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The Running Coupling from the Quark–Gluon Vertex
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We present results for the QCD running coupling obtained from measuring the quark-gluon vertex in Landau

gauge with suitable renormalisation conditions. The issue of discretisation errors arising from the fermion action

is discussed.

1. Introduction

The quark–gluon vertex is one of the funda-
mental quantities of QCD, and studying the form
of the vertex can give us greater insights into
the dynamics of the theory and may provide and
important necessary input into Dyson–Schwinger
equations. Here we will focus on using the quark–
gluon vertex to extract the running coupling from
first principles.

2. The vertex function

The full (unamputated) momentum space ver-
tex function can be defined as

Gaµ(p, q)
ij
αβ =

〈

Sijαβ(p)A
a
µ(q)

〉

(1)

and the amputated (OPI) vertex function

Λa,latµ (p, q) =

〈S(p+ q)〉
−1
〈

S(p)Aaµ(q)
〉

〈S(p)〉
−1

〈D(q)〉
−1

(2)

D(q) is the scalar part of the gluon propagator,
given in the Landau gauge by

Dab
µν(q) = δabTµν(q)D(q) (3)

where Tµν is the projection onto transverse fields.
Using the requirements of Lorentz covariance

and parity and charge conjugation invariance, one
can derive the following general form for the ver-
tex in the continuum:

Λµ(p
2, q2, pq) ≡

1

N2

C − 1
Tr colT

aΛaµ(p, q)

= F1pµ + F2qµ + F3γµ

+F4 6ppµ + F5 6pqµ + F6 6qpµ + F7 6qqµ (4)

+F8σµνp
ν + F9σµνq

ν

+F10ǫµνκλγ5γ
νpκqλ

where all the F ’s depend only on the invariants
p2, q2 and pq.
At tree level, this reduces to Λ0

µ = i
2
g0γµ. From

this we can see that the form factor containing the
running coupling is F3, while all the other form
factors are expected to be finite.
If we define

Kµ(p, q) ≡ iTr γµΛµ(p, q) (5)

we find that iF3(p
2,0,0) = Kµ(p,0)|pµ=0.

This kinematics can then be used to define
a momentum subtraction scheme for the renor-
malised coupling:

gMOM
R (µ) = −2iZψ(µ)Z

1/2
A (µ)F3(p

2,0,0)|p2=µ2 (6)

where Zψ and ZA are the renormalisation con-
stants for the quark and gluon fields, defined in
the Landau gauge by

D(p2)|p2=µ2 = ZA(µ)
1

µ2
(7)

Tr (γp̃)S−1(p̃)/p̃2|p2=µ2 =
i

Zψ(µ)
(8)

p̃µ = 1

a sin kµa is used in the definition of Zψ to
make it more ‘continuum-like’.
gMOM
R , as defined in (6) can then be related

perturbatively to the running coupling calculated

in other schemes, eg. gMS
R (q2). This matching can

be performed entirely within continuum pertur-
bation theory [1].
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The running of gMOM
R can also be compared

to the perturbative continuum coupling derived
from the two-loop beta function

g2(µ) =

[

b0 ln(µ
2/Λ2) +

b1
b0

ln ln(µ2/Λ2)

]

−1

(9)

with b0 = 11/16π2, b1 = 102/(16π2)2, by doing a
one-parameter fit to this formula.

3. Computation and results

332 quenched configurations have been anal-
ysed at β=6.0 (a−1=2GeV) with a lattice size of
163×48. The propagators have been generated us-
ing the tadpole improved Sheikholeslami–Wohlert
action, at κ=0.137. The gauge fields and prop-
agators have been fixed to Landau gauge, with
accuracy 1

V Nc

∑

x,µ |∂µAµ(x)|
2
< 10−12.

The full vertex γµGµ(p, q) has a clear, symmet-
ric signal for q=0 and all values of p where pµ = 0
[2]. For q 6= 0 the signal falls off rapidly, and
disappears entirely for |qa| ≥ π

4
. This makes it

difficult to implement a renormalisation scheme
where q 6= 0, although this would be preferable.

In order to compute the proper vertex, one
needs the quark renormalisation constant Zψ. As
figure 1 shows, this suffers from serious ambigui-
ties, especially at high momenta. A more detailed
analysis shows these ambiguities to be a result of
violation of rotational symmetry, which can be
attributed to O(a) errors in the fermion action:
although the SW action is O(a) improved, this is
only the case for on-shell, gauge invariant quan-
tities. In order to remove O(a) errors for gauge
dependent, off-shell quantities, one requires two
additional counterterms in the actions [3].

3.1. The proper vertex and gR
One feature of the data is the strong correla-

tions between data at different momenta. This
makes an assessment of possible violations of ro-
tational and reflection symmetry difficult, as it
turns out that different samples of 83 configura-
tions can have values of Kµ as much as 3σ apart.
With this proviso, we find that for q = 0 and
pµ = 0,Kµ(p, q) is independent of µ within er-
rors, as one would expect. For pµ 6= 0, the F4

form factor appears, and this has a large effect

Figure 1. Zψ(µ) as a function of µ, for 80 config-
urations.

on Kµ — making it consistent with 0 for all but
the smallest values of pµ.

Figure 2. gMOM
R (µ) as a function of µ.

The renormalised coupling is showed as a func-
tion of µ in figure 2. The signal is encouragingly
clean, and it exhibits qualitatively the same be-
haviour as the running coupling extracted from
the 3-gluon vertex [4].



An estimate for ΛQCD in this scheme has been
obtained by inverting equation (9), and the result
is plotted as a function of momentum in figure 3.
The running of gMOM

R will be consistent with two-
loop continuum perturbation theory where this
estimate is consistent with a constant. However,
no firm conclusions can be drawn in this case,
since the point where the data becomes consistent
with a constant value for Λ (above 1GeV) is also
where noise begins to dominate.

Figure 3. ΛMOM as a function of the renormali-
sation scale µ.

4. Discussion and conclusions

The feasibility of using the quark–gluon vertex
to extract the QCD running coupling has been
demonstrated, although O(a) errors in the quark
propagator remain a problem. This may be ad-
dressed by using an off-shell improved fermion ac-
tion, but further work is needed to investigate the
feasibility of this.
These results will be matched perturbatively to

the MS scheme to enable a quantitative compar-
ison with other determinations of αs. A study of
the other form factors in the vertex, as well as the
possible effects of Gribov copies, is also underway.
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