ptolemy’s inequality in a metric space setting. It is not hard
to see that CAT(0) spaces satisfy this inequality. Although the converse is not true in
full generality, we show that if our Ptolemaic space is either a Riemannian or Finsler
manifold, then it must also be CAT(0). Ptolemy’s inequality is closely related to
inversions of metric spaces. We exploit this link to establish a new characterization of
Euclidean space amongst all Riemannian manifolds.

1. Introduction

Inversion (or reflection) about the unit sphere is a bijection on R
n \ {0}, so we can pull

back Euclidean distance to get a new distance on R
n \ {0}: i0(x, y) = |x − y|/|x| |y|.

Inversion has been generalized to the setting of a metric space (X, d) in [8]: for fixed
p ∈ X, define

(1) ip(x, y) =
d(x, y)

d(x, p)d(y, p)
, x, y ∈ Xp ,

where Xp := X \ {p}. In general this is not a metric on Xp, but a related function
dp : Xp ×Xp → [0,∞) is defined and shown to be a metric which is subordinate to, but
comparable with, ip; see [8, Lemma 3.2].

The definition of dp is more complicated than that of ip, so it is natural to ask when
ip itself is a metric for all p ∈ X. This reduces to deciding if ip satisfies the triangle
inequality, and is easily seen to be equivalent to Ptolemy’s inequality

(2) d(x, y)d(z, p) ≤ d(x, z)d(p, y) + d(x, p)d(y, z) , x, y, z, p ∈ X .

A metric space satisfying this inequality is said to be Ptolemaic [17], [5], [6], [13], [14],
[1], [10], [11].

It is not hard to see that CAT(0) spaces are Ptolemaic; see Section 3. As a corollary, the
inversions ip are metrics in every CAT(0) space. We also discuss implications in the con-
verse direction in Section 3. The natural converse fails: there exists a geodesic Ptolemaic
space that is not CAT(0); see the comments after Theorem 1.1 in [11]. Nonetheless,
if more structure is imposed on the space under consideration, it is possible to give
converse statements. We prove the following result in Section 4.

Theorem 1.1. A complete Riemannian manifold M is Ptolemaic if and only if it is
CAT(0), or equivalently a Hadamard manifold.

It has been brought to our attention that a local version of Theorem 1.1 was proven in
the Ph.D. thesis of D.C. Kay. However, as that thesis is not easy to access, we include
a complete proof of Theorem 1.1.
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One might hope to get more examples of Ptolemaic spaces in the class of Finsler man-
ifolds than in its subclass of Riemannian manifolds. The following result, proven in
Section 5, says that this is not the case; see the thesis of D.C. Kay for a related result.

Theorem 1.2. A Ptolemaic Finsler manifold is necessarily Riemannian.

Finally, it seems natural to ask when the inversion metrics on a Riemannian manifold
are themselves Riemannian. This question in fact allows us to characterize Euclidean
space among all complete Riemannian manifolds, as revealed by the following result
which is proved in Section 6. Recall that a Finsler manifold is a smooth manifold M
together with a function F : TM → [0,∞) which is smooth on the complement of the
zero section of TM , and which restricts on each tangent space to give a Minkowski norm.
(A Minkowski norm is a norm which satisfies a certain strong convexity condition; see
[2] for details.)

Theorem 1.3. Let M be a complete Riemannian manifold. Then the metric space
(M \ {p}, ip) has the structure of a Riemannian manifold for all p ∈ M if and only if
M is Euclidean space.

Acknowledgement. The authors wish to thank Jane McDougall for her careful
reading of this paper and for useful discussions. The authors are also indebted to the
referee whose suggestions and simplifications of proofs have been very useful in producing
the final version of the manuscript.

2. Preliminaries

A Riemannian manifold M is a smooth manifold endowed with a Riemannian metric
tensor g, that is, a choice of inner product on each tangent space TxM depending
smoothly on x ∈ M .

A Finsler space is a smooth manifold M endowed with a Finsler metric F : TM → [0,∞)
which is C∞ on TM \{0} and whose restrictions Fq = F |TqM to the tangent spaces TqM ,
q ∈ M , are Minkowski norms (for details see for instance [2]). The Finsler metric is
introduced as in the Riemannian case: If γ : [a, b] → M is a Lipschitz continuous curve,
then the function t 7→ F (γ′(t)) is measurable and

LF (γ) :=

∫ b

a

F (γ′(t))dt

is the length of γ. The metric is then given by

d(x, y) := inf
γ

LF (γ), x, y ∈ M,

where the infimum is taken over all Lipschitz continuous curves γ : [0, 1] → M with
γ(0) = x and γ(1) = y. Recall that the exponential map expq : TqM → M is defined
as follows. Given u ∈ TqM , expq u is the point in M reached by a geodesic segment
starting at q in direction of u which has length Fq(u), assuming that such a geodesic
movement is possible in M (for further details see [2]).

Throughout the rest of this paper, (X, d) is a metric space and Xp := X \ {p}. X is
said to be proper if all its closed balls are compact.
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The one-point extension of X is defined via

X̂ :=

{

X when X is bounded ,

X ∪ {∞} when X is unbounded ;

the open sets in X̂ include those in X together with complements (in X̂) of closed balls

(in X). Thus when X is a proper space, X̂ is simply its one-point compactification.

Given a subspace Z ⊂ X, we write Ẑ and ∂̂Z to denote the closure and boundary of Z
in X̂; e.g., Ẑ = Z̄ when Z is bounded and Ẑ = Z̄ ∪ {∞} when Z is unbounded.

Recall the metric dp mentioned in the introduction. When (X, d) is unbounded, there
is a unique point p′ in the completion of (Xp, dp) which corresponds to the point ∞ in

X̂. (Any unbounded sequence in (Xp, d) is a Cauchy sequence in (Xp, dp), and any two
such sequences are equivalent.) Because of this phenomenon, we define

(Invp(X), dp) := (X̂p, dp) = (X̂ \ {p}, dp)

and we call (Invp(X), dp) the inversion of (X, d) with respect to the base point p. For
example, with this definition, Invp(X) will be complete (or proper) whenever X is
complete (or proper).

Note that ip is a metric if and only if for all x, y, z ∈ Xp,

ip(x, y) ≤ ip(x, z) + ip(z, y) .

Writing ip(x, y) = d(x, y)/d(x, p)d(y, p) and similarly for the other two terms above and
then multiplying across by d(x, p)d(y, p)d(z, p), we see that this last inequality becomes

d(x, y)d(z, p) ≤ d(x, z)d(p, y) + d(x, p)d(y, z) , x, y, z ∈ Xp ,

so, as mentioned before, ip is a metric for all p ∈ X if and only if X is Ptolemaic.

A classical result says that Ptolemy’s inequality holds in the Euclidean plane, with
equality if and only if the points x, y, z, and p lie on a circle in that order. In fact,
this follows readily from the fact that ip is the pullback of Euclidean distance under
inversion in the unit sphere. Ptolemy’s inequality has also been studied in more general
settings than Euclidean space; see for instance [14], [1], [10]. Of particular interest to
us is the result of Schoenberg [17] which says that a normed space is Ptolemaic if and
only if its norm is induced by an inner product.

We do not distinguish notationally between paths and their images. Suppose γ : I → X
is a path, where I ⊂ R is an interval. If γ contains points x, y ∈ X, then γ[x, y] denotes
any subpath of γ containing the points x, y ∈ X. This may not be unique: we insist only
that different instances of such notation in the same proof refer to the same subpath.

If (X, d) is rectifiably connected, we define the intrinsic metric associated with d by

l(x, y) := inf{len(γ) : γ is a path in X containing x, y} .

We say that (X, d) is a length space if l = d. A path γ of length d(x, y) joining x, y ∈ X
is called a geodesic segment, and is often denoted [x, y]. We call (X, d) a geodesic space
if all pairs of points can be joined by geodesic segments, i.e. the above infimum is always
attained.

A geodesic triangle T (x, y, z) is a collection of three points x, y, z ∈ X together with
a choice of geodesic segments [x, y], [x, z] and [y, z]. Given such a geodesic triangle
∆ := T (x, y, z), a comparison triangle in this paper will always mean a geodesic triangle
in the Euclidean plane, T (x̄, ȳ, z̄), such that corresponding distances coincide: d(x, y) =
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|x̄− ȳ|, d(y, z) = |ȳ − z̄|, d(z, x) = |z̄ − x̄|. Note that to avoid cluttered notation, we do
not specify the space in the notation T (·, ·, ·); the space will always be clear from the
context.

A triangle map (in X) is a function f from a geodesic triangle T (x, y, z) in X onto
a comparison triangle T (x̄, ȳ, z̄), such that f(x) = x̄, f(y) = ȳ, f(z) = z̄, and the
restriction of f to any one of the three sides is an isometry. Triangle maps always exist,
and are unique up to an isometry of R

2. (X, d) is said to be a CAT(0) space if it is
geodesic and d(u, v) ≤ |f(u) − f(v)| for all u, v ∈ ∆ whenever f : ∆ → ∆̄ is a triangle
map. A geodesic triangle is nondegenerate if each of its sides is strictly shorter than the
sum of the lengths of the other two sides.

An important class of CAT(0) spaces is given by Hadamard manifolds, i.e. complete
simply connected Riemannian manifolds of nonpositive sectional curvature. Indeed a
complete Riemannian manifold is CAT(0) if and only if it is a Hadamard manifold; see
II.1.5, II.1A.6, and II.4.1 in [7].

If x, y, z are distinct points in X, then we define the angle θ := ∠x(y, z) by

c2 = a2 + b2 − 2ab cos θ,

where a := d(x, y), b := d(x, z), and c := d(y, z). Note that θ is the Euclidean angle
at x̄ whenever T (x̄, ȳ, z̄) is a comparison triangle for T (x, y, z). If γ : [0, a] → X and
γ′ : [0, ā] → X are geodesic paths, parametrized by arclength and with γ(0) = γ′(0),
then we define the (Alexandrov) angle ∠(γ, γ′) by

∠(γ, γ′) := lim sup
t,t′→0

∠c(0)(c(t), c(t
′)) .

For much more on CAT(0) spaces and comparison angles, we refer the reader to [7].
Let us note only that Alexandrov angles correspond to the usual definition of angles in
Euclidean and hyperbolic space; for the hyperbolic case see [7, I.2.9].

3. CAT(0) spaces are Ptolemaic

In this section, we discuss the following basic result.

Proposition 3.1. Every CAT(0) space is Ptolemaic.

This result follows easily from the fact (mentioned in [7, II.1.10]) that CAT(0) spaces
(X, d) satisfy the following CAT(0) four-point condition:
For every choice of 4 points x1, x2, y1, y2 ∈ X, there exist points x̄1, x̄2, ȳ1, ȳ2 ∈ R

2 such
that d(xi, yi) = |x̄i − ȳj|, i, j = 1, 2, and d(x1, x2) ≤ |x̄1 − x̄2| and d(y1, y2) ≤ |ȳ1 − ȳ2|.
In fact, we simply take (x1, x1, y1, y2) = (x, y, z, p) and use the fact that the Euclidean
plane is Ptolemaic.

For the sake of completeness and since we shall later use some of the ideas contained in
it, we also give the following direct proof:

A direct proof of Proposition 3.1. Let x, y, z and p be arbitrary points in X. Consider
Euclidean comparison triangles with vertices x̄, ȳ, z̄ and x̄, ȳ, p̄ corresponding to the
triangles in X with vertices x, y, z and x, y, p, respectively. We choose the comparison
triangles in such a way that z̄ and p̄ are not in the same open half-plane with respect
to the line through x̄ and ȳ.

We distinguish between two cases. In the first case, illustrated in Figure 1, the closed
line segment with endpoints z̄ and p̄ intersects the closed line segment with endpoints
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x y

z

p

u
x̄ ȳ

z̄

p̄

ū

Figure 1. The case where [z̄, p̄] intersects [x̄, ȳ]

x̄ and ȳ. Let ū be the intersection point and let u be the corresponding point on the
geodesic segment connecting x and y in X, that is, the unique point u on this geodesic
segment such that d(x, u) = |x̄− ū|. By the CAT(0) condition, we have d(z, u) ≤ |z̄− ū|
and d(p, w) ≤ |p̄ − ū|, and so

(3) d(z, p) ≤ d(z, u) + d(u, p) ≤ |z̄ − ū| + |ū − p̄| = |z̄ − p̄| .

It follows that Ptolemy’s inequality holds for d, since all other distances involved are
preserved, and the Euclidean plane is Ptolemaic.

We now consider the alternative Case 2, when the closed segment with endpoints z̄ and
p̄ does not intersect the closed segment from x̄ to ȳ. In this case, we prove the stronger
inequality

d(x, y)(d(z, x) + d(x, p)) ≤ d(x, z)d(y, p) + d(x, p)d(y, z) ,

or equivalently

(4) |x̄ − ȳ|(|z̄ − x̄| + |x̄ − p̄|) ≤ |x̄ − z̄| |ȳ − p̄| + |x̄ − p̄| |ȳ − z̄| ,

since the distances involved are all preserved by moving to the Euclidean plane.

To prove (4), we swivel the points z̄ and p̄ in such a way that the distances |z̄ − x̄| and
|x̄− p̄| are held constant and the angles ∠x̄(z̄, ȳ) and ∠x̄(p̄, ȳ) are decreasing. As long as
the angles ∠ȳ(z̄, x̄) and ∠ȳ(p̄, x̄) are not allowed to exceed π/2, swiveling in this manner
decreases the distances |z̄ − ȳ| and |p̄− ȳ| while holding the three other distances in (4)
constant; see Figure 2. Thus the left-hand side of (4) is invariant under such a swivel
and the right-hand side decreases, so (4) holds prior to such a swivel if it holds after the
swivel.

x̄ ȳ

z̄

p̄

Figure 2. The nonintersecting case

A moment’s reflection shows that we can always perform a swivel of this type to get
∠x̄(z̄, p̄) = π without allowing either ∠ȳ(z̄, x̄) or ∠ȳ(p̄, x̄) to exceed π/2. But then
we are back in Case 1, and (4) coincides with the usual Ptolemaic inequality because
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|z̄ − x̄| + |x̄ − p̄| = |z̄ − p̄|. This concludes the proof of (4) in Case 2, and the proof of
the proposition. �

Let us note that (4) fails for certain configurations in Case 1. In fact if we take x̄, z̄, ȳ, p̄
to be four distinct points lying on a Euclidean circle in that order, then Ptolemy’s
theorem tells us that

|x̄ − ȳ| |z̄ − p̄| = |x̄ − z̄| |ȳ − p̄| + |x̄ − p̄| |ȳ − z̄| .

Since |z̄ − p̄| < |z̄ − x̄| + |x̄ − p̄|, we cannot have equality in (4).

A straightforward computation shows that Ptolemy’s inequality (2) implies the triangle
inequality for the inversion ip defined in (1), thus proving the following corollary of
Proposition 3.1.

Corollary 3.2. If (X, d) is CAT(0), then ip is a metric for all p ∈ X.

Let us now discuss possible converses to Proposition 3.1. Since a Ptolemaic space need
not be geodesic (for instance the set of integers with the Euclidean metric inherits the
Ptolemaic property from R), one could not hope for all Ptolemaic spaces to be CAT(0).
But it is not even true that Ptolemaic spaces can always be isometrically imbedded in
a CAT(0) space. Consider for instance the space

X = {(0, 0), (0, 1), (1, 1), (1, 2)}

with l∞ metric

d((x1, y1), (x2, y2)) = max{|x1 − y1|, |x2 − y2|} .

If (X, d) is a subspace of a geodesic space (Y, d), then the concatenation of geodesic
segments [(0, 0), (0, 1)] and [(0, 1), (1, 2)] gives one geodesic segment from (0, 0) to (1, 2)
while the concatenation of geodesic segments [(0, 0), (1, 1)] and [(1, 1), (1, 2)] gives an-
other. The two segments have to be different since any segment from (0, 0) to (1, 2) that
goes through both (0, 1) to (1, 1) must have length at least 3. The CAT(0) condition
readily implies uniqueness of geodesic segments so we are done.

A weaker converse implication would be the statement that a geodesic Ptolemaic space
is CAT(0). This is not true in general (see [11]), but we prove it in the context of
Riemannian manifolds in the next section.

4. Ptolemaic Riemannian manifolds are CAT(0)

In this section we establish a converse to Proposition 3.1 in the Riemannian setting:
a complete Riemannian manifold (M, g) whose metric satisfies Ptolemy’s inequality is
necessarily CAT(0). In view of the fact that a CAT(0) manifold is precisely a Hadamard
manifold, we must prove that a complete Ptolemaic manifold is simply connected (a
global property) and of nonpositive sectional curvature (a local property). It makes
sense to separate these two implications. We begin with the global one, which we prove
in a more general context than manifolds.

Theorem 4.1. If a Ptolemaic length space is complete and semilocally simply connected,
then it must be simply connected.

Before giving the proof, let us explain the idea. First note that a circle of perimeter 4L
with the arclength metric attached is not Ptolemaic. Indeed, if we choose the points
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x, z, y, p to be quarter points on the circle, i.e. four points in this order around the circle
that divide the circle into four pieces of equal length, then

d(x, y)d(z, p) = (2L)(2L) = 4L2 > L2 + L2 = d(x, z)d(y, p) + d(x, p)d(y, z).

Thus any metric space X containing an isometric copy of a circle is non-Ptolemaic. A
space that fails to be simply connected might fail to have an isometric copy of a circle,
but Ptolemy’s inequality still fails if we can find a set of four points in X for which
the set of distances between pairs approximates sufficiently well the distances between
quarter points of a circle. The proof of Theorem 4.1 amounts to finding a set of such
approximate quarter points.

Recall that a topological space X is semilocally simply connected if each point x ∈ X
has a neighborhood U such that each loop at x contained in U is contractible within X.

Proof of Theorem 4.1. We assume that (X, d) is a complete semilocally simply connected
length space which fails to be simply connected. To prove the theorem, we are required to
prove that X cannot be Ptolemaic. The proof is a stopping time construction involving
noncontractible loops γj at basepoints pj, for j ≤ j0 where j0 ∈ N∪{∞} is the stopping
index.

We begin by picking any basepoint p1 ∈ X and a noncontractible loop γ1 : [0, 4L1] → X
parametrized by arclength with γ1(0) = γ1(4L1) = p1 and the following near-minimality
property: 4L1 < (7/6) len(γ) for all noncontractible loops γ at p1. Note that semilocal
simple connectedness guarantees that this is possible. By writing l1 := γ1(L1), u1 :=
γ1(2L1), r1 := γ1(3L1), we divide the loop into four subpaths of length L1.

p1

l1 r1

u1 = p2

γ1

l2 r2

u2 = p3

γ2

Figure 3. The first two steps of the construction
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It is convenient to define the left half and right half of γ1 to be the paths from p1 to u1

given by the joins γ1[p1, l1] + γ1[l1, u1], and γ1[u1, r1] + γ1[r1, p1], respectively. Similarly,
we define the upper and lower halves of γ1 to be the paths from l1 to r1 obtained by
joining the two of these four subarcs of γ1 that have u1 or p1 as an endpoint, respectively.

We claim that d(p1, u1) ≥ 10L1/7. Suppose for the sake of contradiction that this is not
true, and so we can find a path λ1 from p1 to u1 of length less than 10L1/7. Joining λ1

with either the left or right half of γ, we get two loops at p1. Since γ1 is noncontractible,
at least one of these two new loops is noncontractible. But both have length less than
2L1 + 10L1/7 = (6/7)(4L1) and this contradicts the assumed near-minimality of γ1.
Thus the claim follows.

The stopping condition for this first step is d(l1, r1) ≥ 10L1/7. Since the distances
d(p1, l1), d(l1, u1), d(u1, r1), and d(r1, p1) are all at most L1, and d(p1, u1) ≥ 10L1/7, it
follows that if the stopping condition holds, then

d(l1, r1)d(p1, u1) ≥

(

10L1

7

)2

> L2
1 + L2

1 ≥ d(l1, p1)d(r1, u1) + d(l1, u1)d(r1, p1) ,

and so the space is not Ptolemaic, as required.

Suppose instead that the stopping condition fails, so that there exists a path ν1 from
l1 to r1 of length less than 10L1/7. Joining ν1 with either the upper or lower half
of γ1, we get two new loops which we term the upper and lower loop, respectively.
The noncontractibility of the lower loop contradicts the assumed near-minimality of γ1

as before, so we may assume that it is contractible and thus that the upper loop is
noncontractible. Note that the noncontractibility of the upper loop does not lead to a
contradiction because this loop does not pass through p1.

We define p2 = u1. Since the upper loop is noncontractible and has length less than
(6/7)4L1, semilocal simple connectedness implies that we can find a noncontractible loop
γ2 : [0, 4L2] → X, parametrized by arclength, with γ2(0) = γ2(4L2) = p2, L2 < (6/7)L1,
and the following near-minimality property: 4L2 < (7/6) len(γ) for all noncontractible
loops γ at p2.

The construction proceeds in the obvious inductive manner. If at any stage the cor-
responding stopping condition applies, then the space is not Ptolemaic. To finish the
proof, we will show that failure of the stopping condition at every step leads to a con-
tradiction. Indeed this is easy: since the paths γj have length

Lj < (6/7)j−1L1 → 0 as j → ∞ ,

the sequence (pj) necessarily converges to some point p ∈ X and, for sufficiently large j,
the noncontractible path γj lies in an arbitrary small neighborhood of p, contradicting
semilocal simple connectedness. �

Let us remark that it is proved in [11, Theorem 1.2] that a proper Ptolemaic space is
uniquely geodesic and so contractible. In particular it is simply connected. However
properness is a rather strong condition, not satisfied by infinite dimensional normed
spaces, for instance.

It remains to prove that a Ptolemaic Riemannian manifold has nonpositive curvature.

Theorem 4.2. If a Riemannian manifold (M, g) of dimension n ≥ 2 is Ptolemaic, then
it has nonpositive sectional curvature.
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The proof of Theorem 4.2 requires a strict Topogonov type result comparing hinges in
spaces of constant curvature, given in the following lemma, and a consequence of this
lemma.

In the following two results, a hinge simply means a triple of points in a metric space.
A pair of hinges {u, v, w} and {ū, v̄, w̄} (in typically different metric spaces both of
whose metrics we denote by d) are said to be comparison hinges if d(u, v) = d(ū, v̄),
d(u,w) = d(ū, w̄), and ∠u(v, w) = ∠ū(v̄, w̄). Note that the major difference between
this concept and that of comparison triangles is that we require two distances and an
angle to match rather than three distances.

Lemma 4.3. Suppose we have comparison hinges {v, p1, p2} in a space form of constant
curvature δ 6= 0 and {v̄, p̄1, p̄2} in R

n. If the angle α = ∠v(p1, p2) = ∠v̄(p̄1, p̄2) lies in
(0, π), then

(i) d(p1, p2) < |p̄1 − p̄2| if δ > 0;
(ii) d(p1, p2) > |p̄1 − p̄2| if δ < 0.

Proof. Given the hinge in R
n, we can assume the comparison hinge in the space form

M arises in the following way. Choose any point v ∈ M , and identify the origin of the
tangent space to M at this point with v̄. Corresponding to the points p̄1, p̄2 ∈ TvM , we
set pi = exp(p̄i) for i = 1, 2. This gives the desired hinge in M .

We focus first on the case δ > 0. Consider the geodesic γ(t) in TvM joining p̄1 to p̄2. As
α 6= 0, π, for each t we have a non-zero component of γ′(t) orthogonal to the line from
v̄ to γ(t). Since |v̄ − γ(t)| > 0, it follows easily from a result of Rauch [3, Proposition
74] that each of these orthogonal components is strictly longer than the image of the
component under the (derivative of the) exponential map at v̄. Since exp

∗
preserves the

length of vectors along any geodesic from v̄, we see that

| exp
∗
γ′(t)| < |γ′(t)| .

(For future reference, observe that if δ < 0, this inequality would be reversed.) The path
exp γ(t) joining p1 to p2 is therefore strictly shorter than γ(t). But the path exp γ(t) has
length at least as long as the distance in M between p1 and p2. Hence d(p1, p2) < |p̄1−p̄2|,
as claimed.

We now consider the case δ < 0. This time let γ(t) be a minimal geodesic joining p1 to
p2 in M . By the arguments used above, we see that the the path exp−1 γ(t) joining p̄1 to
p̄2 in TvM has strictly shorter length than γ(t), since the velocity vectors to exp−1 γ(t)
must have some component orthogonal to the radial direction from v̄, at least for t in
some open interval. Moreover, this path in TvM is at least as long as the Euclidean
distance between p̄1 and p̄2. Hence d(p1, p2) > |p̄1 − p̄2|, as required. �

Corollary 4.4. Consider a hinge {w, q1, q2} in a manifold M of curvature K > 0, with
angle ∠w(q1, q2) ∈ (0, π), and let {v̄, p̄1, p̄2} be a comparison hinge in Euclidean space.
Then dM(q1, q2) < |p̄1 − p̄2|.

Proof. The hinge {w, q1, q2} lies inside some compact region of the manifold. Over this
region, the curvature is bounded away from 0, that is, K ≥ δ > 0. Let {v, p1, p2} be
a comparison hinge in the space form X of constant curvature δ. By the Toponogov
Theorem, we have dM(q1, q2) ≤ dX(p1, p2). By Lemma 4.3, we also have dX(p1, p2) <
|p̄1 − p̄2|. Thus dM(q1, q2) < |p̄1 − p̄2|, as claimed. �
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Proof of Theorem 4.2. If the curvature of M fails to be non-positive, we can find p ∈ M
and a two dimensional subspace V of TpM such that the sectional curvature K(V ) > 0.

Restricting the exponential map at p to V , we obtain a local diffeomorphism from
a neighbourhood of the origin in V onto a two-dimensional submanifold of M . By
openness of the positivity condition, the Gaussian curvature of this submanifold will
be strictly positive close to p. In particular there exists ǫ > 0 such that the closed
ǫ-ball centred at p in our submanifold consists entirely of points with positive Gaussian
curvature. Call this ball B.

Now choose linearly independent vectors v1, v2 in V of equal length < ǫ. Set v−i = −vi

for i = 1, 2; set xi = exp(vi) for i = −2,−1, 1, 2. Let dB respectively dM denote distances
measured in B and M , and let d denote distances in V . Clearly dB(xi, xj) ≥ dM(xi, xj)
in general, and dB(xi, x−i) = dM(xi, x−i) = d(vi, v−i). Linear independence means that
for |i| 6= |j|, the angle ∠0(vi, vj) = ∠p(xi, xj) ∈ (0, π), and since the curvature is strictly
positive, Corollary 4.4 applies. From this we deduce that for such i, j,

dM(xi, xj) ≤ dB(xi, xj) < d(vi, vj).

Since the {vi} lie on a Euclidean circle, the Ptolemy inequality is in fact an equality for
these points. However, the above estimates show that the Ptolemy inequality does not
hold in M for the points {xi}, so M cannot be a Ptolemaic space. �

5. Ptolemaic Finsler spaces are Riemannian

In view of the afore-mentioned result of Schoenberg [17] that normed spaces are Ptole-
maic if and only if their norm is induced by an inner product, one can also consider
the question of finding a converse to Proposition 3.1 in the setting of Finsler geometry.
As sated in Theorem 1.2, it turns out that if the Finsler metric of a Finsler space sat-
isfies Ptolemy’s inequality, then it is in fact Riemannian. The proof uses Schoenberg’s
result [17] and a theorem of Whitehead asserting that the differential at the origin of
the exponential map of a Finsler space is always the identity [18], [2].

Proof of Theorem 1.2. There is a concept of exponential map for Finsler manifolds,
and this map exists at least in some neighbourhood of each point; see [2, page 126].
Moreover, it is C1 at the zero-section of TM , and smooth away from the zero-section [2,
pages 126–127]. A theorem of Whitehead states that the derivative of the exponential
map at its origin is always the identity [18], [2].

Given any point p in our Finsler manifold (Mn; F ), the existence of a pointed differ-
entiable map (TpM, 0) → (M, p) which is isometric at 0, such as the exponential map,
is sufficient to ensure the pointed Gromov-Hausdorff convergence of the scaled spaces
(M, p; λF ) to the space (TpM, 0; Fp) as λ → ∞. Here, Fp denotes the Minkowski norm
on the tangent space TpM . (See for example Proposition 3.15 of [15]. This deals with
the Riemannian analogue of the above, but the same argument is easily seen to work in
the Finsler case.)

The Ptolemaic condition is preserved both by scaling and under Gromov-Hausdorff
convergence. Its preservation by scaling is trivial. To see why it is preserved under
Gromov-Hausdorff convergence, consider a sequence of Ptolemaic spaces Xi converging
to a metric space X. If X is not Ptolemaic, then we can find four points x, y, z, p such
that

d(x, y)d(z, p) > d(x, z)d(y, p) + d(x, p)d(y, z).
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Since this inequality is strict, there is an ǫ > 0 such that the inequality

(d(x, y) − ǫ)(d(z, p) − ǫ) > (d(x, z) + ǫ)(d(y, p) + ǫ) + (d(x, p) + ǫ)(d(y, z) + ǫ)

holds. For this ǫ and for i sufficiently large, we can find ǫ-Hausdorff approximations
Xi → X and X → Xi (see [12] page 146 for details). It follows from the second
inequality above that the images in Xi of x, y, z, p under such a map must also fail to
satisfy the Ptolemy inequality. Therefore, since each Xi is assumed Ptolemaic we deduce
that we cannot find four points in X for which the Ptolemy condition fails. In other
words, X must be Ptolemaic.

Given that our Finsler manifold is Ptolemaic, we now deduce that the tangent cone at
p, (TpM ; Fp) is also Ptolemaic. By a result of Schoenberg [17], this means that the norm
Fp is induced by an inner product. Since this is true for all p ∈ M , we see that M is
actually a Riemannian manifold, as claimed.

�

Summarizing our results for manifolds so far, we have in effect proven the following
equivalence.

Theorem 5.1. For a smooth manifold M the following conditions are equivalent:

(i) M is Finsler and Ptolemaic.
(ii) M is Finsler and CAT(0).
(iii) M is Hadamard.

Proof. The implication (ii) ⇒ (i) follows from Proposition 3.1 which states that Ptolemy’s
inequality is satisfied in any geodesic CAT(0)-space. Note that this result holds in more
generality than the Finsler manifolds we consider here.

In order to prove (i) ⇒ (iii) we first observe that by Theorem 1.2 the fact that Ptolemy’s
inequality is satisfied in the Finsler manifold M implies that M must be Riemannian.
Furthermore, Theorem 4.1 ensures that M must be simply connected. Finally, if M is
assumed not to have non-positive sectional curvature, it follows by Theorem 4.2 that
Ptolemy’s inequality fails. Therefore, M must have non-positive curvature, and thus is
Hadamard.

The implication (iii) ⇒ (ii) is trivial since M is assumed to be Hadamard and is
thus Finsler, and since any simply connected Riemannian manifold with non-positive
curvature is CAT(0). �

6. When are the inversions of a manifold Riemannian?

In this section, we prove Theorem 1.3. In fact we prove more, as revealed by the following
result. (For the statement, recall that the only difference between (Mp, ip) and Invp(M)
is that the latter space includes a point at infinity if M is unbounded.)

Theorem 6.1. Let M be a complete Riemannian manifold of dimension n ≥ 1. The
following are equivalent:

(a) M is Euclidean n-space;
(b) Invp(M) has the structure of a Riemannian manifold, for all p ∈ M ;
(c) (Mp, ip) has the structure of a Riemannian manifold, for all p ∈ M ;
(d) Invp(M) is a length space, for all p ∈ M ;
(e) (Mp, ip) is a length space, for all p ∈ M (n > 1 only).
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Proof. Most of the implications of this theorem are easy, so let us deal with the easy cases
first. If M is Euclidean n-space, then we know that (Mp, ip) is isometric to Euclidean
n-space with one point removed and that Invp(M) is isometric to Euclidean n-space,
so it is immediate that (a) implies (b), (c), (d), and (e). Trivially (b) implies (c) and
(d), both of which in turn imply (e). Moreover the case n = 1 is easy since the only
complete Riemannian manifolds are M = R

1 (in which case Invp(M) is isometric to the
Euclidean line and (Mp, ip) is isometric to the Euclidean line with a point removed),
and M = S

1 (in which case ip is not a metric by Theorem 4.1). Therefore it suffices to
prove that (e) ⇒ (a), and we may assume that n > 1.

Note that by Theorem 1.1, (e) already implies that M is a Hadamard manifold. So all
we need to show is that if the sectional curvature of M is nonzero at some point p ∈ M ,
then ip is not a length metric. This follows from a more general statement proven in
the next proposition. �

Proposition 6.2. Let X be a CAT(0) space and p ∈ X such that ip is a geodesic metric.
Then, for all x, y ∈ X such that x, y, p do not lie on a common geodesic, the triangle
with vertices x, p, y is flat. Thus, X is isometric to a convex subset of a Euclidean cone
with vertex p.

Proof. Since x, y, p do not lie on a common geodesic, the geodesic triangle ∆ := T (x, y, p)
is nondegenerate. Suppose that there exists an ip-geodesic segment γ in Invp(M) for
the pair x, y. In (X, d), γ is either a single path between x and y (if p′ /∈ γ), or a pair
of paths from x and y to infinity (if p′ ∈ γ). In either case, we can pick a point z ∈ γ,
with 0 < d(x, z) < d(x, y)/2. Now ip(x, y) = ip(x, z) + ip(z, y), and it follows easily that

(5) d(x, y)d(z, p) = d(x, z)d(p, y) + d(x, p)d(y, z) .

We thus have equality in the Ptolemy inequality for the points p, x, y, z.

Recall that the subembedding theorem [7, II.1.10] states that CAT(0) spaces (X, d)
satisfy the CAT(0) four-point condition: For every choice of 4 points x1, x2, y1, y2 ∈ X,
there exist points x̄1, x̄2, ȳ1, ȳ2 ∈ R

2 such that d(xi, yi) = |x̄i − ȳj|, i, j = 1, 2, and
d(x1, x2) ≤ |x̄1 − x̄2| and d(y1, y2) ≤ |ȳ1 − ȳ2|. The rigidity part of the subembedding
theorem states that if there are four points x1, x2, y1, y2 in a CAT(0) space X such that
the above equalities hold, and the inequalities become equalities, then the convex hull
of x1, x2, y1, y2 in X is isometric to the corresponding Euclidean comparison quadrangle.
This statement can be proven along the following lines. Assume for simplicity that the
points x̄1, ȳ1, x̄2, ȳ2 form a convex quadrilateral in R

2 and let m̄ be the intersection point
of the diagonals [x̄1, x̄2] and [ȳ1, ȳ2]. Furthermore, let m1 and m2 be the comparison
points corresponding to m̄ on the geodesic segments with endpoints x1, x2 and y1, y2,
respectively. By using the CAT(0) property and the triangle inequality one can readily
show that m1 and m2 coincide. We can then apply [9, Proposition 9.1.19] to obtain that
all triangles T (x1, y1, x2), T (x2, y2, x1), T (x1, y1, y2) and T (y1, x2, y2) are flat.

Now set x1 = x, y1 = p, x2 = y, y2 = z and assume that either one or both the
inequalities in the four-point condition is a strict inequality. Then, by (5),

|x̄ − ȳ||z̄ − p̄| > d(x, y)d(z, p)

= d(x, z)d(p, y) + d(x, p)d(y, z)

= |x̄ − z̄||p̄ − ȳ| + |x̄ − p̄||ȳ − z̄|
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which contradicts the Ptolemaic inequality in R
2. Thus, we can apply the rigidity part

of the subembedding theorem and obtain in particular that the triangle ∆ is flat. This
finishes the proof. �

Remark 6.3. We claim that if x, y are points in M \ {p} and there is an ip-geodesic in
Invp(M) from x to y, then x, y, and p necessarily lie on a common geodesic segment.

We prove (the contrapositive of) our claim. Suppose x, y, p do not lie on a common
geodesic. As in the proof of Proposition 6.2, consider the nondegenerate geodesic triangle
∆ = T (x, y, p). We can again pick a point z such that (5) holds.

Now, examining the proof of Proposition 3.1, we see that in the intersecting case, we
can only have (5) if the corresponding equation also holds in the Euclidean comparison
picture. By Ptolemy’s theorem, this equation can only hold when the four points x̄, ȳ,
z̄, and p̄ all lie on a common line or circle. The four points cannot lie on a common line
because T (x, y, p), and so also T (x̄, ȳ, p̄), is nondegenerate. Therefore we can assume
that they lie on a common circle. This rules out the possibility that z̄, p̄, and either x̄
or ȳ lie on a common line. Thus the point ū (mentioned in the proof for the intersecting
case) cannot be x̄ or ȳ, and so u 6= x, y. We can therefore apply Lemma 4.3 to deduce
that d(u, p) < |ū − p̄|. This strict inequality leads to a strict version of (3), and so we
cannot have equality in Ptolemy’s inequality.

In the nonintersecting case, we got the stronger inequality

d(x, y)(d(z, x) + d(x, p)) ≤ d(x, z)d(y, p) + d(x, p)d(y, z) .

When we swivel to reduce to Case 1, as described in the proof of Proposition 3.1, the
right-hand side gets strictly smaller and the left-hand side remains unchanged, so (5)
must fail in this case also.

In view of the above claim, the question naturally arises as to what happens when x, y, p
lie on a common geodesic. Suppose that x ∈ [p, y], x 6= p, y. According to (4.2) in [8],
the length ℓp(γ) of a path γ with respect to ip is given by

ℓp(γ) =

∫

γ

|dx|

d(x, p)2
,

where |dx| is the length element for (X, d). Thus

ℓp([x, y]) =

∫ d(y,p)

d(x,p)

dt

t2
=

1

d(x, p)
−

1

d(y, p)
=

d(y, p) − d(x, p)

d(x, p)d(x, p)
= ip(x, y) .

Using a similar analysis to the proof of Theorem 6.1, the reader can check that lp(x, y) >
ip(x, y) if p ∈ [x, y], p 6= x, y.
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